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Summary   :  The Topo-geometric approach MZ requires 

notions of both vector geometry and affine geometry, 

and also uses topology concepts to transform the elementary 

notions of presenting a linear program problem. These 

different forms or presentation models of problems related to 

the Topo-geometric approach MZ are initially presented in this 

article and will be followed by elementary results 

demonstrated by the use of the supported objects of the 

supported model. Thus, this article is the precursor of the 

determination of redundant constraints by the Topo-geometric 

model MZ. The energized objects will thus constitute the 

language of the proofs of the subsequent propositions. 

  
Keywords   :  Linear programming, mathematical writing of the 

model, writing of the Topo-geometric model MZ, algorithm.  

 
 

1 INTRODUCTION 

This paper constitutes the basis of the Topo-geometric 

model MZ in search of redundant constraints in a 

problem of linear programming. This article follows 

the work on the Topo-Geometric MZ model published 

in MADA-ETI, ISSN 2220-0673, Vol.2, 

2016, www.madarevues.gov.mg which develops the basic 

concept of Topo-geometric models, and presents the 

powered objects in search of the redundant constraints 

of a linear programming problem.  All the 

mathematical object classes will first be presented 

from the simplest to the most complicated, to model 

the real concept allowing the decision 

making. Together with the presentation of each class, 

the existing operations and relationships will be 

analyzed; the representation of technical constraints by 

affine half-spaces is the most important part of this 

work. 

2 THE MEAN OBJECTIVES 

 2.1 The scalars 

A scalar is any real number.  Symbolically, a scalar will be 

represented with a Latin or Greek or lowercase letter. 

Examples: , , ,...., ,....x y z    

 

2.2 Indexes 

It is a positive or null integer that will be attached to an 

object of a model, as a unique identifier. Symbolically the 

indexes will be represented by i, j, k... 

To represent the possible values of an index, the following 

notions will be used: 

i = 1, 2...n meaning that the index i varies from 1 to n. 

When an objective x of a model is an index, one writes: 

          
1,...,i i n

x
  

which is a condensed representation of : 

                            

1

2

1

 
 
 
 
 i

x

x

x

: 

An object can have two indexes as identifiers. This is the 

case   with matrices, for example. 

It is represented by 

  1,...,
1,...,




i mij
j m

a  

which designates the matrix   : 

11

1

.....

....

 
 
 
 
 

in

i

m mn

a a

a

a a

 

To fully exploit the indexes, the symbol   (summation) 

will also be used. 

So, to represent  

1 1 2 2 ..... n nc x c x c x   , 

 it will be simply written:  

   
1

.



n

j j

j

c x  
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3 THE ELEMENTARY OBJECTS 

3.1 Decision spaces 

Take again the problems LPP in its known form which 

consists of finding the unknown-real 1 2, , ....., nx x x , and 

maximize: 

1 1 2 2. ....    n nZ c x c x c x                   (3.01) 

And which satisfy the following 

conditions   :  

11 1 2 2 1 1

21 1 22 2 2 2

1 1 2 2

....

...

....

   


   
    

i n n

n n

m m mn n n

a x a x a x b

a x a x a x b

a x a x a x b

 (3.02) 

i) 1 20, 0....., 0  nx x x                       (3.03) 

where the coefficients: 

                

 

 
 

1, ...,

1, ...., 1, ....,

1,



 



j

ij

i

c j n

a i n j n

b i n

 

Each line of the conditions (3.02) is called a technical 

constraint. 

Conditions (3.03) are called non-negativity constraints. 

Definition 3.01: decision-action-point-vectors 

We call decision-action any n-tuple   :               

1

2

 
 
 
 
 n

x

x

x

 Whose 1 2, ,..., nx x x  are elements of  

It will be noted later   : 

    1, ...,jx j n  

Mathematically, we see that it is an element of 
n

 relative 

to a given base. It is also a point in the affine 

space n  relative to a given landmark. 

An action decision will be represented by an affine 

point. Which brings us to the decision-action definition? 

Notation   : an action decision is noted using a capital Greek 

letter: A, B, X, Y 

Definition 3.02: decision marker - action - decision space 

We call decision-action benchmark, the positive 

orthonormal geometric benchmark, noted   : 

        
1 2

, , , ....,
n

O U U U  

related to the aforementioned LPP problem. In this 

reference, the geometric origin O has a particular meaning   : 

it represents the decision to do nothing, that is, if 

O = 

1

2 01 02 03 0

0

, ....

 
 

    
 
 

o

o n

n

x

x x x x x

x

 = 0 

To each decision, variable jx  corresponds the unit 

vector jU  . 

The affine space 
n

 , equipped with the 

reference  1 2, , , ...., nO U U U  is called the decision space 

relating to the LPP problem to be solved. 

Despite this striking resemblance to Euclidean affine 

geometry, a limiting aspect will be presented from the start. 

 

3.2 Postulate 

In the topo-geometric theory MZ, the orthonormal affine 

frame of the decision space action of the problem LPP to be 

solved is unique. 

This assumption means that   : 

 - The concept of basic change does not exist. 

 - The concept of change of origin does not exist. 

However, following a presolved analysis, it may be possible 

that n changes, which completely modifies the LPP problem. 

 

4 OPERATIONS ON ACTION-DECISIONS 

Given an LPP problem, according to definition 3.01, a 

decision is represented by a point in the decision-action 

space and   / or by a vector of the vector space   ℝ n 

This dual nature (both affine and vectorial) of decision-

actions is very important. 

It allows to express   : 

The creation of other stock-decisions based on existing 

stock-decisions 

The search for other decision-actions according to a given 

direction. 

4.1 Amplifier of an action decision 

Let the decision-action space relate to the reference. 

Let X0 be an action decision and α a given positive real 

number. 

We call amplifier of X0 using α, the generation of an action 

decision X such that      

           X = αX0    

Mathematically, it is therefore the multiplier of vector X0 by 

the scalar α 

4.2 Addition of two decision-actions 

Let X0 and X1 be two decision-actions in a LPP problem. 

The addition of X0 and X1 is called the creation of a new 

action decision X such that 

      X = X0 + X1    

Note 4.01   

The combination of 2.3.1 and 2.3.2 allows us to model the 

conic combination concept of two or more action-decisions. 

Let the decision-actions X 1, X 2... X k. 

The conic combination of these decisions is the new 

decision X defined by: 

     X = α 1 X 1 + α 2 X 2 + ... + α k X k 

α 1, α 2  ...., α k are positive real numbers or zero. 
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Note 4.02 

From the previous remark, it is clear that the decision 

satisfies the constraint (2.03) if it is a conic combination of 

U1, U2 ... Un, that is to say: 

   X = α1U1 + α2U2 + ... + αnUn with α 1 ≥0, α 2 ≥0… α n ≥0 

Let's show that it is reciprocal and true. 

Let X be an action decision satisfying the constraint (2.03) 

  
   X = (x ji )   with    x ji   ≥0 

but 

  
1

( )



n

j j

j

xj x U  with   x j ≥0 

4.3 Search axe defined by decision-action Xo and direction 

the vector decision-action V 

Let X0   and V be action-decisions. 

We call search axis starting from X o and direction U the set 

of decision actions, noted ℝ (X0, V) defined by 

ℝ (X0, V) = {X ∈ℝ n / X = X0 + αV, with      α ∈ℝ and α≥0} 

Mathematically, it is the affine ray derived from X0 and the 

vector V. 

Conceptually, the research idea is justified by the fact that in 

practice, any solver is based on a search algorithm starting 

from an initial point. 

Thus, from a given decision-action X0, and a given search 

direction V, one can search   the points in the universe of 

decisions that will satisfy the constraints (3.02) and (3.03). 

This research idea is not confined to a single     research 

direction. It is also possible to adopt simultaneously two 

search directions V1 and V2. Hence the concept of “research 

plan   ", Starting from X0 and direction V1 and V2. 

 

4.4 Plan of research starting from a decision-action X0 and 

directions V1 and V2 

Let X0 be a decision-action point and V1 and V2 two 

decision-action vectors of it. 

We call search plane starting from X0  and directions V1 and 

V2 , the set noted P (X0 ,V1, V2 ) defined as follows   : 

P (X0, V1, V2,) = {X ∈ℝ n / X = X0 + α1 V1 + α2 V2, where 

α1 ∈ℝ + and α2 ∈ℝ +} 

 

By generalizing, we have   : 

4.5 Research of X0 direction and  V1, V2... 

Vk, vectors decisions 

Let X0 be a decision-action point associated with a LPP. 

Let V1, V2...Vk, k decision- action vectors of the same 

problem LPP. 

We call vertex cone X0  and directions V1 , V2 , ....,Vk , 

the action decision set denoted:                  

C (X0, V1, V2... Vk) defined as follows:  

             C (X0, V1, V2... Vk). 

It should be noted at once that research axes and research 

plans are only special cases of research axes. 

 

 

5 THE TECHNICAL CONSTRAINTS 

In practice, any action-decision always has an 

impact. In the field of linear programming, two 

categories of impacts can be distinguished   : 

- Impact-performance. 

- Resource impacts. 
In this study, we only deal with the impact-resources. 

 

Definition 5.01 resource impact 

Let X be an action decision point of a given LPP 

problem. Let V be a null vector of 
n

.We call resource 

impact according to V, the scalar product of X and V in 
n

 

noted: 

           ℑ (X, V) = <X, V> 

Where <X, V> denotes the scalar product U with V. 

The vector V is called unit consumption vector V of the 

given resource. 

Definition 5.02 constraint resources 

In our theory, we assume that a constraint that is logical or 

material may be associated with a resource that is always 

limited in the associated LPP problem. 

Let A = (aj) j = 1... n be a vector V of consumption of a given 

resource. 

Let b be the limit value of the resource, the zone of respect 

of the consumption of the resource limited by b is the set 

noted ZR (A, b) defined by : 

 ZR (A, b) =  / ,nX A X b                (5.01) 

In affine geometry, this set is none other than the negative 

half-space delimited by the noted affine 

hyperplane. HP (A, b) defined by: 

 HP (A, b) =  / ,nX A X b                (5.02) 

NB: The vector A is not an action-decision it is linked to a 

given resource and allows to calculate the impact of an 

action X decision on this resource 

6 The constraints of non-negativity 

The non-negativity constraints translate the fact that the 

elementary decisions xi, where i = 1... n must be non-

negatives, is  : 

           0ix       ∀ i = 1, 2... n 

Let us note immediately that the relations   : 

          0ix     ∀ i = 1, 2... n 

can be written: 

          0ix    ∀ i = 1, 2... n 

Expression equivalent to: 

           , 0  iU X  

Therefore, a non-negativity constraint can also be 

considered as a resource constraint delimited 

by  , 0  iZR U  called non-negativity zone ZNNi. 

However the combination of all non-negativity constraints 

has a particular geometric meaning that we call   "   non-

negativity cone   ". 
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6.1 non-negativity cone 

We call non-negativity cone noted 
0C  the cone of search 

from point-decision O and direction of all decision 

vectors   : 

, 1,2,....,iU i n

 
Geometrically we have: 

0

1

1 2

/ 0

( , , ,.. ., )

n
n

i i i

i

n

C X X U where

Cône O U U U

 



 
    
 



                 (6.01) 

Note 6.01: 

It is obvious that     1

i

o i iC ZNN

   

 

6.2 Non-negativity face 

It is to be recalled that the geometric topo reference of the 

LPP problem is immutable        (O, U0, U2..., Un). 

This means that we cannot change the place of a vector Ui of 

this reference, for all i, for all        

i = 1,   2..., n. 

We call the non-negativity face, denoted by FNNi,   the 

decision point set defined as follows: 

     
 

 

1

1

, , 1

, , 2,3,...,
i

i i

P O U Un for i
FNN

P O U U for i n

  
  

  
 

 

6.3 Non-negativity axes 
For all i = 1, 2... n, we call non-negativity axis, ANNi , the 

set of decision point defined as follows   : 

   ANNi =R (O, Ui) i = 1.2... n                        (6.02) 

Note that ANNi is none other than the search axis starting 

from O and with the direction Ui. 

Recall the concept of redundant constraints. 

7 REDUNDANT CONSTRAINTS 

A redundant constraint is a 

constraint which can be deleted   from a system of 

linear constraints without changing the feasible region or 

acceptable solution area. 

If we look at the next system of m and n constraints 

 of linear inequality, no negative (m ≥ n), we can adopt the 

matrix writing: 

             AX ≤ B,      X ≥ 0,                               (7.01) 

But 

             A ∈ R 
m

 
x
 
n

,   b ∈ R 
m

, X ∈ R 
n

,  

And         0 ∈ R 
n

. 

Let 

              AT i   ≤ bi   

be the i th constraint of system (7.01) and let 

     S = {X ∈ R 
n

 /ATi X≤ bi,  X ≥ 0} 

The acceptable solution area associated with 

the system (7 .01). 

Let 

           S k = {X ∈R 
n

/ ATi X ≤ b, X ≥ 0, i ≠ k} 

 

The acceptable solution area associated to the constraint   : 

Ai X  ≤ bi,   i = 1 , 2 ,  . . .  , m, i / ≠ k  

of the system . 

The kth   constraint   : 

       Ak X  ≤  b k          (1 ≤ k ≤ m) 

is redundant for the system (7.01) if and only if 

             S = Sk. 

Definition 7.01 

Redondant constraints can be classified as weak  

and strong redundant constraints. 1.3.2 

Low redundancy constraints 

The constraint ATi X ≤ bi is 

weakly redundant if she is redundant and 

     ATi X = bi    for all      X ∈  S. 

8 RELATIONSHIP BETWEEN MZ OBJECTS 

The relationships described in this section are the basic 

ones. More complex relationships will be discussed in the 

next chapter. 

Moreover, the combinations between point-decisions and 

point-vectors have already been seen. Therefore, only the 

following points will be dealt with: 

- The relation between a decision-point and a constraint-

technical zone. 

- The relation between a research axis and a zone of 

technical constraints. 

- The relation between a research plan and a zone of 

technical constraints. 

8.1 Relationship between a decision- point and a technical 

constraint zone 

Since a point-decision is represented with a point, and a 

zone of technical constraints is represented by a half-space, 

a set of decision-point, the essential same basic relation 

between one of these two object classes, is the ensemblist 

relation of belonging. 

Let X0 be a decision point and ZCT (A, b) a constraint zone. 

The relationship 

 0 0X ZCT A,b means A,X b    

Since in the LPP problem model, the constraints are 

indexed, i.e. numbered from 1 to n, the corresponding 

technical constraints areas will also be noted.   : 

               ZCTi     i = 1,2... n 

This makes it possible to represent the system of techniques 

as follows: 

Let X0 be a decision-point satisfying all the technical 

constraints of the problem. 

We have   :               

i 0 iA ,X b for i 1,2,..., n       

This can be written   : 

 
0 iX ZCT      For everything    i = 1, 2... n 

From where, 

   0 1

m

i iX ZCT                                    (8.01) 
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 Relationship that is a basis for redundancy and infeasibility 

analysis. 

Moreover, when X0 does not belong to a ZCTi, we also say 

that X0 is exterior to ZCTi as the outer term, and its inner 

opposite has a topological connotation, the topological 

definitions of these terms will be recalled. 

8.1.1 Projection of a point on a hyperplane 

Let ZCTi be the area of technical constraints delimited by 

the HP hyperplane (Ai, bi) and let X0 be any decision-point. 

We call projection of X0 on the hyperplane HP (Ai, bi), the 

point noted X’0 such that   : 

X0 belongs to HP (Ai, bi) and is collinear to the vector Ai.  

X'0 is the intersection of HP (Ai, bi) with the straight line 

passing through X0 and whose direction vector is Ai. 

Proof : 

♣ 

Mathematically this right is defined by   :  

0 ,

n

iX with X X A      

The intersection is written, 

         X'0 = X0 + α Ai 

0

0

0

, '

,

, ,

i i

i i i

i i i i

A X b

A X A b

A X A A b





  

   

     

  

   

0

0

, ,

,

,





      

  
 

 

i i i i

i i

i i

A A b A X

b A X

A A

 

Finally, we have   : 

0

0 0

,

,

   
   

  

i i

i

i i

b A X
X X A

A A
                 (8. 02) 

                                                                               ♦ 

Moreover, the distance between X0 and X'0 denoted d (X0, 

X'0) is equal to   : 

 

 

0

0 0

0

0 0

,
, ' ,

,

,
, '

,

i

i i

i i

i i

i i

bi A X
d X X A A

A A

b A X
d X X

A A

  
  

 

  


 

             (8.03) 

This distance is also called the distance from the point Xo to 

the hyperplane HP (Ai, bi). 

8.1.2 Orientation of the vector Ai with respect to ZCTi 

Proposition 8.01 

The vector is always oriented from inside to outside of 

ZCTi. 

Proof: 

♣ 

Let X0   a ZCTi point that does not belong to the 

hyperplane  i iHP A , b   : 

  0 iX ZCT  and    0 ,i iX HP A b  

Is 0 'X  the projection of 
0X  on   ,i iHP A b  

We have   : 

                          0

0 0

,
'

,

i i

i

i i

b A X
X X A

A A

  
 

 

 
 
 

 

             0

0 0

,
'

,

i i

i

i i

b A X
X X A

A A

  

 

 
 
 

 

The product of 
0 0 'X X   with iA   is  : 

     

0

0 0

0 0 0

,
', ,

,

', ,

i i

i i i

i i

i i i

b A X
X X A A A

A A

X X A b A X

  
    

 

     

 
 
   

but        
0X ZCTi    

which means   : 

       0,i iA X b      and      0 , i iX HP A b  

So 0,i iA X b    

Therefore we have: 0,i iA X b                  

From where           0, 0i ib A X     

Finally we get the following relation:   

         0 0 ', 0iX X A    

                                                                               ♦ 8.1.3 

Direction of a decision vector with respect to ZCTi 

Let V be a decision vector, and let ZCTi be a technical 

constraint zone V parallel to HP (Ai; bi), that is to say at the 

ZCTi boundary. 

8.1.3.1 External orientation 

We say that V has an external orientation with respect to 

ZCTi,   if    <V, Ai> is strictly positive. 

8.1.3.2 Parallel orientation 

We say that V has a parallel orientation with respect to 

ZCTi, if <V, Ai>   is equal to 0. 

Note 8.01: 

The qualification    “parallel”   refers to the fact that V is 

parallel to HP (Ai   ; bi), that is to say at the ZCTi 

border. 

8.1.3.3 Internal orientation 

We say that V has an internal orientation with respect 

to ZCTi, if <V, Ai> is strictly negative. 

8.1.4Characterization of an Inner Point of ZCTi  

Proposition 8.02 

X0 is an inner point of ZCTi   if and only if   : 

0,iA X   < ib  

Proof: 

♣ 

a) Let X0 be a point inside ZCTi. 

According to 2.7.1.3.1, there exists a 

strictly positive reality r such that the ball whose center is X0 

and with a radius r is entirely contained in ZCTi. 
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Logically, this means that if X0' designates the projection of 

X0 on  ,i iHP A b  , then the distance between X0 and X0 ' is 

equal to   : 

                  0,

,

i i

i i

b A X

A A

  

 
 

And 

   i i 0

i i

b A , X
r but r is strictly positive,

A , A

 


 
     

  i i 0

i i

b A ,X
is strictly positive from where

A ,A

  

 
       

        i i 0 s alsostrictly positiveb A , X i   . 

b)   Reciprocally, X0 is a point of ZCTi such 

that 0,i iA X b    

Let us show that this is an inside point of ZCTi. 

Let X0' be the projection of X0 on the hyperplane. We saw 

that   : 

The distance between X0 and X0' is equal to: 

0,

,

i i

i i

b A X

A A

  

 
 

Let  

 
0,1

2 ,

i i

i i

b A X
r

A A

  


 
  

We have    r> 0   ; 

and it is obvious that the ball  whose center is X0 and  radius 

r is entirely included in ZCTi, which means that X0 is an 

internal point of ZCTi . 

                                                                               ♦ 

8.1.4.1 S border point 

A point X0 
n  is said to be a border point of S if   : 

 X0 is an element of Set   ; 

Whatever the positive real number r is, the open ball of 

center X0 and radius r contains both elements of S other than 

X0 and elements of S  (the complement of S in Euclidean 

affine space n  ). 

8.1.5 S border 

   Let S be a non-empty set in the Euclidean affine space with 

the orthonormal coordinate system 

(O, 1 2, ,..., nU U U  ). We call the boundary of S the set noted 

Fr (S) containing all the boundary points of S. 

Proposition 8.03 

We characterize the border points of the ZCTi   by: 

           Fr (ZCTi) =   HP (Ai; bi) 

 

 

 

Proof: 

♣ 

Let's first show the first inclusion   :    

            ( , )i i iFr ZCT HP A b  

Let      Xo be an element of Fr (ZCTi), that means that X0 is 

also an element of ZCTi so, 

          0,i iA X b    

 If  ,i iXo HP A b  , this means that 0,i iA X b    

From where, 

          0,i iA X b    , meaning that X0 is an inner point of 

ZCTi, which contradicts the fact that X0 is a border point of 

ZCTi. 

   Reciprocal   : 

             ,i i iHP A b Fr ZCT  

Let X0 be a point of HP (Ai,bi) which means that   : 

          0,i iA X b    

 Let r be any strictly positive real number and X1 the point 

defined by   : 

                       
1 0 .

2 ,

i

i i

Ar
X X

A A
 

 
 

Note that the distance between X0 and X1 is equal to 
2

r
 , 

which is strictly less than r. 

Moreover, according to Proposition 8.01, Ai is always 

oriented towards the outside of ZCTi so X1 do not belong to 

ZCTi. 

So X1 belongs to the open ball of center X0 and radius r. 

Finally, let us show that the open ball of center X0 and radius 

r contains points of ZCTi other than X0. 

Let X2 the point defined by   : 

    
2 0 .

2 ,
 

 

i

i i

Ar
X X

A A
 

We obtain:   

2

2

0

0

0

, , .
2 ,

1
, . ,

2 ,

, ,
2

i

i i

i i

i i i

i i

i i

Ar
A X A X

A A

r
A X A A

A A

A X
r

A X

     


     
 

     

 

 

But  

0 2, ,
2

       i i i i

r
A X b A X b  

As 

         0 0
2

  
r

r  

From where 

        
2

 i i

r
b b  

We can write   :                      

        2,  i iA X b  
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Which means that 2X  belongs to ZCTi. 

In summary, every strictly positive real number   in the open 

ball of center X0 and radius r contains both elements of ZCTi 

other than X0 and elements of ZCTi. 

This means that X0 is a frontier point of ZCTi. 

Finally, in combination with the two way, we 

have   :               

      

   

   

,

,

i i i

i i i

Fr ZCT HP A b

and

Fr ZCT HP A b





 

 So we have 

            ,i i iFr ZCT HP A b  

♦ 

Proposition 8.04 

The zone of technical constraints ZCTi is topologically 

closed. 

Proof : 

♣ 

Let X0 be a point not belonging to ZCTi (where ZCTi 

denotes the complement of ZCTi in the affine space). 

As     

          
0 iX ZCT     

So 

         0,i iA X b    

Let  X0' be the projection of X0 on  ,i iHP A b  . We showed 

that   : 

The distance between Xo’ and X0 is equal to   : 

              0

,

  i i

i i

b A X

A A
 . 

but 

             0,
i i

A X b     ⇒    0, 0
i i

b A X        

so 

             
 0 0

0

, ,

,

i i i i

i i

b A X b A X

A X b

       

   
 

The distance between X0 and the border  ,i iHP A b  is equal 

to   : 

             0,

,

i i

i i

A X b

A A

  

 
 

Let   : 

           0,1
.

2 ,

i i

i i

A X b
r

A A

  


 
 be 

It is easy to show that the open ball of center X0 and radius r 

is entirely contained in 
iZCT  . 

Therefore 
iZCT  is open. 

So ZCTi is closed.                                          

 

In summary of Proposition 8.03 and Proposition 8.04, each 

zone of ZCTi technical constraints is closed and their 

boundary is none other than the hyperplane  ,i iHP A b  . 

8.2 Relationship between a search axis R (X0, V) and a 

technical constraint zone ZCTi 

Consider an area of ZCTi technical constraints. Let also be 

the radius R(X0, V) coming from X0 and direction vector V, 

representing a search axis. This relationship is based on the 

existence and uniqueness of the solution of the equation   : 

  0, ,  i i iA V b A X ,    is the unknown. 

Proof: 

♣ 

Since the two objects are sets of decision points, the main 

combination that can be imagined between them is the 

intersection. In addition, since the area of technical 

constraint is closed and the hyperplane HP (Ai, bi) is closed, 

we will be much more interested in the intersection of the 

radius R (X0, V) with this boundary HP (Ai, bi). Indeed, if 

X0 is outside of ZCTi, then such an intersection gives us the 

point of entry from the outside to the inside of ZCTi along 

the radius. On the other hand, if X0 is inside ZCTi, it gives 

the exit point of ZCTi. 

Let I denote this point of intersection   : as I belongs to R 

(X0, V) 

We have 0 0   I X V avec  

Since I also belongs to HP (Ai, bi), we can write   : 

            , i iA I b  

By combining these two relationships, we have 

          0,  i iA X V b  

 By developing, we get 

          0, , i i iA X A V b  

which is an equation where α is the unknown. 

This equation gives   : 

   0, ,  i i iA V b A X                        (8.04) 

The existence and uniqueness of α depend on the values 

of b i - (Ai, X o) and (Ai,V), hence X0 and V. 

♦ 

8.2.1 Where X0 is outside ZCTi and where V is not facing 

inwards from ZCTi 

The equation   : 

           0, ,  i i iA V b A X  

has no solution. 

Proof: 

♣ 

This case is mathematically translated by   : 

       
0

,

, 0









i i

i

A X b

A V
and  

0
, 

i i
A X b   

leads that, 

        
0

, 0 
i i

b A X  

Also as 

 
0

0 , ,    
i i i

et A V b A X O  
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which is impossible. 

In this case I do not exist. 

 
8.2.2 Where X0 is outside ZCTi and where V is inward ZCTi 

The equation   : 

    
0

, ,  
i i i

A V b A X  

has a unique solution. 

    
0

,
0

,



 

i i

i

b A X

A V
 

Proof: 

♣ 

We have   : 

0, 0 , 0
i i i

b A X et A V  

which gives 

    
0,

0
,




 
i i

i

b A X

A V
 

which is in addition a unique value. 

♦ 

In this case we say that we have a single point of entry 

starting from X0, and moving along the axis of R (X0, V). 

8.2.3 Where X0   is on ZCTi and where V is outside ZCTi 

The equation   : 

     0, ,  i i iA V b A X  

admits a null solution. 

Proof: 

♣ 

This case results in   : 

0
, 0 , 0

i i i
A X and A Vb     

The only solution available is   : 

                   0   

Meaning that, 

                   0I X                

                      ♦ 

8.2.4 Where X0 is on the ZCTi border and where V is 

parallel oriented   to  

HP (Ai, bi) 

The equation   : 

      
0

, ,  
i i i

A V b A X  

has an infinity of solutions. 

Proof : 

♣ 

Mathematically we translate this case by   : 

          0
, 0 , 0

i i i
b A X and A V    

This gives us infinity of solutions. In fact,      R(X0, V) is 

included in HP (Ai   ; bi), and the intersection is none other 

than R (X0, V). 

8.2.5 Where X0 is on the ZCTi border and where V is inward 

ZCTi 

The equation   : 

             0, ,  i i iA V b A X  

has a unique solution. 

 

Proof   : 

♣ 

In this case 

0, 0 , 0
i i i

b A X et A V    

which leads to 
0   

That is to say 0I X  , unique solution. 

               ♦ 

 

             8.2.6 Where X0 is inside ZCTi and where V is 

outside ZCTi 

The equation   : 

            0, ,  i i iA V b A X  

has a unique solution 

    
0,

,





i i

i

b A X

A V
 

Proof : 

♣ 

This case results                                                               

in  0, , 0
i i i

A X b et A V   : 

Which  leads to: 

              
0

, 0 
i i

b A X  

Hence the unique solution 

     
0

,

,





i i

i

b A X

A V
   (2.12) 

                                                                              ♦ 

 8.2.7 Case where Xo is inside ZCTi and where V is parallel 

oriented to ZCTi 

The equation   : 

   
0

, ,  
i i i

A V b A X  

has no solution. 

Proof : 

♣ 

As in the previous case, we have   : 

   
0

, 0 
i i

b A X but     , 0iA V  

Which leads to an impossibility, meaning 

that  0 ,R X V  will never intercept the border of 
iZCT .  

  ♦ 
8.2.8 Where X0 is inside ZCTi and where V is inward ZCTi 

The equation   : 

   0
, ,  

i i i
A V b A X  

has no solution. 
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Proof : 

♣ 

As recently, 

0
, 0 , 0

i i i
b A X and A V    

In this case, the equation  

     
0

, ,  
i i i

A V b A X  

has no positive solution, meaning that  0 ,R X V  will never 

intercept the border of 
iZCT .     

              ♦         

                                               
8.2. 9 Algorithm for determining the intersection of a search 

axis R (X0, V) with the technical constraint zone ZCTi 

The previous eight cases can be summarized in the 

following algorithm   : 

- Case where there is no intersection. 

No intersection   : 

- Case with   

            
0

, , 0
i i i

A X b and A V   

 We have a single point of intersection 

            0

0

,

,

  
 

  

i i

i

b A X
X V

A V
 

- If      
0

, , 0
i i i

A X b and A V  . 

There is unique solution   :  

             0X  

 -If      
0

, , 0
i i i

A X b and A V  . 

There is unique solution: 

            0

0

,

,




i i

i

b A X
X V

A V
 

 -If      0, , 0i i iA X b and A V   

No solution   :   

8.3 Relationship between a search-plane C(X0, V 1, 

V 2) with linearly independent to V1 and V2 and a 

of ZCTi technical constraints zone 

As for section 8.2, these two objects are sets of decision 

points, so this section will describe their intersection. 

Let I be such a point. It is thus of the form   : 

  0 1 1 2 2
   I X V V   with  1 2and   are positives. 

More like I belongs to the border of 
iZCT  , we can write   : 

               , 
i i

A I b  

Which leads to : 

              0 1 1 2 2,    i iA X V V b  

From where 

               
0 1 1 2 2

, , ( , )     
i i i i

A X A V A V b  

Let 

              
1 1 1 2 2 0

, , ,   
i i i

A V A V b A X  

which is a linear equation with two unknowns 

variables, 1 2 et  positive. 

As for 2.6.2, the existence and uniqueness of the solutions to 

this problem depend on the 

three   objects 0 1 2,X V et V  . 

- For X0, there are three possible situations   : to be outside 

of ZCTi, or be on the border of ZCTi or be inside of ZCTi. 

- For 1V   there are three possibilities   : be outward facing 

from 
iZCT  or be oriented parallel to 

iZCT  or be oriented 

towards the inside of 
iZCT  

- For V2 the possibilities are the same as for V1. 

All in all, we have 3 3 3    , that is to say, 27 possible cases 

to be made. 

8.4 Search along an axis R (X0, V) in the ZNN non negativity 

zone 

The ZNN non-negativity zone has been defined as 

                     
1

n

i

j

ZNN ZNN


  

where 

                   ,  i iZNN ZR U                  (8.05) 

Conceptually, this means that we assimilate iZNN  to a 

resource constraint zone, and if a X0 point belongs 

to iZNN  this means that X0 satisfies the constraint 

associated with iZNN  . It is therefore a stage situation. 

The concept of research implies that there is a situation or 

state of deposition, and that from this situation, one move to 

another situation or state. And we have already seen that this 

research, when it is linear, can be modeled by the concept of 

axis of research starting from a given point and moving 

according to a given vector  0 ,R X V  

In this section, the starting point of the search is the point 

X0, which is supposed to be located in the ZNN non-

negativity zone. Since the new decisions found must have 

remained in ZNN, it is logical to study the conditions under 

which this search leads us out of ZNN. And as in the case of 

ZCTi technical constraint zones, we will need to define the 

boundary concept in ZNN. 

For ZNNi, there is no problem. 

Indeed, 

                  , 0  
i i

Fr ZNN P U  

given that iZNN  is only half affine delimited by the 

hyperplane  ,  iP U O  .  

And as HP (-Ui, 0) is included in   iZNN , we know 

that ZNNi is a closed area. 

8.4.1 Frontier of the ZNNi non-negativity zone 

Proposition 8.05 

                0

1

, 0




  
n

j

j

Fr ZNN HP U C  
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Proof : 

♣ 

It suffices to show that for every j,   0
,0

j
HP U C


     is a 

function of ZNN. 

Step 1: 

Let us show that every X point of   0
,0

j
HP U C


   is a 

border point of ZNN. 

Let r be any positive real number. This is to show that the 

open ball of center X and radius r denoted            B (X, r), 

contains both an element of ZNN other than X and an 

element of ZNN other than X is: 

 X = (xi) i = 1 ..., n  

The fact that X ∈ HP (-Uj, o) ∩ Co means that 

      xi  ≥ 0,   ∀ i = 1... n   and that     xj≥0 

Let us take the point X' = (x'i) i = 1... n defined as follows   : 

  x'i = 1

2

ix for all i j

if i j




 


 

Similarly let us take the point: 

 X'' = (x''i) i = 1... n defines as follows   : 

   x''i = 1

2

ix for all i j

if i j




 


 

It is obvious that   : 

    X' ∈ ZNN and has X'' ∈ ZNN 

Moreover, it is also obvious that   : 

   X' ∈ B (X, r) and X'' ∈ B (X, r)               

This shows that the open ball B (x, r) contains both the point 

X 'which is the element outside ZNN and the point X'' which 

is the element in ZNN, and it is obvious that X' is different 

from X and that X'' is different from X. 

Therefore X is a border point of ZNN. 

2nd step: 

Let us show that HP (-Uj, 0) ∩ 0C 
 

And in summary, HP (-Uj, 0) is indeed a ZNN border and 

their meeting is also a border of ZNN. 

In addition, let X be a point of ZNN such that   : 

   0

1

( , 0)
n

j

X HP Uj C 



    

It means that   : 

         0

1

( , 0) )
n

j

X HP Uj C 



    

 Given that 0C 
 = ZNN, it means that 

          0

1

( , 0)
n

j

j

X HP U C 



    

Let 
jX  be the projection of X on HP (-Uj, 0) and dj the 

distance between X and Xj. 

As 

           jX X        1,..., j n   

Then dj ≠ o        1,..., j n  

Let 

  
1

min( ) 1,...,
2

  r dj j n  

It is obvious that r> 0 and that the open ball  

B (X, r) is included in ZNN. 

There fore, 

                                      

0

1

( , 0) ) ( )
n

j

j

HP U C Fr ZNN




    

♦ 

Note 8.02 

 

  0, 0jHP U C    is the cone   

 1 2 1 1, , , ..., , , ..., j j nC O U U U U U  

We will call it "   conic wall of non-negativity j   Noted 

MCNNj. 

Proof   : 

♣ 

   

  0

1

,0j j

n

j

j

MCNN HP U C

et ZNN MCNN





  


      

 In other words, the ZNN border is none other than the conic 

wall meeting of non-negativity. 

Note further that 

   MCNNj  , 0 jHP U  

So               

             j jMCNN Fr ZNN  

                                                                       ♦ 

8.4.2 Exit point of ZNN following R (X0, V) 

Proposition 8.06 

We assume that X0 is in ZNN. Since ZNN is closed, the exit 

point is the point of contact or intersection 

between  0 ,R X V  and  jFr ZNN . 

Proof  

♣ 

Let Fj be the point 

of    0 jR X ,V et Fr ZNN  which is none other 

than  , 0 jHP U , 

     0 ,jI R X V , so Ij is the form  

         j 0 j jI X V with 0     
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Similarly 

        , 0  jI HP U  , 

So we check the equation   : 

     , 0 , 0    j j jU I ou U I  

From where, 
0

0

, , 0

, , 0

j j

j j j

U X V

U X U V





  

     
 

Finally, we obtain the equation:  

    0, ,j j jU V U X          

with the condition 0j  . 

Based on the results of section 5.2, we can say that the 

research axis  0 ,R X V  leads us outside of ZNNj only if 

V is oriented outside ZNNj, 

that is, if 

   , 0   
j

U v  , 

in which case, 

0,

,

j

j

j

U X

U V


  


 
                             (8.06) 

Let  i

0 0X X i 1,..., n 

  0

i j 0 i

i j

V v i 1,..., n and U ,X x

U ,V v

   

 
 

The expression of 
j becomes   : 

    
o

i

j

j

x

v



                         (8.07) 

Which is good non-negative 

because 0 0 o

i jx and v . 

                              ♦ 
8.4.3 ZNN exit point following R (X0, V) 

We assume that X0 is in ZNN. Still based 

on previous results,  0 ,R X V  leads us out of at least one 

ZNNj, that is, there exists a j such that 0jv   noting   : 

       1, ..., jV v j n  . 

Let IN (V) denote the set of indices j such that 0jv  . 

      1, 0  jIN V j n tel que v  

 

 

 

 

 

Hence the proposal   : 

Proposition 8.07 

The research axis is in the non-negativity zone ZNN only if 

IN (V) is non-empty. In this case, the exit point I is given 

by   : 

      
0I X V   , 

Or 

 

min



  
  

  

o

i

j

j In V

x

v                                 (8.08) 

Proof: 

♣ 

Given that  0 ,R X V  is a totally ordered set, the exit 

point of I such that verify: 

  
 

   0

0

min j

j i

I I

j IN V where I X X V



 
          (8.09) 

The Proof is immediate. The output point I is none other 

than the first smallest Ij. 

                                                                               ♦ 

9 CONCLUSION 

Through this article, we presented all the art mathematical 

object classes required for topo-geometric modeling MZ and 

the mean objectives associated with Topo-geometric 

definitions, as well as the conventional operations and 

properties of constraints LPP defining hyperplanes, are 

mentioned. 
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