

Three Wheel Bullock Cart for Improvement of Load Management

Mr. Chethan R

Assistant Professor, dept. of EEE

G. Madegowda Institute of Technology.
Bharathinagara, Mandya, India.

Prashanth Gowda S

Student, dept. of EEE

G. Madegowda Institute of Technology.
Bharathinagara, Mandya, India.

Dr. Sumitha C

Professor, Head dept. of CS&EE

G. Madegowda Institute of Technology.
Bharathinagara, Mandya, India

Vinay Gowda B

Student, dept. of EEE

G. Madegowda Institute of Technology.
Bharathinagara, Mandya, India.

Thejaswini J N

Student, dept. of EEE

G. Madegowda Institute of Technology.
Bharathinagara, Mandya, India.

Sundresh H M

Student, dept. of EEE

G. Madegowda Institute of Technology.
Bharathinagara, Mandya, India.

Abstract - Traditional bullock carts commonly use two-wheel configurations, which often suffer from load imbalance, reduced stability, and increased strain on animals when operating on uneven rural roads. This project presents a Three Wheel Bullock Cart for Improvement of Load Management, designed to enhance stability and distribute load uniformly using a mechanical structure. The introduction of a third wheel and a shock-absorber-based suspension system helps reduce vibrations, minimize animal fatigue, and increase load-carrying capacity. The proposed system is cost-effective, simple in design, eco-friendly, and suitable for rural and agricultural transportation without the use of electrical or electronic components.

Keywords - *Bullock Cart, Load Management, Three Wheel System, Rural Transportation, Mechanical Suspension*

I. INTRODUCTION

Bullock carts are widely used in rural and agricultural areas for transporting goods such as crops, fertilizers, and construction materials. Conventional two-wheel bullock carts face several challenges including uneven load distribution, instability on rough terrain, excessive vibration, and increased physical stress on animals. These issues not only reduce efficiency but also shorten the lifespan of the cart.

To overcome these limitations, a **three-wheel bullock cart system** is proposed. The addition of a third wheel provides better load balance and structural support. The project focuses on improving load management through mechanical means by incorporating a suspension or shock absorber system. This design ensures smoother operation, enhanced stability, and reduced effort for bullocks, making it a sustainable solution for rural transport needs.

II. BACKGROUND AND RELATED WORK

A. Literature Survey

Several studies and research works have been carried out to improve traditional rural transportation systems with a focus on load management, stability, and reduction of human and animal effort. Conventional bullock carts, though widely used in agricultural regions, suffer from issues such as uneven load distribution, excessive vibration, poor stability on uneven terrain, and increased fatigue to animals.

Researchers have studied load distribution mechanisms in animal-drawn vehicles and concluded that improper weight balance significantly affects cart performance and animal health. Studies on two-wheel carts indicate that the entire load is concentrated on a single axle, resulting in higher stress on wheels and animals, especially on rough rural roads.

Some researchers proposed **multi-wheel cart designs** to improve stability and load-sharing capability. The addition of an extra wheel was found to reduce tipping tendency and enhance balance during turning and braking. These studies highlighted that three-wheel configurations provide better support and improved maneuverability compared to traditional designs.

Research on mechanical suspension **systems** such as springs and shock absorbers demonstrated that suspension plays a crucial role in reducing vibration and impact forces transmitted to the load and animals. Shock-absorber-based designs were shown to improve ride comfort and minimize sudden jerks caused by uneven surfaces.

Further studies emphasized the importance of low-cost and non-electrical solutions for rural applications. Since most rural transport systems rely on simple and affordable technologies, mechanical improvements were preferred over electronic or motorized systems. Mild steel frames and standard mechanical components were found to be suitable for durability and cost efficiency.

From the literature review, it is evident that incorporating a three-wheel structure combined with a mechanical load management system can significantly enhance the performance of bullock carts. However, limited practical implementations exist that focus specifically on improving load management while maintaining simplicity and affordability. This gap in existing research motivated the development of the proposed Three Wheel Bullock Cart for Improvement of Load Management.

B. Existing Load Management Approaches

Earlier in rural and agricultural areas, traditional bullock carts are commonly designed with a two-wheel structure. In this existing system, the entire load is supported by a single axle, which leads to uneven load distribution. When heavy loads are carried, excessive stress is applied on the wheels, axle, and bullocks, especially on uneven rural roads.

Most existing bullock carts do not include any **suspension or** shock absorption mechanism. As a result, vibrations and road shocks are directly transmitted to the cart structure and animals. This causes discomfort, reduced speed, and increased fatigue to bullocks, limiting the efficiency of transportation.

Some improved designs introduced reinforced axles and thicker wheels to handle higher loads. While these methods increase strength, they do not solve the problem of load imbalance or vibration. The cart still remains unstable during turning, braking, and movement on rough surfaces.

In certain cases, four-wheel animal carts have been used to improve stability. However, these carts are heavier, more expensive, and less maneuverable in narrow rural paths. They also increase rolling resistance, making it difficult for animals to pull the cart.

Overall, existing approaches focus mainly on structural strength rather than effective load management and stability improvement. The absence of a balanced wheel configuration and suspension system results in reduced performance and higher animal strain. These limitations indicate the need for a simple, low-cost, and mechanically efficient solution, which motivates the development of the proposed Three Wheel Bullock Cart for Improvement of Load Management.

III. METHODOLOGY

The methodology followed in this project includes the following steps:

A. Problem Identification

Study of existing two-wheel bullock carts to understand issues related to load imbalance, vibration, and animal fatigue.

B. Design Planning

Design of a three-wheel configuration to support load distribution evenly. Proper placement of wheels and chassis structure was planned for stability.

C. Mechanical System Integration

A shock absorber or spring-based suspension system was incorporated to absorb road shocks and reduce vibrations during movement.

D. Material Selection

Mild steel was selected for the frame due to its strength, durability, and cost-effectiveness. Suitable wheels were chosen for rural terrain.

E. Fabrication and Assembly

The frame was fabricated, wheels were mounted, and suspension components were installed. Alignment and balance checks were performed.

F. Testing

The cart was tested under different load conditions to evaluate stability, smoothness, and load-handling capability.

IV. PROPOSED WORK

The working of the three-wheel bullock cart is based on mechanical load distribution. When the cart is loaded, the weight is shared among three wheels instead of two. The third wheel provides additional support, reducing stress on the main axle.

The shock absorber or spring system absorbs vibrations caused by uneven roads and sudden load variations. This results in smoother motion, reduced jerks, and improved comfort for the bullocks. The cart operates without any electrical components, making it reliable and easy to maintain.

V. RESULTS AND PERFORMANCE ANALYSIS

The performance of the Three Wheel Bullock Cart for Improvement of Load Management was evaluated through practical testing under different loading and road conditions. The results were compared with a conventional two-wheel bullock cart to analyze improvements in stability, load distribution, and ease of movement.

A. Load Distribution Performance

During testing, it was observed that the three-wheel configuration distributed the load more uniformly across the chassis. Unlike the two-wheel cart where the entire load acts on a single axle, the additional wheel provided extra support, thereby reducing stress on the main axle and wheels. This resulted in improved balance and reduced chances of tilting.

B. Stability on Uneven Roads

The cart demonstrated enhanced stability when operated on uneven and rough rural roads. The presence of the third wheel minimized lateral movement and improved control during turning and braking. Compared to the conventional cart, the proposed system showed significantly reduced wobbling and smoother motion.

C. Vibration and Shock Reduction

The inclusion of a shock absorber or spring mechanism effectively absorbed road shocks and vibrations. Sudden jerks caused by potholes and uneven surfaces were minimized, leading to improved ride comfort. This reduction in vibration also helps protect the transported goods from damage.

D. Animal Comfort and Effort Reduction

Practical observations indicated a noticeable reduction in the effort required by bullocks to pull the cart. Due to better load balance and reduced vibration, animal fatigue was minimized. This enables longer operating hours and improves overall transportation efficiency.

E. Load Carrying Capacity

The three-wheel bullock cart was capable of carrying higher loads safely compared to the traditional two-wheel design. The improved structural support and balanced load distribution allowed efficient handling of increased weight without compromising stability.

F. Overall Performance Analysis

The results confirm that the proposed system offers improved performance in terms of load management, stability, comfort, and safety. The mechanical design proved to be reliable, cost-effective, and suitable for rural applications without requiring electrical or electronic components.

Fig: Three wheel bullockcart

VI. CONCLUSION.

The Three Wheel Bullock Cart for Improvement of Load Management successfully addresses the limitations of conventional bullock carts. By introducing an additional wheel and mechanical suspension system, the project enhances load stability, reduces vibration, and improves animal comfort. The proposed design is economical, durable, and suitable for rural environments, making it a practical solution for sustainable transportation.

REFERENCES

- [1] R. P. Singh and S. K. Mishra, "Design and Development of Improved Bullock Drawn Cart for Rural Transportation," *International Journal of Agricultural Engineering*, vol. 10, no. 2, pp. 245–250, 2017.
- [2] A. K. Verma and R. S. Meena, "Performance Evaluation of Animal Drawn Transport Systems in Rural Areas," *Journal of Rural Technology*, vol. 6, no. 1, pp. 15–20, 2018.
- [3] R. Kumar, S. Patel, and M. Joshi, "Load Distribution Analysis in Multi-Wheel Agricultural Carts," *International Journal of Mechanical Engineering and Technology (IJMET)*, vol. 9, no. 4, pp. 112–118, 2018.
- [4] P. S. Rao and K. V. Reddy, "Vibration Reduction Using Mechanical Suspension Systems in Rural Transport Vehicles," *International Journal of Engineering Research and Applications (IJERA)*, vol. 7, no. 6, pp. 45–50, 2017.
- [5] M. N. Shinde and V. R. Patil, "Design Modification of Traditional Bullock Cart for Improved Stability and Load Carrying Capacity," *International Journal of Innovative Research in Science, Engineering and Technology*, vol. 8, no. 5, pp. 3560–3565, 2019.