Thermal Stresses in a Finite Solid Cylinder

(Magnetothermodynamics Stresses in A Solid Cylinder)

Sunil D. Bagde
Department of Mathematics, Gondwana University, Gadchiroli - 442605 (M/S), India

Abstract—This paper is concerned an analytical method for determining the thermal stresses in a finite solid cylinder under a sudden temperature change to a constant temperature with the help of integral transform technique.

Keywords—Hankel transform, Laplace transform, magneto thermo stresses, solid cylinder, thermo elasticity.

INTRODUCTION

Kaliski and Nowacki [1] considered the half-space problem of magneto thermo elastic waves produced by a thermal shock in a perfectly conducting medium. The problem of magneto thermo elasticity related to an infinite cylindrical region was solved by Dhaliwal and Singh [2]. Noda et al. [3] give a combined formulation of the two theories of generalized thermo elasticity to discuss the problem of an infinite solid with a cylindrical of spherical hole.

In this paper, an attempt has been made to determine the magneto thermo stresses of finite solid cylinder with help of Hankel Transform and Laplace transform technique.

NOMENCLATURE

\(T(v,t) \) - Temperature charge (absolute temperature minus reference temperature).

\(\vec{U} \) - Displacement vector

\(u \) - Radial displacement

\(\sigma_r, \sigma_\theta \) - Radial stress and circumferential stress.

\(\rho, \alpha, \lambda \) - Density, time and radius of solid cylinder.

\(\alpha \) - Coefficient of linear thermal expansion.

\(\lambda, G \) - Lame constants

\(E, \nu \) - Young’s modulus and Poisson’s ratio

\(\mu \) - Magnetic permeability

\(\vec{H} \) - Magnetic intensity vector

\(\vec{h} \) - Perturbation of electric field vector.

\(\vec{H}_r \) - Perturbation of magnetic field vector

\(C_e = (\lambda + 2G)/\rho \) - Elastic wave speed

\(C_m = \sqrt{\mu / \rho} \) - Magnetic interference wave speed

\(C_{let} = \sqrt{c_i^2 + c_r^2} \) - Magneto thermo elastic wave speed.

Non dimensional quantities

\[R = \gamma/a, \tau = (tc_e)/a, \sigma_r^*=\sigma_\gamma/(\alpha ET(y,t)) \]

\[\sigma_\theta^* = \sigma_\gamma/(\alpha ET(y,t)), \ h_r^* = h_\gamma/(\alpha ET(y,t)H_z) \]

I - STATEMENT OF THE PROBLEM

Consider a long finite solid cylinder of radius with perfect conductivity placed initially in an axial magnetic field \(H(0,0,H_z) \).

Let this cylinder be subjected to a rapid change in temperature \(T(y,t) \) produced by the absorption of an electromagnetic pulse or \(\gamma - \gamma_0 \) pulse radiant energy.

Assuming that the magnetic permeability, \(\mu \) of the solid cylinder equals the magnetic permeability of the medium around it and omitting. Displacement maxwell equations for a perfectly conducting elastic body are given by

\[\vec{J} = \text{Curl} \vec{h} - \mu \frac{\partial \vec{h}}{\partial t} = \text{Curl} \vec{\varepsilon}, \ v = -\mu \left(\frac{\partial \vec{U}}{\partial t} \times \vec{H} \right) \]

An initial magnetic field vector \(\vec{H}(0,0,H_z) \) in cylindrical polar co-ordinate \((r, \theta, z)\), are

\[\vec{U} = (u(r,t),0,0), \ \vec{v} = \mu \left(0, H_z, \frac{\partial u}{\partial t} \right) \]

\[\vec{h} = (0,0,h_\gamma), \ J = (0, \frac{\partial h_\gamma}{\partial r}, 0) \]

Let magneto elastic dynamic equation of the solid cylinder becomes

\[\frac{\partial \sigma_r}{\partial r} + \frac{1}{r}(\sigma_r - \sigma_\theta) + f_r = p \frac{\partial^2 u}{\partial t^2} \]

Where \(f_r \) is defined as

\[f_r = \mu \left(j \times \vec{H} \right) = \mu H_z \left(\frac{\partial^2 u}{\partial r^2} + \frac{u}{r} \right) \]
The radial stress and the circumferential stress of a solid cylinder subjected to a thermal shock load are \(T(r,t) \), are

\[
\sigma_r(r,t) = (\lambda + 2G) \frac{\partial u}{\partial r} + \frac{\lambda}{r} u - \frac{Ea}{1-2v} T(r,t)
\]

\((6) \)

II. SOLUTION OF THE PROBLEM

Substituting Eqs (5) to (6) into (4) the basic displacement equations of magneto thermo elastic motion is expressed as

\[
\left[\frac{1}{r} \frac{\partial u(t,r)}{\partial r} - \frac{1}{r^2} \frac{\partial u(t,0)}{\partial t} \right] = \frac{1}{C_1^2} \left[\frac{\partial^2 u(t,r)}{\partial t^2} + \frac{Ea}{(1-2\nu)} \frac{\partial T(t,r)}{\partial t} \right], 0 \leq r \leq a, t \geq 0
\]

Where \(B = \lambda + 2\sigma + \mu \frac{d}{d} \)

Omitting the Maxwell tensor on the surface of the solid cylinder the corresponding boundary conditions are

\[
u(0,0) = u_{0}(0,t) = 0
\]

\((8) \)

The initial conditions are

\[
u(r,0) = 0, \quad \frac{\partial u(r,0)}{\partial t} = 0
\]

\((9) \)

Assume that general solution to the basic equation (7) to (10) may be expressed in the form

\[
u(r,t) = u_{s}(r,t) + u_{q}(r,t)
\]

Where \(u_{s}(r,t) \) and \(u_{q}(r,t) \) are the static solution and dynamic solutions to Eq. (7) to (10).

Solving Eq. (11) we have,

\[
u_{s}(r,t) = \frac{Ea}{(1-2\nu)B_1} \int_0^r T(r,t)dr + \frac{B_1}{r}
\]

\((12) \)

Where unknown constants \(B_1 \) and \(B_2 \) in Eq. (12) may be determined by

\[
B_1 = \frac{Ea}{Ba} \int_0^r T(r,t)dr - \frac{(1-\nu)E-B(1+\nu)(1-2\nu)}{B(1-2\nu)} \quad (13)
\]

\[
B_2 = 0
\]

\((14) \)

From equations (7), (10) and (12) and using the boundary condition (8), (9) we get,

\[
\frac{\partial^2 u_s(r,t)}{\partial t^2} + \frac{Ea}{r^2} \frac{\partial u_s(r,t)}{\partial r} + \frac{Ea}{r} u_s(r,t) = 0
\]

\((15) \)

\[
u_{s}(0,t) = 0
\]

\((16) \)

\[
(\lambda + 2G) \frac{\partial u_s(a,t)}{\partial r} + \frac{1}{r} u_s(r,t) = 0
\]

\((17) \)

We have

\[
f'(r) + \frac{1}{r} f(r) + \left(\frac{k^2}{r^2} - \frac{1}{r} \right) f(r) = 0; \quad 0 \leq r \leq a
\]

\((20) \)

\[
f(0) = 0
\]

\((21) \)

\[
(\lambda + 2G) \frac{df(a)}{dr} + \frac{\lambda}{a} f(a) = 0
\]

\((22) \)

The generalized solution of Eq. (24) is given by

\[
f(r) = A_1 J_1(\kappa r) + A_2 Y_1(\kappa r)
\]

\((23) \)

Substituting Eq. (23) into Eqs. (21) the corresponding characteristic function Eq. (23) reduces to.

\[
f(r) = A_0 J_0(\kappa r)
\]

\((24) \)

This should satisfy the characteristic equation

\[
\kappa^2 J_0(\kappa a) + \frac{\lambda}{a(\lambda + 2\sigma)} J_1(\kappa a) = 0
\]

\((25) \)

Where \(J_m(k r) \) is an \(m \)th order Bessel function of the first kind, \(\kappa_m(n = 1,2,3,...) \) are the positive roots of eigen equation (25).

And

\[
W_n = k_n c_L
\]

\((26) \)
By means of the normalization property of eigen function, the constant An in Eq. (24) is determined as

$$A_n = \frac{\int_{0}^{n} f_{n}(r) A_n J_1(k_n r) dr}{\int_{0}^{n} r J_1^2(k_n r) dr}$$ \hspace{1cm} (27)

Define a finite Hankel transform of f(r) as

$$\tilde{f}(k_r) = Hankel \left[F(r) \right] \int_{0}^{n} f_{n}(r) A_n J_1(k_n r) dr$$ \hspace{1cm} (28)

Then the inverse of Eq. (28) is given by

$$f(r) = \sum_{k_r} \frac{\tilde{f}(k_r)}{F(k_r)} J_1(k_r r)$$ \hspace{1cm} (29)

Where

$$F(k_r) = \int_{0}^{n} r J_1^2(k_r r) dr - \frac{a^2}{2} \left[J_1^2(k_r a) + \left[\left. \frac{d}{dk_r} \right] \left. \frac{d}{dk_r} \right] J_1(k_r a) \right]$$ \hspace{1cm} (30)

Using Eq. (28) and applying a finite Hankel transform to Eq. (15) we have

$$\frac{a J_1(k_r a)}{(\lambda + 2\sigma)} \left[(\lambda + 2\sigma) u_d(a) + \frac{2}{\lambda} u_p(a) \right] - k_r^2 \bar{u}_d(k_r, t)$$

$$= \frac{1}{C_t} \left[\frac{\bar{u}_d(k_r, t)}{dr} + \frac{\bar{u}_p(k_r, t)}{dr} \right]$$ \hspace{1cm} (31)

Where

$$\bar{u}_d(k_r, t) = Hankel \left[u_d(r, t) \right]$$

The first term on the left hand side of Eq. (31) should be the homogeneous boundary condition (17) simplifies to

$$k_r^2 \bar{u}_d(k_r, t) = \frac{1}{C_t} \left(\frac{\bar{u}_d(k_r, t)}{dr} + \frac{\bar{u}_p(k_r, t)}{dr} \right)$$ \hspace{1cm} (32)

Applying Laplace transforms to Eq. (32), one obtains

$$\pi'_d(k_r, p) = \pi'_d(k_r, p) + \frac{k_r C_p}{k_r C_p + p} U_d + \frac{k_r C_p}{k_r C_p + p} \sigma_d + \frac{1}{k_r C_p + p} V_d$$ \hspace{1cm} (33)

Where p is the Laplace transform parameter. Taking the inverse Laplace transform of Eq. (33) we have

$$\pi'_d(k_r, t) = -\pi'_d(k_r, t) + k_r C_p \left[\pi_d[k_r C_p (t - \tau)] d\tau + \bar{u}_d \cos(k_r C_p \tau) \frac{V_d}{k_r C_p} \sin(k_r C_p \tau) \right]$$ \hspace{1cm} (34)

Using Eqs (29) and (30) and applying finite inverse Hankel transform to Eq. (34), the elasto dynamic solution $u_d(r, t)$ of Eq. (15) to (18) may be expressed as

$$u_d(r, t) = \sum_{k} \frac{\bar{U}_d(k_n t)}{F(k_n)} J_1(k_n r)$$ \hspace{1cm} (35)

Substituting Eq. (16) and (39) into Eq. (12) the general solution of the basic equation (8) becomes

$$u(r, t) = \frac{E \alpha}{B(1-2\nu)} \int_{0}^{R} r T(r, t) dr + B_t r + \sum_{n} \pi_d(k_n t) J_1(k_n r)$$ \hspace{1cm} (36)

Equations (35) and (36), are the corresponding magneto thermodynamic stress.

By using Eq. (36) and the basic solution for magneto thermo elastic motion equation (11) reduces to

$$u(r, t) = (1 + \nu) a T_0 + (1 + \nu) a T_0 \sum_{n} \frac{u_d(k_n t)}{F(k_n)} J_1(k_n r)\cos(w_s t)$$ \hspace{1cm} (37)

Where

$$u_d(k_n t) = Hankel[r] = \frac{a^2}{k_n} J_n(k_n a) - \frac{2a}{k_n} J_1(k_n a)$$ \hspace{1cm} (38)

From Eqs. (6) and (7) and utilizing the following properties of the Bessel functions.

$$J_1(k_n r) = \frac{\partial J_n(k_n r)}{\partial r} = k_n J_n(k_n a) - \frac{1}{r} J_1(k_n r)$$ \hspace{1cm} (39)

$$\frac{1}{r} J_1(k_n r) = \frac{k_n}{2} [J_0(k_n r) + \frac{k_n}{2} J_2(k_n r)]$$ \hspace{1cm} (40)

We get the magneto thermo stresses,

$$\sigma'_t(r, t) = \sum_{n} \frac{k_n}{2(2n-1)} J_1(k_n r) \frac{\bar{u}_d(k_n t)}{F(k_n)} \cos(w_s t)$$ \hspace{1cm} (41)

$$\sigma'_s(r, t) = \sum_{n} \frac{k_n}{2(2n-1)} J_1(k_n r) \frac{\bar{u}_d(k_n t)}{F(k_n)} \cos(w_s t)$$ \hspace{1cm} (42)

Where $\sigma'_t(r, t) = \sigma'_s(r, t) = k(aT_o E) \text{ is normalized.}$

Eq. (41) and (42) are the magneto thermo stress is only dependent on the dynamic term in the basic solution (7). Using the proportion of Bessel function;

$$J_1(0) = 1 \text{ and } J_1(0) = 0$$

The magneto thermo stress response at the center (R = 0) of solid cylinder reduces to;

$$\sigma'_t(0, t) = \sum_{n} \frac{k_n}{2(2n-1)} \frac{u_d(k_n t)}{F(k_n)} \cos(w_s t)$$ \hspace{1cm} (43)

$$\sigma'_s(0, t) = \sum_{n} \frac{k_n}{2(2n-1)} \frac{u_d(k_n t)}{F(k_n)} \cos(w_s t)$$ \hspace{1cm} (44)

Equations (43) to (44) are the magneto thermo stress response at the center (R = 0) of a finite solid cylinder.
III. CONCLUSION

In this paper, we have investigated the magneto thermo stresses in a finite solid cylinder with the help of the finite Hankel transform and Laplace transform techniques. The expressions that are obtained can be applied to the design of useful structures or machines in engineering application.

REFERENCES