
 

Theory of System of Linear Differential Equations on Time Scales 

Prof. K. Rajendra Prasad, G .Venkata Vijaya Lakshmi and P. Murali 

  

 

Department of Engineering Mathematics, Andhra University, Visakhapatnam, 530003, 

Andhra Pradesh India. 

___________________________________________________________________________ 

 

Abstract 

This paper presents the criterion to construct fundamental matrices for the-  

system of linear differential equations with constant coefficients on time scales. We 

develop the procedure to compute fundamental matrices for vector differential 

equations on time scales. 
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1 Introduction 

 

The study of solutions of linear differential equations on time scales gained momentum 

because of unified approach nature for differential and difference systems. The theory 

of linear differential equations provides a broad mathematical basis for an 

understanding of continuous time dynamic processes. There are many results on 

continuous time dynamical systems which are needed in discrete time context. In recent 

past a new theory is emerged to unify the results not only on continuous and discrete 

time dynamical systems but also on discrete time dynamical system for any jump. The 

theory was ,first introduced by B. Aulbach et al [2]. By a time scale we mean a 

nonempty closed subset of   . For the time scale calculus and notation for delta 

differentiation, as well as concepts for dynamic equations on time scales, we refer to the 

introductory book on time scales by M. Bohner et al [3]. It provides a new direction of 

research in dynamical process with time scales. 

In this paper, for the development of theory, we construct the fundamental matrices 

for the system of linear differential equations on time scales. If all the eigenvalues of the 

coefficient matrix are real and distinct, then we can construct a solution of the system 

without any difficulty. But if some of the eigenvalues of the coefficient matrix are 

repeated we take care, since in general thn delta derivative of a polynomial cannot be 

evaluate without assumptions. 

Three conditions that we assume throughout are as follows: 

(A) Every point t in T is neither simultaneously left dense and right scattered nor 

simultaneously left scattered and right dense. 

(B) The jump is uniform at all scattered points of T. Finally, 

(C) The eigenvalues of A are regressive on T. 
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This paper is organized as follows. In Section 2, we briefly describe some salient 

features of time scales, functions defined on time scales and operations with these 

functions. In Section 3, we construct the fundamental matrices for t he system of linear 

differential equations on time scale for real and distinct eigenvalues, and as an 

application, we also give some examples to demonstrate our results. In Section 4,first 

we introduce algebraic concepts for the main result and, then we invoke our 

assumptions, along with direct sum of solution spaces, we prove that a lemma to 

compute the m
th

 delta derivative of nt , to obtain fundamental matrices of system of 

linear differential equations for general case. 

 

 

2 Preliminaries 

We denote the time scale by the symbol T.   By an interval we mean the intersection 

of the real interval with a given time scale.  The jump operators in- 

troduced on a time scale T may be connected or disconnected.  To overcome this  

topological difficulty the concept of jump operators is introduced in the following  

way.  The operators σ and ρ from T to T, defined by          :    t inf s T s t     

and         :    t sup s T s t     are called jump operators.  If σ is bounded above 

and ρ is bounded below then we define              max T max T and min T min T   .  

These operators allow us to classify the points of time scale T.  A point   t T  is 

said to be right-dense if σ(t) = t, left-dense if ρ(t) = t, right-scattered if σ(t) > t, 

left-scattered if ρ(t) < t, isolated if ρ(t) < t < σ(t) and dense if ρ(t) = t = σ(t).The 

set k which is derived from the time scale T is defined as follows 

\ ( (sup ),sup ) sup

sup

k
T T T if T

T
T if T

  
 

 
 

Finally, if :f T    is a function, then we define the function :f T    by 

    f t f t   for all t T  

Definition 2.1 Let T be a time scale,    be a real line, and :f T   . We say 

That  f  is delta differentiable at a point ks T , if there exists an a  such that 

for any 0   there exists a neighborhood U of s such that, 

( ( )) ( ) ( ( ) ) ( ) ,f s f t s t a s t t U           

or more specifically, f is delta differentiable at s if the limit 

( )

( ) ( ( ))
lim

( )t s

f t f s

t s








 

exists, and is denoted by ( )f s . 

If f is delta differentiable for every kt T  we say that : kf T     is delta 

differentiable on T. If f and g are two delta differentiable functions at s then fg is delta 

differentiable  at s and  

                   fg s f s g s f s g s f s g s f s g s          

 

Definition 2.2 A function : kg T    .is rd- continuous if it is continuous in every 

right-dense point kt T  and if lim ( )
s t

g s


 exists for each left-dense kt T . 

24

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 9, September - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS90018



  

We say that a function : kp T   is regressive provided 1 ( ) ( ) 0t p t   

for all kt T . For s T , we define the graininess function : [0, )T   by

( ) ( )s s s   . 

 

Definition 2.3 For h > 0 we define the Hilger complex number 

1
:h z z

h

 
   
 

    For h = 0 : Let 
0   . 

 

Definition 2.4 For h > 0, we define the cylinder transformation :h h h    by

1
( ) (1 )h z Log zh

h
   ,where Log is the principal logarithm function. For h = 0, we define 

( )o z z   for all z . 

 

Definition 2.5 If p is regressive, then we define the exponential function by

( )( , ) exp( ( ( )) )
t

p
s

e t s p      for ,s t T ,where 
( )   is the cylinder transformation. 

 

Definition 2.6 Let : kp T   be regressive and rd-continuous, then a mapping   

:pe T   is said to be a solution of the linear homogenous dynamic equation

0 0( ) , ( , ) ( ) ( , ) k

p py p t y if e t t p t e t t t T     , and a fixed 
0

kt T . 

 

Definition 2.7 Any set of n linearly independent solutions of y Ay   is a fundamental 

set of solutions of the equation. The matrix with these particular solutions as columns 

is a fundamental matrix for the given equation. 

 

Definition 2.8 Let 1 2, ,.... ny y y   be a fundamental set of solutions of equation y Ay  and 

let 1 2( , ,..., )nY y y y  be the corresponding fundamental matrix. For any constant 

n-vector c, Yc is a solution of y Ay  . 

 

 

3 Real Distinct Eigenvalues 

 

In this section, we consider a system of differential equations 

y Ay   (1) 

on a time scale kT , where A is n n constant matrix ,and y is 1n  vector, assume that 

the eigenvalues of A are regressive on kT . By using a non-singular transformation, 

y = Sx (2) 

where S is n n  non-singular constant matrix and x is 1n vector, the equation (1) can 

be transformed into 

x Dx  where 1D S AS  (3) 

D will take different forms depending on the eigenvalues of A. This case is treated to 

provide an introduction for the general case. 
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Theorem 3.1 Assume that the equation (1) satisfies the above assumptions of A and, if 

we assume the eigenvalues
1 2, ,......, n   of the matrix A are real and distinct, then the 

fundamental matrix Y for (1) is of the form 

1 2( ) [ , ,...., ] ( )nY t s s s E t  

where 
js  is an 1n  eigenvector of A corresponding to eigenvalue

0, ( ) ( , ), , 1,2,.....,
jj ijE t e t t i j n    and a fixed 

0

kt T . 

 

Proof: The canonical form of A is a diagonal matrix given by ( )ij jD   .  Let the 

matrix S be 

1 2[ , ,......., ],nS s s s where the thj column is the vector
js . It follows that AS = SD, and, 

since S is non-singular, that 1D S AS . If 

x Dx                                                                      (4) is  

written in scalar form, and each  scalar equation, has a relation it is that 

0( , ) , 1,2, ......, ,
jj jx e t t d j n   

where 
jd  is real constant and a fixed 

0

kt T . The matrix 0( ( , ))
jijE e t t  is a 

fundamental matrix for the equation (4). It follows that a fundamental matrix Y for the 

equation (1) is Y = SE. 

 

 

Example 

An example illustrates the above result. Find a fundamental matrix for the 

following equation. 

1 1 1

0 2 1

0 0 3

y y

 
 


 
 
 

. 

 

The eigenvalue of the coefficient matrix A are 1 2 31, 2, 3     , the corresponding 

eigenvectors are
1 2 3[1, 0, 0] , [1, 1, 0] , [1, 1, 1]T T Ts s s   , where T is transpose. 

Hence, a fundamental set of solutions is given by 

 

1 1 0 1 2 2 0 2 3 3 0 3( , ) , ( , ) , ( , )T T Ty e t t s y e t t s y e t t s    

The matrix 

 

1 0 2 0 3 0

2 0 2 0

3 0

( , ) ( , ) ( , )

0 ( , ) ( , )

0 0 ( , )

e t t e t t e t t

Y SV e t t e t t

e t t

 
 

 
 
 
 

 

is a fundamental matrix for the equation 

(1) If T   , 
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then  

0 0 0

0 0

0

( ) 2( ) 3( )

2( ) 3( )

3( )

0

0 0

t t t t t t

t t t t

t t

e e e

Y e e

e

  

 



 
 

  
 
 

 

 

 

(2) If T   , then 

0 0 0

0 0

0

( ) ( ) ( )

( ) ( )

( )

2 3 4

0 3 4

0 0 4

t t t t t t

t t t t

t t

Y

  

 



 
 

  
 
 

 

 

 

(3) If T h  , h>0, 

 

 

then 

     

   

 

0 0 0

0 0

0

(1 ) (1 2 ) (1 3 )

0 (1 2 ) (1 3 )

0 0 (1 3 )

t t t t t t

h h h

t t t t

h h

t t

h

h h h

Y h h

h

  

 



 
   

 
   
 
 

 
 
 

 

 

 

4 General case 

 

In this section, we state and prove the main results of this paper. We need the 

following algebraic concepts and theorems. 

The direct sum of r- vector spaces can be used advantageously in this section. Given 

1 2, , ........, rY Y Y as r- finite dimensional vector spaces, their direct sum 1 2 ..... rY Y Y  
 
is 

the set of all ordered thr  tuples 1 2( , , ........, )ra a a  where , 1,2,......,i ia Y i r  . It may be 

established, if addition and scalar multiplication are appropriately defined, that this set 

is a vector space and that its dimension is the sum of the dimension of 1 2, , ....., .rY Y Y  It is 

of significance that a subspace of the direct sum consisting of all ordered rth tuples of 

the form 1( ,0, ........,0)a  is the isomorphism to 1Y , the subspace containing all r
th

 tuples 

of the form 2(0, , ........,0)a  is the isomorphism to 2Y  , similarly, (0,0, ....., ,...,0,0)ia  is 

the isomorphism to Yi, i=1, 2, ...,r. 

The properties of a direct sum in this case evolve from the properties of matrix 

multiplication. Let 1 2,  ,  ...,   rA A A be r square matrices of orders 1 2,  ,...,  ,rn n n   , 

respectively, and let the vector space iY  be the solution space of 

     ,    1, 2, ...,  .iy A y i r     (5) 

If iY  is a fundamental matrix for the equation (5), then  i iy Y   if and only if 

   i i iy Yc   (6) 

for some vector ic  in ).(
inV R   We may represent an element in the direct sum of
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1 2,  , ...,   rY Y Y   by 

1 2,  ,  ...,[  ]T

ry y y  

(7) 

 

It may be observed here that an ordered r
th

 tuple is an ordered r
th

 tuple whether it be 

written in horizontal or vertical form. The vertical form is preferred here because the 

solutions of vector equations are usually written as column vectors. Because of its 

vertical form, the ordered r
th

 tuple (7) may be thought of as a partitioned column vector 

of dimension 1 2 ...... rn n n    . Hence, we write 

 

1 11

2 2 2

0 0

0 0

0 0 rr r

y cY

y Y c

Yy c

    
    
    
    
    

    





    



 

 

where 1 2,   ...,   rc c c  are the vector appearing in formula (6). It is clear from this 

relation that 

 1 2

1 1

2 2

1 2 .....
  ...       if and onlyif

r
r n n n

r r

y c

y c
Y Y Y V

y c

  

   
   
       
   
   
   

 
 

 

 

This establishes the fact that 1 2  ...   rY Y Y    is a vector space of dimension 

1 2 ... rn n n   .It is equally clear that elements of the form 

1 2,  0,  0,  ...,  0 ,  0,  ,  0,  ...,  0 ,...,  and 0, ,  0, ,  0 ,  ..[ ] [ ] [ ., ]  T T T

ry y y  
 

are, respectively, 

subspaces of the direct sum. The first of these subspaces is isomorphic to 1Y , the second 

to 2Y , ... , and finally r
th

 subspace to rY  . 

 

Our understanding of the formation of a direct sum and its properties can now be 

applied to establish the following theorem. The notation that was introduced above is 

used in theorem. 

 

 

Theorem 4.1 If  :    1,  2,  ..., } { iA i r  is  a set of constant square matrices, then the 

 

solution space of  

1

2

0 0

0 0

0 0 r

A

A
y y

A



 
 
 
 
 
 





   



   (8) 

is the direct sum of the solution spaces of the equations in the set
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      :   1, 2, ...,  . { }iy A y i r     Moreover, a fundamental matrix for (8) is 

 

1

2

0 0

0 0

0 0 r

Y

Y

Y

 
 
 
 
 
 





   



 

 

where 
iY  is a fundamental matrix for    ,    1,  2,  ...,  .iy A y i r    

 

Lemma 4.2 Let n  , define a function   :     nf T by f t t   , if we assume that 

the conditions (A) and (B) are satisfied, then 

 

 

1 2

1 2

....

0 , ,..., 0 1

!
( ) ( ( ))

( )!

m
m

i

r

n n n r mn m
nn m r i

r n n n i

n
f t t t

n m


   
  

   

   
          

  


 (9) 

 

    
mkt T   holds for all       ,m n N   where 

1 2

1 2

.....

, ,......, {0}

m

m

n n n r

n n n

   

  
 is the set of all distinct 

combinations of 1 2{ ,  , ..., }  mn n n   such that the sum is equal to given r. 

 

Proof: We will show the equation (9) by induction. First, if m = 1, then 

 

1

1

11
1

0 0 1

( ) ( ( )) i

n rn
nn r i

r n i

f t t t


  

  

   
         
  

 

 

 

i.e 
         

     

2 31 2 3 4

2 1

         ...

  .

n n n n

n n

f t t t t t t t t

t t t

  

 

   







    

 
 

 

Therefore the equation (9) is true for m = 1. Next, we assume that equation (9) is true for

     m s N   , then, by using the properties of delta derivatives, define 0    0n  , we btain
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1 2
1

1 2

1 2

1 2

....

0 , ,..., 0 1

....

1 , ,..., 0 1

!
( ) ( ( ))

( )!

!
( ( ))

( )!

!

(

s
s

i

s

s

i

s

n n n r sn s
nn s r i

r n n n i

n n n r sn s
nn s n s r i

r n n n i

n
f t t t

n s

n
t t t

n s

n

n








   

  

   


   

  

   

   
          

   
          



  

  





 
 

 

1 2

1 2

1

1

....

1 , ,..., 0 1

11
1

0 0 1

1

( ( ))
)!

!
( ( ))

( )!

!
( ( ))

( )!

s

i

s

i

i

n n n r sn s
nn s n s r i

r n n n i

n rn s
nn s r i

r n i

s
nn s r i

i

t t t
s

n
t t

n s

n
t t

n s








   


  

   

 
  

   

 



   
         

   
          

 
    

  

  







 

 

 

1 2

1 2

1 2

1 2

1

1

....

1 , ,..., 0

....
1

1 , ,..., 0 1

1
1

0 1

!
( ) ( ( ))

( )!

!
( ( ))

( )!

s

s

s

i

s

i

n n n rn s

r n n n

n n n r sn s
nn s r i

r n n n i

n r
nn s r i

n i

n
t t

n s

n
t t

n s






   

  

   
   

   


  

  

  
      

   
          

  
    

 

  

 







 

1 2

1 2

1

1 11

1

1

0

.... 1
1

1 , ,..., 0 0 0

1
12 1

0 2

!
( ( ))

( )!

( ( ) ) ( ( ) ) ( ( ))

s

i

s

l

l i

n s

r

n n n r ln s s
nn s r i

r n n n l i

n s
n r nrl l i

r i l

n
t t

n s

t t t



  




 



    
  

    


  

  

 
      

   
          

   
        

  



   

 



 

 

1 1

1

1 1

1 2

1 2

11
1

1 0 0 1

....
1

, ,..., 0 1

!
( ( ))

( )!

( ( ))

i

s

i

s

n rn s n s r
nn s r r i

r r n i

n n n r s
ni

n n n i

n
t t

n s

t
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Now we collect the terms 1 2,  ,  ...,n s n st t     
from the above expression, we have 

 

 

1 2 1

1 2 1

1 2 1

1 2 1

.... 1 1
1 2

, ,..., 0 1

.... 1 1

, ,..., 0 1

1

! !
( ( )) .....

( 1)! ( 1)!

!
...... ( ( ))

( 1)!

!
( (

( 1)!

s

i

s

s

i

s

n n n s
nn s n s i

n n n i

n n n n s s
ni

n n n i

n s r i

n n
t t t

n s n s

n
t

n s

n
t

n s















    
   

  

      

  

  

 
        

 
     


 

 

 





 

1 2 1

1 2 1

.... 11

0 , ,..., 0 1

))
s

i

s

n n n r sn s
n

r n n n i

t




     

   

   
        
  



 

 
So that equation (9) holds for m = s+1. By the principle of mathematical induction, 

(9) holds for all    m n N   . 

 

NOTE: For l > s,
1

1 and 0
s s

ii l 
   

We assume that the eigenvalues 1 2,  , ...,  r    of A are real and distinct, with 

multiplicity 1 2,  , ...,  rn n n  respectively,  for each eigenvalue
i there exists only one 

linearly independent eigenvector and regressive on kT , such that  1 2 ...    rn n n n     

As we discussed in the Section 3, by using a non-singular transformation (2), (1) can be 

transform into (3). Thus, that D has r block matrices. 

i.e      

1

2

0 0

0 0

0 0 r

D

D

D

D

 
 
 
 
 
 
 
 





   

   



     (10) 

where Di is a square sub matrix of order   ,  1,  2,  ...,  ,in i r  and is given by  

    i iD I J  and J is defined by 

                 

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0
i in n

J



 
 
 
 
 
 
 
 





    





 

 

Suppose for each eigenvalue i  , if there exists    i im n linearly independent eigen-

vectors and remaining generalized eigenvectors are computed for last linearly inde-

pendent eigenvector, then Di has the following form  

1 1

1 1 1 1

i i

i i i i i i i i
i i

i m m

i n m n m n m n m
n n

I

I J





  

         


 
 
  




   (11) 
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by using this technique, we can establish a fundamental matrix for equation (1), for each 

eigenvalue i  there exists only one linearly independent eigenvector, as stated in the 

following theorem. 

 

 

Theorem 4.3 If D is defined by relation (10) then a fundamental matrix for 

    x Dx        (12) 

is given by 

1

2

0 0

0 0

0 0 r

X

X

X

X

 
 
 
 
 
 
 
 





   

   



     (13) 

where iX  is a fundamental matrix for      ,    1, 2, ...,  .ix D x i r    (14) 

The matrix iX  is given by 
0( , ) ( ( )),

i ii nX e t t W e t     (15) 

Where ( ( ))
inW e t is wronskian matrix of 12(1, , ,........, )i

i

n

ne t t t


  (16) 

on time scale 
nikT  

Proof:  The matrix iD  of order ,in  was defined by 

 

i iD I J   

It is clear that i  is the only eigenvalue of iD  and that its multiplicity is in . A 

corresponding eigenvector is 1d , and it may be noted, incidentally, that 
0 1( , )

i
te t d  is a 

solution of equation (14). In order to find other solutions, we note that any vector x can 

be expressed as 
0( , ) .

i
tx t he  If x, in this form, is substitute into equation (14), we get 

0 0 0 0

0 0

1

0 0

( ( , )) ( ( ), ) ( , ) ( , )

( ( ), ) ( , )

( ( ), ) ( , )

( , ( ))

i i i i

i i

i i

i

ie t t h e t t h Ie t t h Je t t h

e t t h Je t t h

h e t t Je t t h

h Je t t h

   

 

 



 







 







  







 

 

Since 
( )

( )
1

( , ( )) exp{ ( ) ( )

[exp{ ( ) ( ) ]

i

t

i
t

t

i
t

e t t s s s

s s s



 





  

  

  

 




 

And since 
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1

1

1

1

t

i i

t

t

i i

t

exp s s s t

exp s s s t









   

   





  
   

  

   
       
    





 

therefore 
1( , ( )) [1 ( )]

i ie t t t       

 

Hence, we get               
1[1 ( )]ih J t h        (17) 

 

Since  i   s are regressive, 1 ( ) 0i t    Hence x is a solution of (14) if and only if h 

satisfies (17). The latter equation is the companion vector equation associated with th

in

order scalar equation 
[ ]

[ ]
0, . . 0

1 ( )

i

i

n
n

i

u
i e u

t 
 


the vector  ( )

ine t , defined by 

(16), is a fundamental vector for this equation. Hence   
inW e t  is a fundamental 

matrix for equation (17). It follows that iX , defined by (15), is a fundamental matrix for 

equation (14). By using theorem (4.1). We may conclude that the matrix X defined by 

(13) is a fundamental matrix for equation (12). This proves the theorem. 

 

 

The main result of this section is now stated in the following theorem 

. 

 

Theorem 4.4 A fundamental matrix for (1) is given by Y = SX The matrix X is defined by 

the relations (13), (15) and (16). The matrix S is such that 1    S AS D   , where D is the 

Jordan canonical form of A. 

 

 

Proof: The validity of the theorem is obvious, since the result follows from the direct 

consequence of preliminary discussion in the Section(3) of (1), (2) and (3). 

For more than one linear independent eigenvector corresponding to each eigenvalue, 

then the following theorem gives the fundamental matrix. 

 

 

Theorem 4.5 If D is defined by relation (10), then a fundamental matrix for (12) is 

given by (13) where iX  is a fundamental matrix for (14) and iD  is defined by (11). 

The matrix iX  is given by
0 1 1

0 1

( , )

( , ) ( ( ))

i i i

i i i

m m

n m

e t t I
X

e t t W e t





  

 

 
  
 
 




 

 

where 1( ( ))
i in mW e t   is defined by (16) on time scale 

( )n mi ikT
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Example 1 

An example that illustrates the case of repeated eigenvalues. Find a fundamental 

matrix for the following equation: 

 

 

 

 

The eigen value of the coefficient matrix are 1 2 33, 3, 3      the corresponding 

eigenvectors are 

 

 

 

 

 

 

 

 

 

It may be verified that 1S AS D   

3 1 0

0 3 1

0 0 3

D

 
 

  
 
 

 

 

The matrix D is in Jordan canonical form. A fundamental matrix Y for the given 

equation is 

,  0T h h 

2

3 0 3 0 3 0

3 0 3 0

3 0

( , ) ( , ) ( , )

0 ( , ) ( ( )) ( , )

0 0 2 ( , )

e t t te t t t e t t

Y S e t t t t e t t

e t t



 
 

  
 
 

 

(i) If T    then

0 0 0

0 0

0

3( ) 3( ) 3( )2

3( ) 3( )

3( )

0 2

0 0 2

t t t t t t

t t t t

t t

e te t e

Y S e te

e

  

 



 
 

  
 
 

 

(ii) IfT     then 
0 0 0

0 0

0

( ) ( ) ( )2

( ) ( )

( )

4 4 4

0 4 (2 1)4

0 0 (2)4

t t t t t t

t t t t

t t

t t

Y S t

  

 



 
 

  
 
 

 

(iii) If ,  0T h h   

3 1 1

0 3 1

0 0 3

y y

 
 

  
 
 

1 2 2

1 1 1

0 , 1 , 0

0 0 1

1 1 1

Let 0 1 0

0 0 1

s s s

S
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then 

0 0 0

0 0

0

( ) ( ) ( )

2

( ) ( )

2

( )

(1 3 ) (1 3 ) (1 3 )

0 (1 3 ) (2 )(1 3 )

0 0 (2 )(1 3 )

t t t t t t

h h h

t t t t

h h

t t

h

h t h t h

Y S h th h h

h h

  

 



 
   

 
    
 
 

 
 

 

 

Example 2 

Finally, an example that illustrates the case of some are repeated and some are 

distinct eigenvalues. Find a fundamental matrix for the following equation: 

 

 

 

 

 

 

 

The eigen value of the coefficient matrix  are 1 2 32, 1, 1     the corresponding 

eigenvectors are 

 

 

 

 

 

 

 

 

 

 

 

It may be verified that 1S AS D   

 

2 0 0

0 1 1

0 0 1

D

 
 

  
 
 

 

 

 

The matrix D is in Jordan canonical form. A fundamental matrix Y for the given 

equation is 

2 0

1 0 1 0

1 0

( , ) 0 0

0 ( , ) ( , )

0 0 ( , )

e t t

Y S e t t te t t

e t t

 
 


 
 
 

 

3 2 0

1 0 0

1 2 1

y y

 
 

  
  

1 2 2

2 0 1

1 , 0 , 1

0 1 1

2 0 1

Let 1 0 1

0 1 1

s s s

S
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(i) IfT   ,

0

0 0

0

2( )

( ) ( )

( )

0 0

0

0 0

t t

t t t t

t t

e

Y S e te

e



 



 
 

  
 
 

 

(ii) IfT   , then 

0

0 0

0

( )

( ) ( )

( )

3 0 0

0 2 2

0 0 2

t t

t t t t

t t

Y S t



 



 
 

  
 
 

 

 

(iii) If ,T h   h > 0, then 

0

0 0

0

( )

( ) ( )

( )

(1 2 ) 0 0

0 (1 ) (1 )

0 0 (1 )

t t

h

t t t t

h h

t t

h

h

Y S h t h

h
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