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Abstract—The paper describes a novel algorithms for a loadse of this information to make better load-balagci

balancer, allocates the work to the clusters of &®ver. The
several load balancing algorithms for distributirgession
Initiation Protocol (SIP) request to a cluster & Servers. This
algorithm also supports the following three teclusis| such as
CJSQ, TJSQ and TLWL. It is combine knowledge of 8ie,

recognizing variability in call length, dynamic msates of
back-end server load for different SIP transactidnghis paper
load balancer improves both throughput and resptinge The
SIP is a protocol of growing importance, with uges VOIP,

IPTV, audio conferencing, instant messaging. Wesent a
detailed analysis of occupancy to show how our riigms

significantly reduce response time.

decisions that improve both response time and tirput.
Our work is the first to demonstrate how load baiag can
be improved by combining SARA with estimates oatele
overhead for different requests.

This paper introduces and evaluates several novel
algorithms for balancing load across SIP serveraddition,
the best-performing algorithm takes into accounte th
variability of call lengths, distinguishing transians.

1) Call-Join-Shortest-Queue (CJSQtracks the number of
calls (in this paper, we use the terms call andisas
interchangeably) allocated to each back-end semer

Keyvvords_Load ba|ancing, Pe.rforrna_r]cel Response timé"outes new SIP Ca||S to the node W|th the |eastb’&ll”0f

Server, Session Initiation Protocol (SIP)
I INTRODUCTION

THE session Initiation Protocol(SIP) is a general psg

signaling protocol used to control various typeseflia
sessions. Wireless provides are standardizing BnaSlthe
basis for the IP Multimedia System (IMS) standawd the
Third Generation Partnership Project (3GPP). Thiady
VolIP providers use SIP (e.g. Vonage, Gizmo), asliddal
voice offerings from existing legacy telecommunicas
companies (telecoms)(e.g. AT&T, Verizon) as welltlaesir
cable competitors (e.g., Comcast, Time-Warner). l&Vhi
individual servers may be able to support hundgdsven
thousands of users, large-scale
customers in the millions. A central componentroviding
any large-scale service is the ability to scalé $kavice with
increasing load and customer demands.

This paper presents and evaluates several algarith
for balancing load across multiple SIP servers.iftteduce
new algorithms that outperform existing ones. Oorknis
relevant not just to SIP, but also for other systevhere it is
advantageous for the load balancer to maintainaessn
which requests corresponding to the same sesscseat by
the load balancer to the same server. The sestita is

created by the INVITE and BYE transaction. Each sIf

transaction also creates state that exists fodthation of
that transaction. SIP thus has overheads thatssecited
both with sessions and with transaction,
advantage of this fact can result in more optimi3&e load
balancing. The first session state is created byiNVITE
transaction and is destroyed by the BYE Transaction
Another key aspect of the SIP protocol is thatedéht
transaction types, most notably these INVITE andEBY
transactions, can incur significantly different dweads on
our systems, INVITE transactions are about 75%
expensive than BYE transactions. A load balancemecake

and takin

active calls.

2) Transaction-Join-Shortest-Queue (TJSQjoutes a new
call to the server that has the fewest active tetiens,

rather than the fewest calls. This algorithm img®wn

CJSQ by recognizing that calls in SIP are compadetie

two transactions, INVITE and BYE, and that by triack
their completion separately, finer-grained estimateserver
load can be maintained. This leads to better |addrting,

particularly since calls have variable length amgstdo not
have a unit cost.

3) Transaction-Least-Work-Left (TLWL) routes a new
call to the server that has the least work, wheoekwi.e.,

load) is based on relative estimates of transactiosts.

ISPs need to stuppT)'rWL takes advantage of the observation that INVITE

transactions are more expensive than BYE transaction
our platform, a 1.75:1 cost ratio between INVITE&BYE
results in the best performance. We implement these

I%Igorithms in software by adding them to the OpdRSE

open-source SIP server configured as a load balatue
evaluation is done using the open source worklaaegkgator
driving traffic through the load balancer to a téwsof
servers running a commercially available SIP ser¥ée
experiments are conducted on a dedicated test bded
x86-based servers connected via Gigabit Etherned. W
xperimentally evaluate SIP proxy server performsamging
micro-benchmarks meant to capture common SIP proxy
server scenarios. We use standard open-sourceofitrase

ch as OpenSER and SIPp, running on an IBM Blaaee®

ith Red Hat Enterprise Linux and Gigabit Ethernet
connectivity [5]. We then discuss mechanisms and
algorithms for controlling overload in these sesver

We found that performing overload control locally &
server provides a simple remedy for light casesvefload
however it is ineffective in handling higher amaainf load

monlé]'ThiS paper makes the following contributions.

We evaluate our algorithms in terms of throughput,
response time, and scalability, comparing themeteesal
standard “off-the-shelf” distribution policies suchs
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round-robin or static hashing based on the SIP-lBalDur allocate and manage network bandwidth as doesveoriet
evaluation tests scalability up to 10 nodes. resource reservation protocol such as RSVP that is
We show that two of our new algorithms, TLWL andconsidered outside the scope of the protocol [8]aAother
TJSQ, scale better, provide higher throughputs,eaddbit example, SIP can run over many protocols such a®,UD
lower response times than any of the other appesmgle TCP, TLS, SCTP, IPv4, and IPv6.
tested. The differences in response times arecpéatly .
significant. For low to moderate workloads, TLWL dan B. SIPUsers, Agents, Transictlon.s, andMes&ig.es
TJSQ provide response times for INVITE transactitret  USer agents are further decomposed into User Ageeitts
are an order of magnitude lower than that of annefother (UAC) and User Agent Servers (UAS), depending on

approaches. Under high loads, the improvementasesto Whether they act as a client in a transaction (UAC)a
two orders of magnitude. server (UAS). Most call flows for SIP messages tiisplay

We evaluate the capacity of our load balancerdration how the UAC and UAS behave for that situation. 8#es

to determine at what point it may become a bottiekn\We HTTE—Iike request/response transactiqns. A tramwact
demonstrate throughput of up to 5500 calls per rsco CONSIStS of a request to perform a particular mettfeng.,
which in our environment would saturate at about 2tNVITE, BYE, CANCEL, etc.) and at least one respois
back-end nodes. These results show that our lodzr that request. Responses may be provisional, nartfedy,
can effectively scale SIP server throughput andvigeo they provide some short-term feedback to the user,(100
significantly lower response times without becoming 'RYING, 180 RINGING) to indicate progress, or thegn
bottleneck. The dramatic response time reductibas we P€ final (eg., 200 OK, 407 UNAUTHORIZED). The
achieve with TLWL and TJSQ suggest that these dlgos ~ transaction is only (?o.mpleted when a final respoise
should be adapted for other applications, partitylahen ~received, not a provisional response. A SIP sesioa
response time is crucial. We believe these reanitgeneral relationship in SIP between two user agents thetf |éor
for load balancers, which should keep track ofrtamber of SOMe time period; in VolP, a session corresponasythone
uncompleted requests assigned to each server &r tod caII.. Thls is called a dialog in SIP and. resultsuaf[e being
make better load-balancing decisions. If the loathicer maintained on the server for the duration of thesim. _For
can reliably estimate the relative overhead fougsts that it €xa@mple, an INVITE message not only creates a i
receives, this can improve performance even further (the sequence of messages for completing the INYIb&
The remainder of this paper is organized as follow§ISO @ session if the transactions completes ssittlys A
Section Il provides a brief background on SIP. Bectll BYE message creates a new transaction and, when the
presents the design of our load-balancing algosthamd ~ transaction completes, ends the session. Figugtitites a
Section IV describes their implementation. Sectign typical SIP message flow, where SIP messages atedo
overviews our experimental software and hardwarel athrough the proxy. Nodes, the distributions of quamcy
shows our results in detail. Section VI discussglated ~ across the cluster are balanced, resulting in lgremproved
work. Section VII presents our summary and conolusi response times. The naive approaches, in conteast, to

and briefly mentions plans for future work. imbalances in load. These imbalances result in the
distributions of occupancy that exhibit large taiNshich
Il. RELATED WORK contribute significantly to response time as segnthat

A load balancer for SIP is presented in this papguests request. In this example, a call is initiated vilie INVITE
are routed to servers based on the receiver afatheA hash Message and accepted with the 200 OK messagesa dedi
function is used to assign receivers of calls tvess. A key €xchanged, and then the call is terminated usiegB¥E
problem with this approach is that it is diffictét come up Message [6].
with an assignment of receivers to servers thatir@seven e p?;':y
load balancing. This approach also does not atisgif ivell

to changing distributions of calls to receivers.r Gtudy Q !

considers a wider variety of load-balancing aldorns and

INVITE
. ———-—_____~. I
shows scalability to a larger number of nodes. Jdgger also o : . |
. . o i o *ryin N
addresses high availability and how to handle fagu ;m e zsn niet 3
e 20000 =
e BN
Il. BACKGROUND —acx -
. . . . " __—\__-—p
This section presents a brief overview of SIP. Read (talk) s (8. CE 7T (talk)
familiar with SIP may prefer to continue to Sectivh —Bym e
time - L zooo®
A. Overview of the Protocol LT
SIP is a signaling (control-plane) protocol destjrie Fig. 1. SIP message flow.
establish, modify, and terminate media sessiongdmt two
or more parties. The core IETF SIP specificatiogiien in SIP Message Header

RFC 3261, although there are many additional RAF@s t SIP is a text-based protocol that derives muctiso$yntax
enhance and re ne the protocol. Several kindsssises can from HTTP. Messages contain headers and additpnall
be used, including voice, text, and video, whicte arbodies, depending on the type of message. In VSIP,
transported over a separate data-plane protod®@ld&s not Mmessages contain an additional protocol, the Sessio
Description Protocol (SDP), which negotiates sessio
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parameters (e.g., which voice codec to use) betwesarver with the lowest counter, and the countettferserver
endpoints using an offer/answer model. Once theherstls is incremented by one.

agree to the session characteristics, the RealTimesport When the load balancer receives a 200 OK respantieet
Protocol (RTP) is typically used to carry voice alaRFC BYE corresponding to the call, it knows that thevee has
3261 shows many examples of SIP headers. An importdinished processing the call and decrements thateodor

header to notice is the Call-ID header, which igl@bally
unique identifier for the session that is to beated.
Subsequent SIP messages must refer to that Cad-l&ok
up the established session state. If a SIP sesygovided by
a cluster, the initial INVITE request will be rodt¢o one
back-end node, which will create the session sBdering
some form of distributed shared memory in the elyst
subsequent packets for that session must alsaibedrto the
same back-end node otherwise the packet will
erroneously rejected. Thus, many SIP
approaches use the Call-ID as hashing value irr tod®ute
the message to the proper node [11].

INVITE sip:microsipiS.2,79.24:5070 SIR/2.0
Seq: 1 INVITE

5 orospEs.2.79.24:5070 SI2.0
CSaq: 2 INVITE

SIP Servers
Fig. 2. System architecture.

V.

This section presents the design of our load-batgnc
algorithms [1]. Fig. 3 depicts our overall systésser Agent
Clients send SIP requests (e.g. INVITE, BYE) to mad

LOAD -BALANCING ALGORITHMS

the server. In addition, different calls may cohsif
different numbers of transactions and may consufferent
amounts of server resources. An advantage of Cd 8t it
can be used in environments in which the load leaais
aware of the calls assigned to servers but doefanat an
accurate estimate of the transactions assigneerters.
2) Transaction-Join-Shortest-Queue:

An alternative method is to estimate server loasketeaon

ltbe number of transactions (requests) assignduktedrvers.
load-balancinthe TJSQ algorithm estimates the amount of workraes

has left to do base on the number of transactimtuésts)
assigned to the server. Counters are maintaindtiebjoad
balancer indicating the number of transactionsgassl to
each server. New calls are assigned to servers thih
lowest counter.

A limitation of this approach is that all transacis are
weighted equally. In the SIP protocol, INVITE regtgeare
more expensive than BYE requests since the INVITE
transaction state machine is more complex tharotigefor
non-INVITE transactions (such as BYE). This diffiece in
processing cost should ideally be taken into actann
making load balancing decisions.

3) Transaction-Least-Work-Left:

The TLWL algorithmaddresses this issue by assigning
different weights to different transactions depedin their
relative costs. It is similar to TISQ with the entament
that transactions are weighted by relative overheathe

balancer, which then selects a SIP server to haeatsSPecial case that all transactions have the sameceed
request. The distinction between the various loaldsicing ©overhead, TLWL and TJSQ are the same. Counters are
algorithms presented in this paper is how they skaghich Maintained by the load balancer indicating the Wwed
SIP server to handle a request. Servers send Sfpnses number of transactions assigned to each server. dédie
(e.g. 180 TRYING) to the load balancer, which themre assigned to the server with the lowest couAieatio is

forwards the response to the client. we will alssatibe our
workload generator (which is able to generate oestl
conditions at the server using a few client mactjinend our
overload model[4].

A. Novel Algorithms

defined in terms of relative cost of INVITE to BYE
transactions. We experimented with several valoeghis
ratio of relative cost. TLWL-2 assumes INVITE trantons
are twice as expensive as BYE transactions anhdieated
in our graphs as TLWL-2. We found the best perfoigni
estimate of relative costs was 1.75 these areaielicin our

A key aspect of our load balancer is that requesfaphs as TLWL-1.75. Note that if it is not feasiko

corresponding to the same call are routed to theeserver.
The load balancer has the freedom to pick a semilgron

determine the relative overheads of different tagtisn
types, TJSQ can be used, which results in almosfoasl

the first request of a call. All subsequent regsiesperformance as TLWL-1.75.TLWL estimates server load

corresponding to the call must go to the same sefivas
allows all requests corresponding to the same medsi
efficiently access state corresponding to the eassi

Our new load-balancing algorithms are based omyaiseg)
calls to servers by picking the server with thetifested)
least amount of work assigned but not yet completed

1)Call-Join-Shortest-Queue:

The CJSQ algorithm estimates the amount of work

server has left to do based on the number of ¢s#issions)
assigned to the server. Counters are maintaindtieojoad
balancer indicating the number of calls assigneddoh

server. When a new INVITE request is received (Whic

corresponds to a new call), the request is assigmetie

based on the weighted number of transactions eeisésv
currently handling. For example, if a server isqagsing an
INVITE (relative cost of 1.75) and a BYE transactio
(relative cost of 1.0), the server has a load 85 Z.LWL can
be adapted to workloads with other transaction sypg
using different weights based on the overheadshef t
transaction types.

In addition, the relative costs used for TLWL abdde
gdaptively varied to improve performance. We ditl meed
to adaptively vary the relative costs because &heevof 1.75
was relatively constant.

CJSQ, TJSQ, and TLWL are all novel load-balancing
algorithms. In addition, we are not aware of angviyus
work that has successfully adapted least worlalgfrithms
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for load balancing Session Initiation Protocol(SWith
Session Aware Request Assignment(SARA).

V. LOAD BALANCER IMPLEMENTATION
Incoming
Packets
Receiver Existing Sessions
l New Qutgoing
. A Packets
D Session | Sessions| Server > Send
.. . —
dIset Recognition Selection —— >t

Load

" Trigger — -
Estimates

Session
State

t

Fig.3. Load Balancer Structure
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TABLE |

HARDWARE TESTBED CHARACTERISTICS

Feature Machine Type A | Machine Type B
Quantity 11 3
CPU 3.06 GHz 2.8 GHz
RAM 4 GB 2 GB
Kernel 2.6.9-55.0.6 2.6.9-11
Distro RedHat AS 4.5 RedHat AS 4.5
Roles Back-End Server, Workload

Load Balancer Generation

VI.

In this section, we present in detail the experitakeresults
of the load-balancing algorithms defined in Sectibn

RESULTS

a. Response Time
We observe significant differences in the response
times of the different load balancing algorithms.

Performance is limited by the CPU processing poafehe

This section describes our implementation. Fig.§€rvers and not by memory. The average responseftim

illustrates the structure of the load balancer. fdatangles
represent key functional modules of the load badanehile
the irregular shaped boxes represent state infiométat is
maintained. The arrows represent communicationsiovine
receiver receives requests that are then parséaelyarser.
The Session Recognition module determines if tlogiest
corresponds to an already existing session by quegithe
Session State, which is implemented as a hash. tabhke
Trigger module updates Session State and Load &#m
after a session has expired.

01:
02:
03:
04:
05:
06:
07:

h = hash call-id
look up session in active table
if not found
/%
if INVITE

don’'t know this session =/
/% new session x/
select one node d using algorithm
08: (TLWL, TJSQ, RR, Hash,
09: add entry (s,d,ts) to active table
10: 8 = STATUS INV

11: node_counter [d] += Winy

12:
13: else /+ this is an existing session =/
14: if 200 response for INVITE

15: s = STATUS INV_200

16: record response time for INVITE
17:-
18: else if ACK request
19: 8 = STATUS ACK
20: else if BYE request
21: 8 = STATUS BYE
22:
23: else if 200 response for BYE
24 : 8 = STATUS BYE 200

25:
26:
27:
28:
29:
30:
31:
32:

etc)

/* non-invites omitted for clarity =/

node counter [d] -= Winy

node counter [d] += Whye

record response time for BYE
node_counter [d] -= Wpye
move entry to expired table
/+* end session lookup check x/
if request (INVITE , BYE etc.)
forward to d
else if response (200/100/180/481)

forward to client

Fig. 4. Load-balancing pseudo code.

each algorithm versus offered load measured folNNETE

transaction. Note especially that the -axis isoigaithmic
scale. In this experiment, the load balancer distds
requests across eight back-end SIP server nodes.
versions of Transaction-Least-Work-Left are useak. the
curve labeled TLWL-1.75, INVITE transactions are&/4.
times the weight of BYE transactions. In the culaeeled
TLWL-2, the weight is 2:1.The curve labeled Haskathe
standard OpenSER hash function, whereas the caibedeld
FNV Hash uses FNV Hash. Round-robin is denoted RR 0
the graph.

Tw

2439

2500 -

2000

1500

1000

Throughput (calls/sec)

500

CJsQ

RWMA Hash  FNVHash RR TJSQ  TLWL-2 TLWL-1.75

Fig. 5. Peak throughput of various algorithms with eight SIP servers.

b. Throughput

We now examine how our load-balancing algorithms
perform in terms o f how well throughput scales hwit
increasing numbers of back-end servers. In thd e, we
would hope to see eight nodes provide eight timessingle
node performance. Recall that the peak throughpuhé
maximum throughput that can be sustained while
successfully handling more than 99.99% of all retsi@nd
is approximately 300 cps for a back end SIP senasfe.
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Therefore, linear scalability suggests a maximurasjime
throughput of about 2400 cps for eight nodes. 8ighows
the peak throughputs for the various algorithmagigight
back end nodes. Several interesting results arstrilted in
this graph.

450 438

400

350

300

250

200

Throughput (calls/sec)

160

100

50

0

FNVHash RR
Fig. 6. Peak throughput (heterogeneous back ends).

TJSQ TLWL-1.75

C. Occupancy and Response Time

Given the substantial improvements in response time

shown in graph, we believe it is worth explainimgdepth
how certain load-balancing algorithms can reduspaase
time versus others. We show this in two steps.tFike
demonstrate how the different algorithms behawverims of
occupancy namely, the number of requests allocatede
system. The occupancy for a transaction assignadsésver
is the number of transactions already being harojedhen
is assigned to it.

d. Heterogeneous Back Ends

Proceedings of International Conference “ICSEM’13”

TJSQ, and TLWL. The TLWL algorithms result in thesb
performance, both in terms of response time arautjiput,
followed by TJSQ.TJSQ has the advantage that no
knowledge is needed of relative overheads of difier
transaction types. TJSQ has the advantage that no
knowledge is needed8 of relative overheads of wiffe
transaction types. The most significant performance
differences were in response time. Under light tarate
loads, TLWL-1.75, TLWL-2, and TJSQ achieved resgons
times for INVITE transactions that were at leageftimes
smaller than the other algorithms we tested. Urdmvy
loads, TLWL-1.75, TLWL-2, and TJSQ have response
time’s two orders of magnitude smaller than theeoth
approaches. For SIP applications that require goadity of
service, these dramatically lower response times ar
significant. Our results show that by combining Wiedge

of the SIP protocol, recognizing variability in t&ngths,
distinguishing transactions from calls, and accimgnfor

the difference in processing costs for differentP Si
transaction types, load balancing for SIP servens be
significantly improved.
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VII. SUMMARY AND CONCLUSION

This paper introduces three novel approaches td loa
balancing in SIP server clusters. We present thegde
implementation, and evaluation of a load balancecluster
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