
Proceedings of International Conference “ICSEM’13”

788
S.Ranganayaki,k.kalyanasundaram

 S.RENGANAYAKI
 Assistant Professor/IT

Sri Angalamman College of Technology
Trichirappalli.
smrenganayaki@gmail.com

Abstract—The paper describes a novel algorithms for a load
balancer, allocates the work to the clusters of SIP server. The
several load balancing algorithms for distributing Session
Initiation Protocol (SIP) request to a cluster of SIP servers. This
algorithm also supports the following three techniques such as
CJSQ, TJSQ and TLWL. It is combine knowledge of the SIP,
recognizing variability in call length, dynamic estimates of
back-end server load for different SIP transactions. In this paper
load balancer improves both throughput and response time. The
SIP is a protocol of growing importance, with uses for VOIP,
IPTV, audio conferencing, instant messaging. We present a
detailed analysis of occupancy to show how our algorithms
significantly reduce response time.

Keywords—Load balancing, Performance, Response time,
Server, Session Initiation Protocol (SIP)

I. INTRODUCTION

HE session Initiation Protocol(SIP) is a general purpose
signaling protocol used to control various types of media

sessions. Wireless provides are standardizing on SIP as the
basis for the IP Multimedia System (IMS) standard for the
Third Generation Partnership Project (3GPP). Third-party
VoIP providers use SIP (e.g. Vonage, Gizmo), as do digital
voice offerings from existing legacy telecommunications
companies (telecoms)(e.g. AT&T, Verizon) as well as their
cable competitors (e.g., Comcast, Time-Warner). While
individual servers may be able to support hundreds or even
thousands of users, large-scale ISPs need to support
customers in the millions. A central component to providing
any large-scale service is the ability to scale that service with
increasing load and customer demands.

This paper presents and evaluates several algorithms
for balancing load across multiple SIP servers. We introduce
new algorithms that outperform existing ones. Our work is
relevant not just to SIP, but also for other systems where it is
advantageous for the load balancer to maintain sessions in
which requests corresponding to the same session are sent by
the load balancer to the same server. The session state is
created by the INVITE and BYE transaction. Each SIP
transaction also creates state that exists for the duration of
that transaction. SIP thus has overheads that are associated
both with sessions and with transaction, and taking
advantage of this fact can result in more optimized SIP load
balancing. The first session state is created by the INVITE
transaction and is destroyed by the BYE Transaction.

Another key aspect of the SIP protocol is that different
transaction types, most notably these INVITE and BYE
transactions, can incur significantly different overheads on
our systems, INVITE transactions are about 75% more
expensive than BYE transactions. A load balancer can make

 K.KALYANASUNDARAM
 Assistant Professor/IT

 Sri Angalamman College of Technology
 Trichy.

 krishp.kalyan@gmail.com

use of this information to make better load-balancing
decisions that improve both response time and throughput.
Our work is the first to demonstrate how load balancing can
be improved by combining SARA with estimates of relative
overhead for different requests.

This paper introduces and evaluates several novel
algorithms for balancing load across SIP servers. In addition,
the best-performing algorithm takes into account the
variability of call lengths, distinguishing transactions.
1) Call-Join-Shortest-Queue (CJSQ) tracks the number of
calls (in this paper, we use the terms call and session
interchangeably) allocated to each back-end server and
routes new SIP calls to the node with the least number of
active calls.
2) Transaction-Join-Shortest-Queue (TJSQ) routes a new
call to the server that has the fewest active transactions,
rather than the fewest calls. This algorithm improves on
CJSQ by recognizing that calls in SIP are composed of the
two transactions, INVITE and BYE, and that by tracking
their completion separately, finer-grained estimates of server
load can be maintained. This leads to better load balancing,
particularly since calls have variable length and thus do not
have a unit cost.
3) Transaction-Least-Work-Left (TLWL) routes a new
call to the server that has the least work, where work (i.e.,
load) is based on relative estimates of transaction costs.
TLWL takes advantage of the observation that INVITE
transactions are more expensive than BYE transactions. On
our platform, a 1.75:1 cost ratio between INVITE and BYE
results in the best performance. We implement these
algorithms in software by adding them to the OpenSER
open-source SIP server configured as a load balancer. Our
evaluation is done using the open source workload generator
driving traffic through the load balancer to a cluster of
servers running a commercially available SIP server. The
experiments are conducted on a dedicated test bed of Intel
x86-based servers connected via Gigabit Ethernet. We
experimentally evaluate SIP proxy server performance using
micro-benchmarks meant to capture common SIP proxy
server scenarios. We use standard open-source SIP software
such as OpenSER and SIPp, running on an IBM Blade Center
with Red Hat Enterprise Linux and Gigabit Ethernet
connectivity [5]. We then discuss mechanisms and
algorithms for controlling overload in these servers.

We found that performing overload control locally at a
server provides a simple remedy for light cases of overload
however it is ineffective in handling higher amounts of load
[2].This paper makes the following contributions.

We evaluate our algorithms in terms of throughput,
response time, and scalability, comparing them to several
standard “off-the-shelf” distribution policies such as

The State of the Art in Locally Distributed
Web-Server Systems

T

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

789
S.Ranganayaki,k.kalyanasundaram

round-robin or static hashing based on the SIP Call-ID. Our
evaluation tests scalability up to 10 nodes.

We show that two of our new algorithms, TLWL and
TJSQ, scale better, provide higher throughputs, and exhibit
lower response times than any of the other approaches we
tested. The differences in response times are particularly
significant. For low to moderate workloads, TLWL and
TJSQ provide response times for INVITE transactions that
are an order of magnitude lower than that of any of the other
approaches. Under high loads, the improvement increases to
two orders of magnitude.

We evaluate the capacity of our load balancer in isolation
to determine at what point it may become a bottle neck. We
demonstrate throughput of up to 5500 calls per second,
which in our environment would saturate at about 20
back-end nodes. These results show that our load balancer
can effectively scale SIP server throughput and provide
significantly lower response times without becoming a
bottleneck. The dramatic response time reductions that we
achieve with TLWL and TJSQ suggest that these algorithms
should be adapted for other applications, particularly when
response time is crucial. We believe these results are general
for load balancers, which should keep track of the number of
uncompleted requests assigned to each server in order to
make better load-balancing decisions. If the load balancer
can reliably estimate the relative overhead for requests that it
receives, this can improve performance even further.

The remainder of this paper is organized as follows.
Section II provides a brief background on SIP. Section III
presents the design of our load-balancing algorithms, and
Section IV describes their implementation. Section V
overviews our experimental software and hardware, and
shows our results in detail. Section VI discusses related
work. Section VII presents our summary and conclusions
and briefly mentions plans for future work.

II. RELATED WORK

A load balancer for SIP is presented in this paper requests
are routed to servers based on the receiver of the call. A hash
function is used to assign receivers of calls to servers. A key
problem with this approach is that it is difficult to come up
with an assignment of receivers to servers that result in even
load balancing. This approach also does not adapt itself well
to changing distributions of calls to receivers. Our study
considers a wider variety of load-balancing algorithms and
shows scalability to a larger number of nodes. The paper also
addresses high availability and how to handle failures.

III. BACKGROUND

This section presents a brief overview of SIP. Readers
familiar with SIP may prefer to continue to Section IV.

A. Overview of the Protocol
SIP is a signaling (control-plane) protocol designed to
establish, modify, and terminate media sessions between two
or more parties. The core IETF SIP specification is given in
RFC 3261, although there are many additional RFCs that
enhance and re ne the protocol. Several kinds of sessions can
be used, including voice, text, and video, which are
transported over a separate data-plane protocol. SIP does not

allocate and manage network bandwidth as does a network
resource reservation protocol such as RSVP that is
considered outside the scope of the protocol [9]. As another
example, SIP can run over many protocols such as UDP,
TCP, TLS, SCTP, IPv4, and IPv6.

B. SIP Users, Agents, Transactions, and Messages

User agents are further decomposed into User Agent Clients
(UAC) and User Agent Servers (UAS), depending on
whether they act as a client in a transaction (UAC) or a
server (UAS). Most call flows for SIP messages thus display
how the UAC and UAS behave for that situation. SIP uses
HTTP-like request/response transactions. A transaction
consists of a request to perform a particular method (e.g.,
INVITE, BYE, CANCEL, etc.) and at least one response to
that request. Responses may be provisional, namely, that
they provide some short-term feedback to the user (e.g., 100
TRYING, 180 RINGING) to indicate progress, or they can
be final (e.g., 200 OK, 407 UNAUTHORIZED). The
transaction is only completed when a final response is
received, not a provisional response. A SIP session is a
relationship in SIP between two user agents that lasts for
some time period; in VoIP, a session corresponds to a phone
call. This is called a dialog in SIP and results in state being
maintained on the server for the duration of the session. For
example, an INVITE message not only creates a transaction
(the sequence of messages for completing the INVITE), but
also a session if the transactions completes successfully. A
BYE message creates a new transaction and, when the
transaction completes, ends the session. Fig. 2 illustrates a
typical SIP message flow, where SIP messages are routed
through the proxy. Nodes, the distributions of occupancy
across the cluster are balanced, resulting in greatly improved
response times. The naive approaches, in contrast, lead to
imbalances in load. These imbalances result in the
distributions of occupancy that exhibit large tails, which
contribute significantly to response time as seen by that
request. In this example, a call is initiated with the INVITE
message and accepted with the 200 OK messages. Media is
exchanged, and then the call is terminated using the BYE
message [6].

Fig. 1. SIP message flow.

C. SIP Message Header

SIP is a text-based protocol that derives much of its syntax
from HTTP. Messages contain headers and additionally
bodies, depending on the type of message. In VoIP, SIP
messages contain an additional protocol, the Session
Description Protocol (SDP), which negotiates session

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

790
S.Ranganayaki,k.kalyanasundaram

parameters (e.g., which voice codec to use) between
endpoints using an offer/answer model. Once the end-hosts
agree to the session characteristics, the Real-time Transport
Protocol (RTP) is typically used to carry voice data. RFC
3261 shows many examples of SIP headers. An important
header to notice is the Call-ID header, which is a globally
unique identifier for the session that is to be created.
Subsequent SIP messages must refer to that Call-ID to look
up the established session state. If a SIP server is provided by
a cluster, the initial INVITE request will be routed to one
back-end node, which will create the session state. Barring
some form of distributed shared memory in the cluster,
subsequent packets for that session must also be routed to the
same back-end node otherwise the packet will be
erroneously rejected. Thus, many SIP load-balancing
approaches use the Call-ID as hashing value in order to route
the message to the proper node [11].

Fig. 2. System architecture.

IV. LOAD -BALANCING ALGORITHMS

This section presents the design of our load-balancing
algorithms [1]. Fig. 3 depicts our overall system. User Agent
Clients send SIP requests (e.g. INVITE, BYE) to our load
balancer, which then selects a SIP server to handle each
request. The distinction between the various load-balancing
algorithms presented in this paper is how they choose which
SIP server to handle a request. Servers send SIP responses
(e.g. 180 TRYING) to the load balancer, which then
forwards the response to the client. we will also describe our
workload generator (which is able to generate overload
conditions at the server using a few client machines), and our
overload model[4].

A. Novel Algorithms

A key aspect of our load balancer is that requests
corresponding to the same call are routed to the same server.
The load balancer has the freedom to pick a server only on
the first request of a call. All subsequent requests
corresponding to the call must go to the same server. This
allows all requests corresponding to the same session to
efficiently access state corresponding to the session.

Our new load-balancing algorithms are based on assigning
calls to servers by picking the server with the (estimated)
least amount of work assigned but not yet completed

1)Call-Join-Shortest-Queue:

The CJSQ algorithm estimates the amount of work a
server has left to do based on the number of calls (sessions)
assigned to the server. Counters are maintained by the load
balancer indicating the number of calls assigned to each
server. When a new INVITE request is received (which
corresponds to a new call), the request is assigned to the

server with the lowest counter, and the counter for the server
is incremented by one.
When the load balancer receives a 200 OK response to the
BYE corresponding to the call, it knows that the server has
finished processing the call and decrements the counter for
the server. In addition, different calls may consist of
different numbers of transactions and may consume different
amounts of server resources. An advantage of CJSQ is that it
can be used in environments in which the load balancer is
aware of the calls assigned to servers but does not have an
accurate estimate of the transactions assigned to servers.
2) Transaction-Join-Shortest-Queue:

An alternative method is to estimate server load based on
the number of transactions (requests) assigned to the servers.
The TJSQ algorithm estimates the amount of work a server
has left to do base on the number of transactions (requests)
assigned to the server. Counters are maintained by the load
balancer indicating the number of transactions assigned to
each server. New calls are assigned to servers with the
lowest counter.

A limitation of this approach is that all transactions are
weighted equally. In the SIP protocol, INVITE requests are
more expensive than BYE requests since the INVITE
transaction state machine is more complex than the one for
non-INVITE transactions (such as BYE). This difference in
processing cost should ideally be taken into account in
making load balancing decisions.

3) Transaction-Least-Work-Left:

The TLWL algorithm addresses this issue by assigning
different weights to different transactions depending on their
relative costs. It is similar to TJSQ with the enhancement
that transactions are weighted by relative overhead in the
special case that all transactions have the same expected
overhead, TLWL and TJSQ are the same. Counters are
maintained by the load balancer indicating the weighted
number of transactions assigned to each server. New calls
are assigned to the server with the lowest counter. A ratio is
defined in terms of relative cost of INVITE to BYE
transactions. We experimented with several values for this
ratio of relative cost. TLWL-2 assumes INVITE transactions
are twice as expensive as BYE transactions and are indicated
in our graphs as TLWL-2. We found the best performing
estimate of relative costs was 1.75 these are indicated in our
graphs as TLWL-1.75. Note that if it is not feasible to
determine the relative overheads of different transaction
types, TJSQ can be used, which results in almost as good
performance as TLWL-1.75.TLWL estimates server load
based on the weighted number of transactions a server is
currently handling. For example, if a server is processing an
INVITE (relative cost of 1.75) and a BYE transaction
(relative cost of 1.0), the server has a load of 2.75.TLWL can
be adapted to workloads with other transaction types by
using different weights based on the overheads of the
transaction types.

 In addition, the relative costs used for TLWL could be
adaptively varied to improve performance. We did not need
to adaptively vary the relative costs because the value of 1.75
was relatively constant.

CJSQ, TJSQ, and TLWL are all novel load-balancing
algorithms. In addition, we are not aware of any previous
work that has successfully adapted least work left algorithms

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

791
S.Ranganayaki,k.kalyanasundaram

for load balancing Session Initiation Protocol(SIP) with
Session Aware Request Assignment(SARA).

V. LOAD BALANCER IMPLEMENTATION

 Fig.3. Load Balancer Structure

This section describes our implementation. Fig.3
illustrates the structure of the load balancer. The rectangles
represent key functional modules of the load balancer, while
the irregular shaped boxes represent state information that is
maintained. The arrows represent communication flows. The
receiver receives requests that are then parsed by the Parser.
The Session Recognition module determines if the request
corresponds to an already existing session by querying the
Session State, which is implemented as a hash table. The
Trigger module updates Session State and Load Estimates
after a session has expired.

Fig. 4. Load-balancing pseudo code.

TABLE I
HARDWARE TESTBED CHARACTERISTICS

VI. RESULTS

In this section, we present in detail the experimental results
of the load-balancing algorithms defined in Section III.

a. Response Time

We observe significant differences in the response
times of the different load balancing algorithms.
Performance is limited by the CPU processing power of the
servers and not by memory. The average response time for
each algorithm versus offered load measured for the INVITE
transaction. Note especially that the -axis is in logarithmic
scale. In this experiment, the load balancer distributes
requests across eight back-end SIP server nodes. Two
versions of Transaction-Least-Work-Left are used. For the
curve labeled TLWL-1.75, INVITE transactions are 1.75
times the weight of BYE transactions. In the curve labeled
TLWL-2, the weight is 2:1.The curve labeled Hash uses the
standard OpenSER hash function, whereas the curve labeled
FNV Hash uses FNV Hash. Round-robin is denoted RR on
the graph.

Fig. 5. Peak throughput of various algorithms with eight SIP servers.

b. Throughput

We now examine how our load-balancing algorithms
perform in terms o f how well throughput scales with
increasing numbers of back-end servers. In the ideal case, we
would hope to see eight nodes provide eight times the single
node performance. Recall that the peak throughput is the
maximum throughput that can be sustained while
successfully handling more than 99.99% of all requests and
is approximately 300 cps for a back end SIP server node.

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

792
S.Ranganayaki,k.kalyanasundaram

Therefore, linear scalability suggests a maximum possible
throughput of about 2400 cps for eight nodes. Fig. 8 shows
the peak throughputs for the various algorithms using eight
back end nodes. Several interesting results are illustrated in
this graph.

Fig. 6. Peak throughput (heterogeneous back ends).

c. Occupancy and Response Time

Given the substantial improvements in response time
shown in graph, we believe it is worth explaining in depth
how certain load-balancing algorithms can reduce response
time versus others. We show this in two steps. First, we
demonstrate how the different algorithms behave in terms of
occupancy namely, the number of requests allocated to the
system. The occupancy for a transaction assigned to a server
is the number of transactions already being handled by when
is assigned to it.

d. Heterogeneous Back Ends

In this section, we look at how our load-balancing
algorithms perform when the back-end servers have
different capabilities. In these experiments, the load balancer
is routing requests to two different nodes. One of the nodes is
running another task that is consuming about 50% of its CPU
capacity. The other node is purely dedicated to handling SIP
requests. Recall that the maximum capacity of a single
server node is 300 cps. Ideally, the load balancing algorithm
in this heterogeneous system should result in a throughput of
about one and a half times this rate, or 450 cps.

e. Load Balancer Capacity

In this section, we evaluate the performance of the load
balancer itself to see how much load it can support before it
becomes a bottleneck for the cluster. We use five nodes as
clients and five nodes as servers, which allow us to generate
around 10000 cps without becoming a bottleneck.

VII. SUMMARY AND CONCLUSION

This paper introduces three novel approaches to load
balancing in SIP server clusters. We present the design,
implementation, and evaluation of a load balancer for cluster
based SIP servers. Our load balancer performs session-aware
request assignment to ensure that SIP transactions are routed
to the proper back end node that contains the appropriate
session state. We presented three novel algorithms: CJSQ,

TJSQ, and TLWL. The TLWL algorithms result in the best
performance, both in terms of response time and throughput,
followed by TJSQ.TJSQ has the advantage that no
knowledge is needed of relative overheads of different
transaction types. TJSQ has the advantage that no
knowledge is needed8 of relative overheads of different
transaction types. The most significant performance
differences were in response time. Under light to moderate
loads, TLWL-1.75, TLWL-2, and TJSQ achieved response
times for INVITE transactions that were at least five times
smaller than the other algorithms we tested. Under heavy
loads, TLWL-1.75, TLWL-2, and TJSQ have response
time’s two orders of magnitude smaller than the other
approaches. For SIP applications that require good quality of
service, these dramatically lower response times are
significant. Our results show that by combining knowledge
of the SIP protocol, recognizing variability in call lengths,
distinguishing transactions from calls, and accounting for
the difference in processing costs for different SIP
transaction types, load balancing for SIP servers can be
significantly improved.

REFERENCES
[1] Hongbo Jiang, Member, IEEE, Arun Iyengar, Fellow, IEEE, Erich

Nahum, Member, IEEE, Wolfgang Segmuller, Asser N. Tantawi,
Senior Member, IEEE, Member, ACM, and Charles P.Wright “Design,
Implementation, and Performance of a Load Balancer for SIP Server
Clusters” IEEE/ACM transactions on networking, June 2012.

[2] V.Hilt and I.Widjaja, “Controlling overload in networks of SIP
servers,” in Proc. IEEE ICNP, Orlando, FL, Oct. 2008.

[3] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma,
“Performance Analysis of Load Balancing algorithms” World
Academy of Science, Engineering and Technology 2008.

[4] C.Shen, H.Schulzrinne, and E.M.Nahum, “Session initiation protocol
(SIP) server overload control Design and evaluation,” in
Proc.IPTComm, Heidelberg, Germany, Jul. 2008, pp. 149–173.

[5] E.Nahum, J.Tracey, and C.P.Wright, “Evaluating SIP proxy server
performance,” in Proc. 17th NOSSDAV, Urbana–Champaign, IL, Jun.
2007, pp. 79–85.

[6] G.Ciardo, A.Riska, and E.Smirni, “EQUILOAD: load balancing
Policy for clustered Web servers,” Perform Evaluating, vol. 46,
no.2-3, pp. 101–124, 2001.

[7] M.Aron, D.Sanders, P.Druschel, and W.Zwaenepoel, “Scalable
Content-aware request distribution in cluster-based network
servers,” in Proc. USENIX Annu. Tech. Conf., San Diego, CA, Jun.
2000, pp. 323–336.

[8] L.Zhang, S.Deering, D.Estrin, S.Shenker, and D. Zappola, “RSVP: A
new resource reservation protocol,” IEEE Commun. Mag., vol. 40, no.
5, pp. 116–127, May 2002.

[9] M.Aron and P.Druschel, “TCP implementation enhancements for
Improving Web server performance” Computer Science
Department, Rice University, Houston, TX, Tech. Rep. TR99-335,
Jul. 1999.

[10] http://www.brekeke.com
[11] http://sipp.sourceforge.net

IJ
E
R
T

IJ
E
R
T

International Journal Of Engineering Research and Technology(IJERT), ICSEM-2013 Conference Proceedings

