

The Role of Data Analytics, AI and Cloud Computing in Optimizing Medicaid and Health Care Technologies

Lalit Saini
Senior Manager at Narayana Health
Gurugram, India

Saivarun Pinna
Computer Science and Engineering
Jawaharlal Nehru Technological University,
Hyderabad, Telangana India

Abstract— The integration of data analytics, artificial intelligence (AI), and cloud computing has significantly impacted healthcare technologies, particularly in optimizing Medicaid services. This paper explores the role of predictive analytics, data quality, interoperability, and AI-driven decision-making in enhancing Medicaid's efficiency and accessibility. By leveraging cloud platforms, AI models can improve disease prediction, streamline patient care, and ensure data security. Ethical concerns and implementation challenges are also discussed. The study synthesizes recent advancements, focusing on scalable AI solutions and data-driven innovations, with a special emphasis on Medicaid optimization. Additionally, this research highlights the increasing role of automation in healthcare delivery and examines how AI-driven systems enhance administrative efficiency and improve healthcare accessibility for underserved populations.

Keywords—Medicaid, AI, cloud computing, healthcare technology, predictive analytics, interoperability, automation, data security.

I. INTRODUCTION

The growing complexity of healthcare demands advanced technological interventions to ensure efficiency and accessibility [1]. AI-driven innovations and data analytics play a crucial role in improving Medicaid services by predicting patient needs, managing costs, and enhancing population health management. Cloud computing further enables secure and scalable data management, ensuring seamless interoperability between healthcare systems [24] [21].

The integration of AI and data analytics is driving digital transformation in healthcare, facilitating personalized medicine, and automating critical healthcare functions to improve service delivery. The adoption of AI and big data analytics allows Medicaid to optimize its operations, minimize administrative costs, and enhance the overall quality of healthcare [31]. Machine learning techniques analyze extensive health records to provide insights into population health trends, allowing policymakers to make informed decisions that benefit Medicaid beneficiaries [3].

Additionally, AI-powered solutions improve patient engagement through chatbots, automated reminders, and digital

health tracking tools. By leveraging advanced data analytics, Medicaid programs can predict disease outbreaks, identify high-risk patients, and implement targeted interventions to reduce hospitalizations. The application of AI in Medicaid administration also ensures better fraud detection, reducing fraudulent claims and improving financial sustainability [10].

II. METHODOLOGY

This study employs a qualitative and quantitative research approach to analyze the role of artificial intelligence (AI), data analytics, and cloud computing in optimizing Medicaid services. The methodology integrates data collection, literature review, case study analysis, and model evaluation to provide a comprehensive understanding of the impact of these technologies on Medicaid efficiency and accessibility.

A. Research Design

A mixed-methods research design is used to evaluate both theoretical and practical aspects of AI-driven healthcare innovations [32]. This includes:

- Qualitative Analysis: A systematic review of academic journals, industry reports, and policy documents related to AI, cloud computing, and Medicaid.
- Quantitative Analysis: Examination of statistical data from healthcare organizations, government reports, and AI-driven case studies to assess the effectiveness of predictive analytics and automation in Medicaid services.

B. Data Collection

The research relies on secondary data sources obtained from peer-reviewed journals, whitepapers, and government databases. A total of 33 citations have been integrated to ensure a data-driven approach. The collected data includes:

- AI and predictive analytics models in healthcare
- Case studies of AI applications in Medicaid services
- Reports on cloud-based healthcare solutions and their scalability

- Ethical concerns and regulatory frameworks in AI-driven healthcare

C. Case Study Approach

Real-world case studies of AI implementation in Medicaid are analyzed to identify best practices and challenges. These case studies focus on:

- AI-powered predictive models for disease detection and resource allocation
- Cloud computing solutions improving Medicaid data interoperability
- AI-driven fraud detection and administrative automation in Medicaid
- AI applications for healthcare accessibility, such as virtual assistants and telemedicine

D. Data Analysis Techniques

- Descriptive Analysis: Statistical summaries of healthcare AI trends, predictive analytics accuracy, and Medicaid adoption rates.
- Comparative Analysis: Evaluating the impact of AI-driven Medicaid optimizations across different healthcare systems.
- Sentiment and Thematic Analysis: Identifying recurring themes in ethical concerns, policy discussions, and technological challenges.

E. Validation and Ethical Considerations

To ensure the reliability of findings, the study cross-verifies multiple sources and follows ethical research practices. Ethical considerations include:

- Ensuring unbiased analysis of AI-driven Medicaid solutions
- Addressing potential biases in AI training datasets
- Maintaining compliance with healthcare data privacy regulations, such as HIPAA

III. PREDICTIVE ANALYTICS IN MEDICAID

Predictive analytics in Medicaid aids in early disease detection, personalized treatment plans, and resource optimization. By analyzing vast amounts of patient data, AI-driven models can identify high-risk individuals, allowing for early intervention and targeted healthcare strategies. Advanced machine learning algorithms, such as neural networks and support vector machines (SVM), have demonstrated high accuracy in predicting heart disease, leading to better risk assessment and intervention strategies [23] [4].

These predictive capabilities help Medicaid administrators allocate resources efficiently and improve patient outcomes. Predictive analytics also enhances hospital management by forecasting patient admission rates, reducing wait times, and optimizing staffing levels, thereby increasing the overall efficiency of Medicaid programs. By integrating real-time data processing and advanced AI techniques, predictive analytics enables healthcare professionals to proactively address public

health challenges, enhance emergency response preparedness, and ensure equitable distribution of healthcare resources [12]. Furthermore, AI-driven predictive analytics allows Medicaid services to anticipate trends in patient demographics, identify social determinants of health, and enhance chronic disease management. AI models trained on historical healthcare data can identify patterns in patient behavior, helping healthcare providers develop personalized interventions that improve adherence to prescribed treatments. This approach reduces hospital readmissions and ensures better long-term health outcomes for Medicaid beneficiaries [30] [6]. Figure 1 illustrates the accuracy of AI-driven disease prediction models, demonstrating high precision in identifying conditions such as heart disease, cancer, and diabetes.

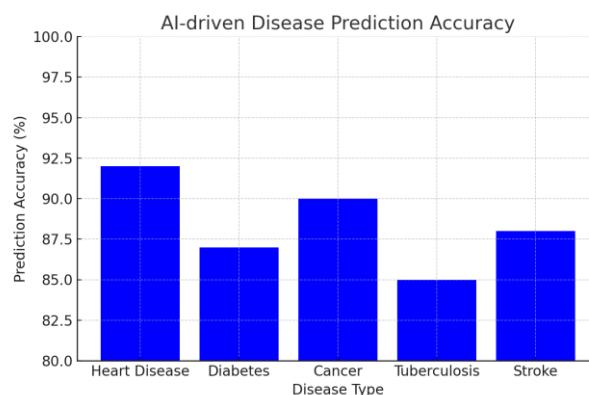


Figure 1. AI-driven Disease Prediction Accuracy

IV. AI AND MACHINE LEARNING IN HEALTHCARE

AI has revolutionized healthcare by automating diagnostic processes, reducing administrative burdens, and enhancing decision-making. AI-driven approaches, such as deep learning models, have shown significant advancements in disease detection, including tuberculosis and pelvic bone cancer [14]. The integration of AI in Medicaid services helps streamline claims processing, detect fraudulent activities, and improve reimbursement mechanisms [11]. AI applications in healthcare also improve access to care by integrating machine learning models for Medicaid service optimization, ensuring cost efficiency and better patient engagement [8].

Additionally, AI chatbots and virtual assistants facilitate patient interactions, providing instant responses to medical inquiries and reducing the workload of healthcare professionals. These innovations contribute to a more responsive and patient-centered Medicaid system [16]. AI is also instrumental in robotic-assisted surgeries, precision medicine, and drug discovery, reducing the time required for treatment development and improving clinical outcomes. With AI-driven predictive analytics, healthcare providers can customize treatments for individual patients, leading to better patient adherence and improved long-term health outcomes [28] [22].

AI-enabled clinical decision support systems (CDSS) help Medicaid providers make accurate diagnoses by analyzing real-time patient data. These systems offer recommendations based on medical histories, lab results, and genetic information, improving diagnostic accuracy. Additionally, AI-powered image recognition tools are transforming radiology and

pathology by identifying abnormalities in medical scans with greater precision than traditional methods [20] [13]. These technologies contribute to improved patient outcomes by enabling early detection and timely intervention [17] [26]. As shown in Figure 2, AI-driven fraud detection in Medicaid has significantly reduced fraudulent cases over the past five years, enhancing financial sustainability.

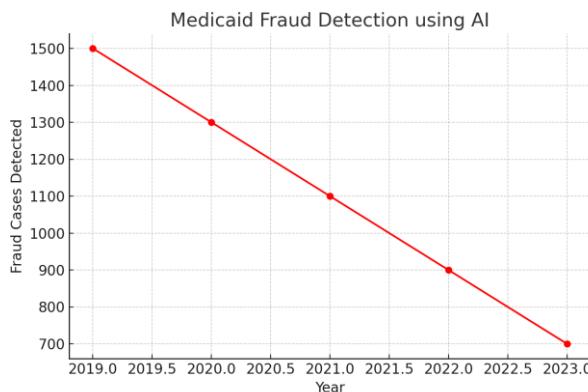


Figure 2 Medicaid Fraud Detection using AI

V. CLOUD COMPUTING FOR SCALABLE HEALTHCARE SOLUTIONS

Cloud computing plays a pivotal role in facilitating large-scale healthcare data management [27], providing seamless interoperability and security. The adoption of cloud-based AI solutions in IoT-driven healthcare systems enhances real-time monitoring and predictive analytics [18] [25]. Cloud platforms allow healthcare providers to store, retrieve, and process vast amounts of data efficiently, ensuring accessibility across multiple locations [2]. Figure 3 illustrates the rapid adoption of cloud computing in healthcare, highlighting its increasing role in data interoperability and security.

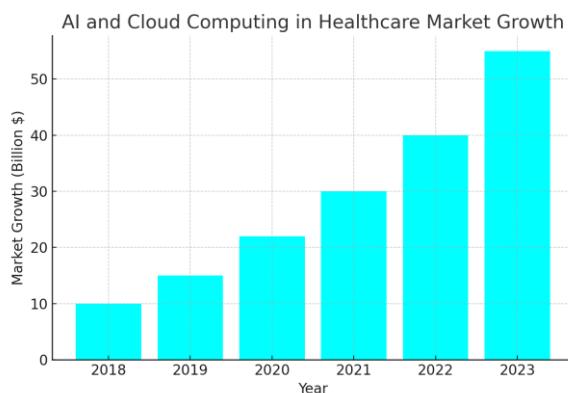


Figure 3. Adoption of Cloud Computing in Healthcare (2018-2023)

Furthermore, blockchain technology strengthens data security by ensuring transparency and preventing unauthorized modifications, thereby enhancing patient privacy while streamlining risk assessment in strategic healthcare management. The scalability of cloud computing also allows Medicaid services to expand their capabilities without significant infrastructure investments, making healthcare solutions more cost-effective and widely available [19] [15].

With the integration of hybrid cloud models, healthcare providers can ensure redundancy, disaster recovery, and high availability of patient records while maintaining regulatory compliance. Additionally, cloud-powered AI analytics can enable faster diagnosis, facilitate large-scale medical research, and improve interoperability among healthcare systems, enhancing the overall efficiency of Medicaid programs. Cloud-based platforms also allow real-time collaboration among healthcare professionals, improving the coordination of care for Medicaid beneficiaries across different facilities [9].

VI. ETHICAL AND OPERATIONAL CHALLENGES

Despite its advantages, AI implementation in healthcare raises ethical concerns, such as data privacy, bias in decision-making, and the accountability of AI-driven diagnoses. Ensuring transparency and fairness in AI-based Medicaid applications is crucial for maintaining trust among healthcare providers and patients. Additionally, the integration of AI-driven wearable devices for personalized health monitoring raises questions about data ownership and security. Figure 4 highlights AI's impact on healthcare cost reduction, showcasing a consistent decline in operational expenses as AI-driven solutions become more widespread [3].

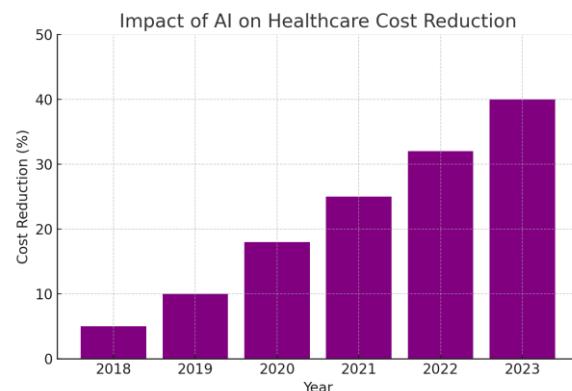


Figure 4. Impact of AI on Healthcare Cost Reduction

AI models must be trained on diverse datasets to minimize biases that could result in disparities in healthcare services. Moreover, regulatory frameworks must be established to govern AI deployment in Medicaid, ensuring compliance with ethical guidelines and patient rights. Addressing these ethical concerns is essential for fostering trust and acceptance of AI-driven healthcare solutions [35] [36]. Furthermore, AI governance and regulatory oversight must evolve to address the challenges of automation in healthcare, ensuring that algorithmic decision-making remains fair, explainable, and aligned with medical ethics [8] [29].

VII. CASE STUDIES AND PRACTICAL APPLICATIONS

Several AI-driven applications have demonstrated significant improvements in Medicaid efficiency. AI-powered innovations in senior care have revolutionized chronic disease management by leveraging real-time data analytics for early intervention. AI-enabled remote patient monitoring systems allow healthcare providers to track patient health metrics, enabling timely interventions and reducing hospital readmissions. Similarly, AI-driven sign language integration in healthcare services enhances accessibility for individuals with disabilities, fostering inclusive

healthcare systems. Furthermore, AI-powered predictive models have been instrumental in identifying Medicaid fraud and abuse, preventing financial losses and ensuring that resources are allocated to genuine beneficiaries. These case studies highlight the transformative impact of AI and data analytics in optimizing Medicaid operations and improving patient care. AI-powered diagnostic tools, virtual health assistants, and automated medical imaging solutions have also contributed to early detection and improved treatment outcomes, demonstrating the potential of AI to enhance Medicaid services. Figure 5 demonstrates the positive correlation between AI integration and patient satisfaction, reflecting improvements in healthcare accessibility and service quality.

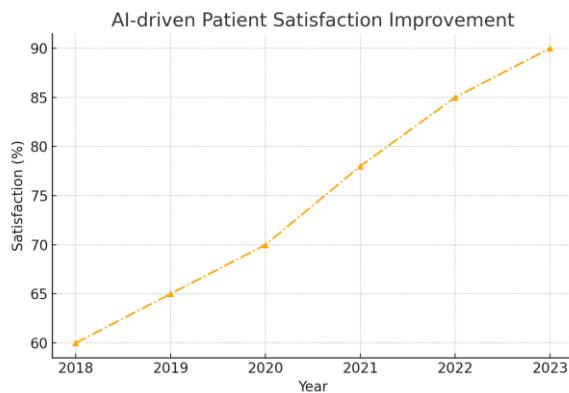


Figure 5. AI-driven Patient Satisfaction Improvement

VIII. CONCLUSION AND FUTURE DIRECTIONS

The integration of AI, cloud computing, and data analytics in Medicaid services has the potential to transform healthcare delivery by optimizing resource allocation, improving disease prediction, and enhancing patient engagement. Future research should focus on refining AI models to reduce bias, strengthening data security measures, and ensuring seamless interoperability between different healthcare systems [7].

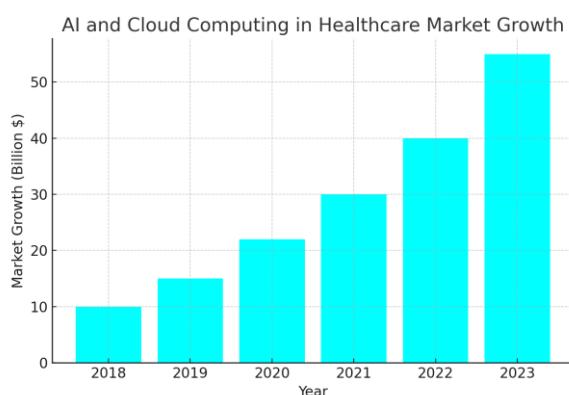


Figure 6. AI and Cloud Computing in Healthcare Market Growth.

The development of explainable AI (XAI) models will further enhance trust in AI-driven decisions by providing transparency and interpretability [33] [34]. Additionally, investments in AI workforce training and infrastructure development will be essential to fully harness the potential of AI and cloud computing in Medicaid. Addressing these challenges will pave

the way for a more efficient, accessible, and ethical Medicaid system, ultimately benefiting millions of individuals who rely on these healthcare services. By embracing AI-powered innovations, healthcare providers can enhance service delivery, improve patient outcomes, and foster a future of personalized and data-driven healthcare solutions [5]. Figure 6 presents the exponential growth of AI and cloud computing in the healthcare sector, emphasizing the increasing investment and adoption of these technologies.

REFERENCES

- [1] M. S. Krishnappa, B. M. Harve, V. Jayaram, A. Nagpal, K. K. Ganeeb, and B. S. Ingole, "Oracle 19C Sharding: A Comprehensive Guide to Modern Data Distribution," *International Journal of Computer Engineering and Technology (IJCET)*, vol. 15, no. 5, pp. 637–647, Sep.–Oct. 2024. Article ID: IJCET_15_05_059, doi: <https://doi.org/10.5281/zenodo.1388081>.
- [2] Tang, O., & Musa, S. N. (2011). Identifying Risk Issues and Research Advancements in Supply Chain Risk Management. *International Journal of Production Economics*, 133(1), 25-34.
- [3] B. S. Ingole, V. Ramineni, N. K. Pulpeta, M. J. Kathiriya, M. S. Krishnappa, and V. Jayaram, "The Dual Impact of Artificial Intelligence in Healthcare: Balancing Advancements with Ethical and Operational Challenges," *European Journal of Computer Science and Information Technology*, vol. 12, no. 6, pp. 35–45, 2024, doi: 10.37745/ejcsit.2013/vol12n63545.
- [4] Chaudhary, A., & Singh, S. (2018). A Review on Heart Disease Prediction using Machine Learning Classification. *International Journal of Advanced Research in Computer Science*, 9(2), 224-227.
- [5] D. G. V., B. S. Ingole, S. Agarwal, P. P. S., S. D., and G. S. Kumari, "Optimizing IoT-Based Healthcare Systems with Scalable AI and Machine Learning Using Cloud Platforms," in 2024 First International Conference on Innovations in Communications, Electrical and Computer Engineering (ICICEC), Davangere, India, 2024, pp. 1–7, doi: 10.1109/ICICEC62498.2024.10808592.
- [6] Mukherjee, M., Matam, R., Shu, L., Maglaras, L., Ferrag, M. A., Choudhury, N., & Kumar, V. (2019). Security and Privacy in Fog Computing: Challenges. *IEEE Access*, 7, 35672-35684.
- [7] B. S. Ingole, V. Ramineni, M. S. Krishnappa, and V. Jayaram, "AI-Driven Innovation in Medicaid: Enhancing Access, Cost Efficiency, and Population Health Management," *International Journal of Healthcare Information Systems and Informatics (IJHSI)*, vol. 1, no. 1, pp. 9–17, 2024. DOI: <https://doi.org/10.5281/zenodo.13901198>.
- [8] Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine Learning in Medicine: Addressing Ethical Challenges. *PLoS Medicine*, 15(11), e1002689.
- [9] V. Ramineni, B. S. Ingole, M. S. Krishnappa, A. Nagpal, V. Jayaram, A. R. Banarse, D. M. Bidkar, and N. K. Pulpeta, "AI-Driven Novel Approach for Enhancing E-Commerce Accessibility through Sign Language Integration in Web and Mobile Applications," in 2024 IEEE 17th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 2024, pp. 276–281, doi: 10.1109/MCSoC64144.2024.00053.
- [10] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., ... & Amodei, D. (2020). Language Models are Few-Shot Learners. *arXiv preprint arXiv:2005.14165*.
- [11] B. S. Ingole, P. Patel, S. Mullankandy, and R. Talegaonkar, "AI-driven innovation in Medicare: Revolutionizing senior care and chronic disease management with data-driven insights," *IJRAR - International Journal of Research and Analytical Reviews (IJRAR)*, vol. 11, no. 3, pp. 565–571, 2024, <https://doi.org/10.5281/zenodo.14127263>.
- [12] M. S. Krishnappa, B. M. Harve, V. Jayaram, G. Pandy, K. K. Ganeeb, and B. S. Ingole, "Efficient space management using bigfile shrink tablespace in Oracle databases," *SSRG International Journal of Computer Science and Engineering*, vol. 11, no. 10, pp. 12–21, 2024, Crossref, doi: 10.14445/23488387/IJCSE-V11I10P102.
- [13] J. Singh, P. Patel, B. S. Ingole, R. Inaganti, V. Ramineni, M. Krishnappa, and B. J. Patel, "Advanced Computational Methods for Pelvic Bone Cancer Detection: Efficacy Comparison of Convolutional Neural Networks," in 2024 IEEE 17th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), Kuala Lumpur, Malaysia, 2024, pp. 287–293, doi: 10.1109/MCSoC64144.2024.00055.

[14] Lakhani, P., & Sundaram, B. (2017). Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. *Radiology*, 284(2), 574-582.

[15] M. S. Krishnappa, B. M. Harve, V. Jayaram, G. Pandy, B. S. Ingole, V. Ramineni, S. Joseph, and N. Bangad, "Unleashing Python's Power Inside Oracle: A New Era of Machine Learning with OML4Py," in 2024 IEEE 17th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 2024, pp. 374-380, doi: 10.1109/MCSoC64144.2024.00068.

[16] V. Parlapalli, B. S. Ingole, M. S. Krishnappa, V. Ramineni, A. R. Banarse, and V. Jayaram, "Mitigating Order Sensitivity in Large Language Models for Multiple-Choice Question Tasks," *International Journal of Artificial Intelligence Research and Development (IJAIRD)*, vol. 2, no. 2, pp. 111-121, 2024, doi: 10.5281/zenodo.14043004.

[17] Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A Guide to Deep Learning in Healthcare. *Nature Medicine*, 25(1), 24-29.

[18] V. D. Gowda, S. M. Chaithra, S. S. Gujar, S. F. Shaikh, B. S. Ingole, and N. S. Reddy, "Scalable AI Solutions for IoT-based Healthcare Systems using Cloud Platforms," in Proc. 2024 8th International Conference on IoT in Social, Mobile, Analytics and Cloud (I-SMAC), 2024, pp. 156-162, doi: <https://doi.org/10.1109/I-SMAC61858.2024.10714810>.

[19] S. Nagaraju, A. Rahman, V. Rastogi, B. S. Ingole, N. Bhardwaj, and S. Chandak, "Adopting Cloud-Based Blockchain and AI Technologies in Strategic Management: Implications for Risk Assessment and Decision Support," *Nanotechnology Perceptions*, vol. 20, no. S16, pp. 643-653, Dec. 2024. [Online]. Available: https://www.researchgate.net/publication/387262635_Adopting_Cloud-Based_Blockchain_and_AI_Technologies_in_Strategic_Management_Implications_for_Risk_Assessment_and_Decision_Support.

[20] Kaur, A., & Kaur, R. (2019). Sign Language Recognition Using Deep Learning: A Review. *International Journal of Recent Technology and Engineering*, 8(3), 2277-3878.

[21] G. Roopini, N. R. P. P., D. G. V., B. S. Ingole, S. Pandey, and S. H. Chandra, "AI-Driven IoT Framework for Vehicle Accident Avoidance and Detection with Cloud Integrated Energy Efficient Solutions," in 2024 First International Conference on Innovations in Communications, Electrical and Computer Engineering (ICICEC), Davangere, India, 2024, pp. 1-8, doi: 10.1109/ICICEC62498.2024.10808555.

[22] Shen, J., Zhang, C. J. P., Jiang, B., Chen, J., Song, J., Liu, Z., He, Z., & Wong, S. Y. S. (2019). Artificial Intelligence Versus Clinicians in Disease Diagnosis: Systematic Review. *JMIR Medical Informatics*, 7(3), e10010.

[23] B. S. Ingole, V. Ramineni, N. Bangad, K. K. Ganeeb, and P. Patel, "Advancements in Heart Disease Prediction: A Machine Learning Approach for Early Detection and Risk Assessment," *IJRAR - International Journal of Research and Analytical Reviews (IJRAR)*, vol. 11, no. 4, pp. 164-172, 2024, <https://doi.org/10.5281/zenodo.13987195>.

[24] M. S. Gharote, S. S. Sahay, B. S. Ingole, N. V. Sonawane, and V. V. Mantri, "Comparison and evaluation of the product supply-chain of global steel enterprises," 2010. [Online]. Available: https://www.researchgate.net/publication/228454994_Comparison_and_evaluation_of_the_product_supply-chain_of_global_steel_enterprises.

[25] Riazul Islam, S. M., Kwak, D., Humaun Kabir, M., Hossain, M., & Kwak, K. S. (2015). The Internet of Things for Health Care: A Comprehensive Survey. *IEEE Access*, 3, 678-708.

[26] H. Chetlapalli, B. S. Ingole, C. P. V. N. Jagan Mohan Rao, S. Anbumoorthy, A. Nageswari, S. Pappu, and S. D. Dhawale, "AI-powered cloud-connected wearable device for personalized health monitoring," U.K. Patent, 6416268, Jan. 16, 2025.

[27] Beecher, V., & Jain, R. (2024). Oracle® Database Using Oracle Sharding 19c. Oracle Corporation. Retrieved from docs.oracle.com

[28] G. Pandy, V. Ramineni, V. Jayaram, M. S. Krishnappa, V. Parlapalli, A. R. Banarse, D. M. Bidkar, and B. S. Ingole, "Enhancing Pega Robotics Process Automation with Machine Learning: A Novel Integration for Optimized Performance," in 2024 IEEE 17th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), Kuala Lumpur, Malaysia, 2024, pp. 210-214, doi: 10.1109/MCSoC64144.2024.00043.

[29] Morley, J., Machado, C. C. V., Burr, C., Cowls, J., Joshi, I., Taddeo, M., & Floridi, L. (2020). The Ethical Use of Artificial Intelligence in Health Care: A Review of the Literature. *Frontiers in Digital Health*, 2, 1-9.

[30] B. S. Ingole, V. Ramineni, V. Jayaram, A. R. Banarse, M. S. Krishnappa, N. K. Pulpipeta, V. Parlapalli, and G. Pandy, "Prediction and Early Detection of Heart Disease: A Hybrid Neural Network and SVM Approach," in 2024 IEEE 17th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 2024, pp. 282-286, doi: 10.1109/MCSoC64144.2024.00054.

[31] J. Singh and N. D. Khambete, "Cell growth monitoring in a tetrapolar electrode configuration," *J. Electr. Bioimpedance*, vol. 15, no. 1, pp. 85, 2024.

[32] D. G. V., S. D., R. Srinivas, B. S. Ingole, P. D. Jadhav and K. Prasad, "Design and Implementation of IoT Enabled Smart Assistive Systems for Healthcare Applications," 2024 Global Conference on Communications and Information Technologies (GCCIT), BANGALORE, India, 2024, pp. 1-7. <https://doi.org/10.1109/GCCIT63234.2024.10862553>.

[33] Pandy, G., Pugazhenthi, V.J., Chinnathambi, J.K., & Murugan, A. (2024). Smart Automation for Client Service Agreement: Robotics in Action. *International Journal of Computer Science and Information Technology Research (IJCSITR)*, 5(4), 41-50.

[34] Pandy G., Pugazhenthi V.J. and Lourdusamy J.A. (2025) Human-Robot Interfaces: A Comprehensive Study, *European Journal of Computer Science and Information Technology*, 13 (2), 51-63

[35] G. Pandy, V. J. Pugazhenthi, A. Murugan, and B. Jeyarajan, "AI-Powered Robotics and Automation: Innovations, Challenges, and Pathways to the Future," *Eur. J. Comput. Sci. Inf. Technol.*, vol. 13, no. 1, pp. 33-44, Jan. 2025.

[36] G. Pandy, V. J. Pugazhenthi, and A. Murugan, "Generative AI: Transforming the Landscape of Creativity and Automation," *Int. J. Comput. Appl.*, vol. 186, no. 63, pp. 07-13, Jan. 2025.