The Process FMEA Tool for Boring Operation of Crankshaft to Enhance Quality and Efficiency

Aniket R. Shitole Deshmukh¹, Aniket A.Deshmukh², Rohit N. Bhoge³, D.A. Mahajan⁴ ^{1,2,3}B.E. Student, Dept., of Mechanical Engg., NBN, Ambegaon, Pune, Maharashtra, India ⁴Professor, Dept., of Mechanical Engg., NBN, Ambegaon, Pune, Maharashtra, India

Abstract—The FMEA is a operative tool to detect and fully recognize potential failure modes and their causes, and the effects of failure on the system or end users, for a given product or process. It is an engineering analysis that systematically analyzes product designs or manufacturing processes, finds and corrects flaws before the product gets into the hands of the customer. This paper goals to identify and eliminate presentand potential problems from a manufacturing process ofcrankshaft in the company through the application of Failure Mode and Effects Analysis (FMEA) for improving the consistency of sub systems in order to ensure the quality whichin turn augments the foot line of a manufacturing industry. Thus the various possible causes of failure and their effectsalong with the prevention are deliberated in this work. Severitynumber, Occurrence number, Detection number and Risk PriorityNumber (RPN) are strictures, which need to bedetermined. Furthermore, some actions are anticipated which require to be taken as quickly as possible to evade potentialrisks which aid to improve efficiency and effectiveness of crankshaft and manufacturing processes increase thecustomer satisfaction. The prevention endorsed in this papercan significantly decrease the loss to the industry in stretch ofboth money time and quality.

I.INTRODUCTION-

An FMEA should be the guide to the development of a complete set of actions that will decrease risk allied with the system, subsystem, and the component or manufacturing process to an satisfactory level. FMEA ultimately deals with identifying the failure modes and analyses of their effects on component.FMEA is sketchily classified into three major types, viz. System FMEA, Design FMEA, and Process FMEA. For System FMEA, the foremost objective is to improve the design of the system. While for Design FMEA, the impartial is to improve the design of the subsystem. Additionally, to improve the design of the manufacturing process, Process FMEA is used.

II. CONCEPT OF FMEA-

Failure Mode and Effects Analysis is a tool designed to recognize potential failure modes for a product or process, to assess the risk associated with those failure modes, to rank the issues in terms of significance and to identify and carry out corrective actions contrary to most serious concerns.

In general, FMEA consists of the following points to be analysed –

1. Item- An item is the emphasis of the FMEA project. For a System FMEA this is the system itself. For a Design FMEA, this is the subsystem or component under analysis.For a Process FMEA, this is usually one of the specific steps of the manufacturing or assembly process under analysis, as signified by an operation description.

2. Function - A function is what the item or process is intended to do, usually to a given standard of performance or necessity.

3. Failure mode - A failure mode is the method in which the item or operation potentially fails to meet or deliver the anticipated function and associated requirements.

4. Effects – An effect is the consequence of the failure on the system or end user.

5. Cause - A cause is the specific reason for the failure, preferably found by asking "why" until the root cause is determined. For Process FMEAs, the cause is the manufacturing or assembly deficit that results in the failure mode.

6. Severity- It is a ranking number linked with the most serious effect for a given failure mode.

rable 1. rable for bevenity										
Code	Classification	Example								
10	Hazardous Without Warning	Very High Ranking – Affecting safe operation								
9	Hazardous With Warning	Regulatory non compliance								
8	Very High	Product becomes inoperable, with loss of function – Customer Very Much Dissatisfied								
7	High	Product remain operable but loss of performance – Customer Dissatisfied								
6	Moderate	Product remain operable but loss of comfort/convenience – Customer Discomfort								
5	Low	Product remain operable but loss of comfort/convenience - Customer Slightly Dissatisfied								

Table 1. Table for Severity

4	Very Low	Nonconformance by certain items – Noticed by most customers
3	Minor	Nonconformance by certain items – Noticed by average customers
2	Very Minor	Nonconformance by certain items – Noticed by selective customers
1	None	No Effect

7. Occurrence- It is a ranking number associated with the likelihood that the failure mode and its supplementary cause will be present in the item being analyzed.

Table 2: Table for Occurrence										
Code	Classification	Example								
10 and 9	Very High	Inevitable								
		Failure								
8 and 7	High	Repeated								
		Failures								
6 and 5	Moderate	Occasional								
		Failures								
4,3 and	Low	Few Failures								
2										
1	Remote	Failure								
		Unlikely								

Detection - It is a ranking number connected with 8. the best control from the list of detection-type controls, based on the criteria from the detection scale.

Table 5. Table for Detection									
Code	Detection	Criteria							
		Can be corrected							
1	Extremely	prior to prototype/							
	Likely	Controls will almost							
		certainly detect							
		Can be corrected							
	Very High	prior to design							
2	Likelihood	release/Very High							
	Likeiniood	probability of							
		detection							
		Likely to be							
3	High	corrected/High							
5	Likelihood	probability of							
		detection							
4	Moderately	Design controls are							
	High	moderately effective							
	Likelihood								
5	Medium	Design controls have							
	Likelihood	an even chance of							
	Lintennood	working.							
6	Moderately	Design controls may							
0	Low Likelihood	miss the problem.							
_		Design controls are							
7	Low likelihood	likely to miss the							
		problem							
	Very low	Design controls have							
8	Likelihood	a poor chance of							
	Likelihood	detection							
		Unproven,							
9	Very low	unreliable							
3	likelihood	design/poor chance							
		for detection							
	Extremely	No design technique							
10	Unlikely	available/Controls							
	Unikely	will not detect							

9. Risk Priority Number (RPN) - It is a numerical grade of the risk of each potential failure cause, made up of the arithmetic product of the three elements: Severity, Occurrence and Detection. i.e. R.P.N. = S*O*D.

10. Controls- They are the methods or actions currently planned, or are already in place, to reduce or eliminate the risk accompanying with each potential cause.

Recommended actions- They are the tasks 11. proposed by the FMEA team to diminish or eliminate the risk associated with potential causes of failure.

Action Taken- It is the precise action that is 12 implemented to reduce risk to an acceptable level.

13 Revised RPN - It is Recalculation of Severity, Occurrence and Detection rankings after execution of recommended actions and thus calculation of revised RPN.

Revised RPN= revised (Severity× occurrence × Detection).

III. BASIC PROCEDURE FOR FMEA

- Assemble the team.
- Launch the ground rules.
- Gather and review significant information.

Recognise the item(s) or process(es) to be analyzed.

Identify the function(s), failure(s), effect(s), cause(s) and control(s) for each item or process to be analyzed.

Evaluate the risk associated with the issues recognised by the analysis.

Prioritize and assign corrective actions.

Perform corrective actions and re-evaluate risk.

Allocate, review and apprise the analysis, as suitable.

IV. CASE STUDY AND FMEA ANALYSIS

A crankshaft is main assembly part of the engine. It is found below the cylinder head. The crankshaft is an integral component of combustion engines. Piston are mounted on the crankshaft and it is responsible for motion of piston from T.D.C. to B.D.C.

Manufacturing of crankshaft consists of number of processes. Starting from selection of material, Forging, Rough machining to Finish machining crankshaft travels through different machine to carry out specific operation.

FMEA technique is applied to boring operation of crankshaft. Potential failure modes, potential causes , severity, occurrence, detection, recommended actions, etc are recorded based on the observations taken at factory floor. RPN is then calculated to analyze the risk. Recommended actions are prescribed based on the observations. Revised RPN number is calculated after recommended actions are partically implented on the shop floor.

Table 4. Table for Fmea

Subsys tem	Potent ial Failur e Mode	Potent ial Effect s of Failur	sev	Poten tial Cause s of Failu re	occ	Current controls		Current controls		Current controls		Current controls		De t	R.P. N	Recomm ended Actions	Respons ibility &Targe t completi	Action Re	sults			
						Preventi	Detecti				on unit	Actions	Se	Oc	De	RP						
Diame ter (43.05 +/- 0.13)	Oversi ze	Loose Fitme nt	6	1.Imp roper mount ing 2. Exces s run out 3. Impro per input stock 4. Mater ial Prope rties	5	on 1. Proper mountin g of workpiec e. 2. Improper Steady setting. 3. Deskille d Labour. 4. Improper maintena nce of MQC Sheet.	on 1. By Visual inspecti on. 2. By visual inspecti on. 3. By use of Gauge. 4. from MQC sheet	8	240	 Use of Position sensor on HMC. Proper Steady setting. use of Skilled Labour. Regular check for Material propertie s. 		Taken1.Mounting ofPositionSensor.2.ProperFixtureused.3.ProcessAutomated.4.Checking ofparts atfixedinterval.	v 6	2	4	N 48						
	Under size	No Assem bly	3	1.Wor nout Tool insert. 2. Impro per Stead y. 3. Harde ned workp iece Mater ial.	5	1.Replac ement of tool insert. 2. Proper oiling of steady. 3. Improper Material propertie s from MQC sheet.	1. By Visual Inspect ion. 2. By Visual Inspect ion. 3. From MQC Sheet.	7	105	1.Maintai ning preffered input stock. 2. use of fixture. 3. Regular Checkup of material priopertie s from sample.		1.Optim um input stock set. 2. Proper fixyure used. 3. 5 in 1 checkup of parts for material propertie s.	3	2	3	18						
Depth (34.40 +/- 0.25)	Oversi ze	No assem bly	5	1.Sem iskille d labour 2. Impro per tool. 3. Impro per Moun ting.	4	1.Appoin ting Skilled labour. 2. Periodic Tool replacem ent 3. Proper Mountin g of Workpie ce.	1. By visual Detecti on. 2. Improp er surface finish. 3. by Visual inspecti on.	7	140	1.Use of Automati on. 2. Use of Hard material for tool. 3. Use of Position sensors.		1.Proces s automat ed on HMC. 2. Altering the material of tool. 3. Position sensors used for proper allignme nt.	5	2	4	40						

IJERTV6IS040684

Bunon	Under size	No Assem bly	5	1.Imp roper tool insert. 2. Impro per input stock. 3. Faulty measu ring instru ment.	4	1.Replac ement of tool insert. 2. Proper input stock setup. 3. Use of accurate measurin g instrume nt.	1. Visual Detecti on. 2. Stock setup given. 3. Using Gauges	6	240	1. Use of sensor for detection of improper tool insert. 2. Proper program ming for cnc. 3. Use of Digital measurin g instrume nt.	1.Positio n sensor used. 2. Validati on of porgram prior to operatio n. 3. Use of digital measuri ng instrume nt.	5	1	4	20
Runou t with respec t to Center ing (0.025)	Excess runout	Out of Rotati on	8	1.Imp roper Holdi ng of workp iece in Chuck 2.Imp roper tool chang e freque ncy. 3. Exces s Stock. 4. Faulty Meas uring Gauge 5. Impro per Pressu re and Settin g of Stead y. 6. Deskil led labour	5	 Check rotation of workpiec e with respect to center. Tool change at regular interval. Check for Excess stock. Proper maintane nce of measurin g gauge. Ensure oiling of steady at regular interval. Appoint skilled Labour. 	1.Free Run of workpi ece and by visual detecti on. 2. By visual detecti on. 3. Excess Heatin g of workpi ece. 4.Using Presize d Measur ing unit. 5. Excess Heat Genera tion. 6. Visual inspecti on.	6	240	 Proper Fixture designing Automati c tool changer from Pallet. Fixed Stock setup using automati on. Use of Presized measurin g system. Process automati on. Process automati on. 	1.Accura te Fixture Designe d. 2. Used Automat ic tool changer and ensured change of tool after specific lot. 3. Fixed stock setup by use of program ming. 4. Used presized measuri ng system. 5. Process Automat ed.	8	2	3	48
Surfac e Finish	Rough Surfac e Finish	Bearin g wearo ut	7	1.Too 1 wearo ut. 2. Exces s feedra te. 3. High speed	5	1.Tool replacem ent. 2. Maintain optimum feed rate. 3. Maintain Optimu m speed. 4. Denth	1.Chec king of tool insert. 2. Excess heating of workpi ece. 3. Visual	6	210	1. Tool change after regular interval. 2. Process automati on and proper program ming	1.Tool change after regular interval from ATC. 2. Proper program ming. 3.	7	2	2	28

			4. Exces s depth of cut. (50 micro		cut below 50 micron is preffered	detecti on. 4. Visual detecti on.			 Process automati on. Proper program ming. 	Optimu m speed maintain ed and process automise d.				
			n)							4. Process automise d.				
High Surfa e Finish	Bearin g Failur e	5	1.Des killed labour 2. Dama ged tool Insert. 3. Depth of cut of 0.1m m. 4. High speed of rotatio n.	4	1.Appoin tment of skilled labour. 2. tool replacem ent. 3. Proper Adjustm ent. 4.Mainta ining Optimu m speed.	 Visual detecti on. Visual Detecti on and excess feed. Excess heating pf workpi ece. Visual detecti on. 	5	100	1.Process Automati on. 2. Tool change after regular lot. 3. Proper Prgramm ing and process automati on. 4. Proper program ming and process automati on.	1.Proces s automise d. 2. Tool chnaged after specific lot of machini ng. 3. Process automise d. 4. Process automise d.	5	1	3	15

V. CONCLUSION

FMEA for Boring operation as been validated. FMEA is continuous improvement tool used in manufacturing unit. Continuous record of failures and actions taken should be noted duly and reqired changes can be made in the FMEA report. FMEA saves both, time and money of company. FMEA report has to be followed by the employer on the shop floor. It helps to eliminate the problem in less period of times hence saving time. Failure Mode,Effects and Criticality Analysis (FMECA), advancement in FMEA can been used for criticality analysis.

REFERENCES

- Gunjan Joshi and Himanshu Joshi, 'FMEA and Alternatives v/s Enhanced Risk Assessment Mechanism', International Journal of Computer Applications (0975 – 8887), Volume 93 – No 14, May 2014.
- [2] Failure mode and effects Analysis, http://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis, 2014.
- [3] A. A. Nannikar, D. N. Raut, M. Chanmanwar, S. B. Kamble and D.B. Patil, "FMEA for Manufacturing and Assembly Process", International Conference on Technology and Business Management, pp.26-28, March 2012.
- [4] Ping-Shun Chen and Ming-Tsung Wu, "A modified failure mode and effects analysis method for supplier selection problems in the supply chain risk environment: A case study", Computers & Industrial Engineering, Issue 66, pp. 634–642, 2013.