
The Next Generation SOC Processor for

Emerging on-Chip Functionalities

1
Savitha A,

 2
Mrs Shailee .S

1
 CMR Institute Of Technology, Visvesvaraya Technological University, Bangalore, Karnataka, India.

 2
 Asst.prof, Dept of ECE, CMR Institute Of Technology, Visvesvaraya Technological University, Bangalore, Karnataka, India

Abstract— The system on chip is an integrated circuit that

integrate all components of electronic system into a single

chip. It may contain a digital, analog, mixed-signal and

often radio-frequency functions all on a single chip

substrate. SOC is believed to be more cost-effective than

SIP since it increases the yield of the fabrication and

because its packaging is simpler. In this project we

designed a SOC processor to offer high multithreaded

performance, as well as high single threaded performance

from the same chip. It consist of 8 banks and 8 cores and

each core consist of 8 threads of which 2 can be executed

simultaneously. We implemented the core, bank, memory

controller, network interface, MESI protocol into a single

SOC chip. By implementing different techniques to this

three functional blocks, which significantly improves the

throughput ,power performance and read/write abilities of

the cores

Keywords: multi core, power management, cache,system-on-chip

(SOC),MESI protocol, FIFO, packet synchronization

I. INTRODUCTION

The processor combines optimized performance on single-

threaded and cryptographic workloads with high throughput

performance, creating a scalable system-on-a-chip ideal for a

wide range of mission-critical applications. The SOC

processor delivers a increase in single-thread performance

over the previous generation, while maintaining the high

multi-thread throughput performance of T-series system. The

throughput based on the on-line transaction process(OLTP)

benchmark, has doubled with increasing on chip thread count

for each generation from T1 to T3. Here the processor is

designed in such a way that, it automatically switches to

single-thread mode when only a single thread is active,

dedicating all resources to that thread’s execution. By

integrating encryption capabilities directly inside the

instruction pipeline, the SOC processor eliminates the

performance and cost barriers typically associated with secure

computing and makes it possible to high security level without

impacting the user experience. To bridge this increasing gap

between the single-threaded and throughput performance

processor introduces a new out-of-order ,dual-issue ,high

frequency core. The single-thread performance in the

processor results in better scalability to address a wider range

of application and a faster response time for each thread.

II. PROPOSED ARCHITECTURE OF SOC PROCESSOR

The processor implements eight core to provide a total of 64

threads on a die. Each of the core communicates to the L2

cache through a shared memory bus. The L2 cache is divided

into 8 16 way set-associative 0.5MB banks with a 64 –byte

line size. All the cores typically share common bus for their

memory access, the available bandwidth can be overwhelming

and causes performance degradation. To alleviate this problem

L1 caches are typically localized within each core, saving bus

bandwidth and minimizing memory contention.T4 is a

complete system-on-chip utilizing the well-established

platform of its predecessor. Here we expose a new network

interface (NI) with advanced networking functionalities can

significantly improve the throughput and power performance

of the interconnection on a chip. MESI coherency protocol

which is again a lower power and improves the read/write

abilities of the cores. On-chip memory controller(MC) works

with area efficient FIFO based command and read/write

controlling. We integrate all the above functionalities and test

their architectural behavior in SOC processor and evaluate the

performance.

Figure 1- architecture of the SOC processor

1259

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051474

Vol. 3 Issue 5, May - 2014

A. Network interface

It has been long predicted that SOC grows in complexity with

more and more processing blocks(like MPSOCs), the current

bus based architecture will run out of performance and in,

consuming far more energy than desirable to achieve the on-

chip communication and bandwidth. The search for alternative

technique as lead to the concept of network_on_chip.

Redesigning interconnection network between cores is major

focus of chip manufacturers. A faster network means a lower

latency in inter-core communication and memory transaction.

This above problem can be solved by exposing new network

interface(NI) with advanced networking functionalities can

significantly improve the throughput and power performance

of the interconnection on a chip. A key element of

network_on_chip(NOC) is the network interface(NI). NIs are

the peripheral building blocks of NOC,Decoupling

computation from communication. A NOC packet includes a

header and data payload which are physically split into units

called flits. All the flits of the packet are routed through the

same path across the network. In top level view of NI we have

request path and response path. In a request path the NI

generates request transactions and receives responses, and in

the request path it receives and elaborates the request and then

send back proper response. Basically, the NI is in charge of

traffic packetization/depacketization to/from the NoC: it

provides protocol abstraction by encoding in the packets

header all data to guarantee successful end to end data

delivery between cores. The latest research on NI architecture

design aims at integrating more features to directly support in

hardware advanced networking functionalities. The challenge

low as possible with respect to the connected cores.

Figure 2 – top level view of NI

B. MESI protocol

Cache coherency is a major concern in a multicore

environment because of distributed L1 and L2 cache. Since

each core has its own cache, the copy of the data in that cache

may not always be the most up-to-date version. For example,

imagine a dual-core processor where each core brought a

block of memory into its private cache. One core writes a

value to a specific location, when the second core attempts to

read that value from its cache it won’t have the updated

copy unless its cache entry is invalidated and a cache miss

occurs. This cache miss forces the second core’s cache entry

to be updated. If this coherency policy wasn’t in garbage data

would be read and invalid results would be produced,

possibly crashing the program. This above mentioned cache

coherency problem is solved by using MESI protocol.

Figure 3 – MESI write-back state diagram

The MESI protocol is a widely use cache coherency and

memory coherency protocol. It is the most common protocol

which supports write-back cache. In a Modified(M) the cache

line is present only in current cache, and is dirty, and it has

been modified from the value in main memory at some time

in the future, before permitting any other read of the main

memory state. The write-back changes the line to the

exclusive state. In Exclusive(E) state the cache line is present

only in the current cache, but is clean it matches the main

memory. It may be changed to the shared state at any time, in

response to a read request. Alternatively, it may be changed to

the modified state when writing to it. The Shared(S) state

indicates that this cache line may be stored in other caches of

the machine and is clean. It matches the main memory. the

line may be discarded(changed to the invalid state) at any

time. Lastly Invalid(I) state means no valid data is stored in

that cache line. A cache may satisfy a read from any state

except invalid. An invalid line must be fetched(to the shared

or exclusive states) to satisfy a read. A write may only be

performed if the cache line is in the Modified or Exclusive

1260

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051474

Vol. 3 Issue 5, May - 2014

state. If it is in the shared state, all other cached copies must

be invalidated first, this is typically done by a broadcast

operation. A cache that holds a line in the Exclusive state

must also snoop all read transaction from all other caches, and

move the line to shared state on a match. The Modified and

Exclusive states are always precise. The shared state may be

imprecise that if another cache discards a shared line, this

cache may become the sole owner of that cache line, but it

will not be promoted to exclusive state.

C. Memory controller

Managing traffic among multiple cores, on chip memories and

other mastering peripherals, and the configuration register is

one of the challenging tasks in the next generation SOC

designs. As a core on single die share the DRAM memory

system, multiple programs executing on different cores can

interfere with each others memory access request, thereby

adversely affecting one another performance. In effect, the

memory request of some thread can be denied service by the

memory system for long period of time. Thus, an aggressive

memory intensive application can severely degrade the

performance of other threads with which it is co-

scheduled(often without even being significantly slowed down

itself) the problem caused by this memory performance will

become much more severe as processor manufacturers

integrate more cores on same chip in future. This problem can

be solved by using area efficient FIFO in the memory

controller. First-In First-out(FIFO) is a method of processing

and retrieving data. In a FIFO system, the first items entered

are the first ones to be removed. The memory controller is the

part of the system that, well controls the memory. It generates

the necessary signals to control the reading and writing of

information from and to the memory, and interface the

memory with the other major parts of the system.

Figure 4 – proposed architecture of the memory controller

III. CONCLUSION

The trend of increasing a processor’s speed to get a boost in

performances is a way of the past. Mutlicore processor are the

new direction manufacturers are focusing on. Using multiple

cores on a single chip is advantageous in raw processing

power. With additional cores, power consumption and heat

dissipation become major concern. To over come the cache

coherency problem we implement a MESI protocol that

reduces the power consumption and improves the read/write

abilities of the core. Network interface with advanced

networking functionalities, significantly improved the

throughput and power performance. Finally By using FIFO in

the memory controller than a arbiter has obviously reduces the

area of the SOC processor.

REFERENCES

[1] J. L. Shin et al., ―The next generation 64b SPARC core in a T4 SoC

processor,‖ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech

Papers, 2012, pp. 60–62.
 [2] A. S. Leon et al., ―A power-efficient high throughput 32-thread SPARC

processor,‖ IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 7–16, Jan.

2007.
[3] P. Kongetira et al., ―A 32-way multithreaded SPARC processor,‖ IEEE

 Micro, vol. 25, pp. 21–29, Mar. 2005.

[4] R. Golla et al., ―T4: A highly threaded server-on-a-chip with native
support for heterogeneous computing,‖ in Hot Chips 23 Symp., Aug.

 2011.

[5] J. L. Shin et al., ―A 40 nm 16-core 128-thread CMT SPARC SoC

processor,‖ IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 131–144,

Jan. 2011.

[6] A. Dash and P. Petrov. ―Energy-efficient cache coherence for embedded
multi-processor systems through application-driven snoop filtering‖. In

DSD ’06: Proc. 9th EUROMICRO Conference on Digital System

Design, pages 79–82, Washington, DC, 2006
[7] M. Mamidipaka and N. Dutt. eCACTI: An enhanced power estimation

model for on-chip caches. University of California, Irvine Center for

Embedded Computer Systems Technical Report, TR-04-28, 2004.97
[8] C.-H. Chan, K.-L. Tsai, F. Lai, and S.-H. Tsai, ―A priority based output

arbiter for NoC router,‖ in Proc. IEEE Int Circuits and Systems (ISCAS)

 Symp, 2011, pp. 1928–1931.
[9] H. G. Lee, N. Chang, U. Y. Ogras, and R. Marculescu, ―On-

chipcommunication architecture exploration: A quantitative evaluation

of point-to-point, bus, and network-on-chip approaches,‖ ACM Trans.
Des. Autom. Electron. Syst., vol. 12, pp. 23:1–23:20, May 2007.

[10] D. Matos, M. Costa, L. Carro, and A. Susin, ―Network interface to

synchronize multiple packets on NoC-based Systems-on-Chip,‖ in
Proc.18th IEEE/IFIP VLSI System Chip Conf. (VLSI-SoC), 2010, pp.

31–36.

[11] A. Radulescu, J. Dielissen, S. G. Pestana, O. P. Gangwal, E. Rijpkema,
P. Wielage, and K. Goossens, ―An efficient on-chip NI offering

guaranteed services, shared-memory abstraction, and flexible network

 configuration,‖ vol. 24, no. 1, pp. 4–17, 2005.
[12] H. Kariniemi and J. Nurmi, ―NoC Interface for fault-tolerant Message-

Passing communication on Multiprocessor SoC platform,‖ in Proc.

NORCHIP, 2009, pp. 1–6.
[13] U. G. Nawathe, M. Hassan, L.Warriner,K.Yen, B. Upputuri, D.

Greenhill, A. Kumar, and H. Park, ―An 8-core 64-thread 64b power-
efficient SPARC SoC,‖ in IEEE ISSCC Dig. Tech. Papers, Feb. 2007, p.

108.

[14] S. Shastry, A. Bhatia, and S. Reddy, ―A single-cycle-access 128-entry
 fully associative TLB for multi-core multi-threaded server-on-a-chip,‖

in IEEE ISSCC Dig. Tech. Papers, Feb. 2007, p. 410.

1261

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051474

Vol. 3 Issue 5, May - 2014

