
The Need For Portable Benchmark to Evaluate 

The Performance of Real Time Operating Systems 

 
 

Shreesha Rao P 
Department of Computer Science and Engineering  

SJBIT  

Bangalore, India 

p.shreesha.rao@gmail.com 

Chandan K N 

Department of Computer Science and Engineering  

SJBIT  

Bangalore, India 

 chandankn.321@gmail.com

 

 
Abstract— The process of performance comparison of two or 

more systems by measurements is called benchmarking, and the 

workloads used in measurements are called benchmarks. 

Benchmarking of computer systems is an important sometimes 

tedious task that gives insights into the performance of a system, 

exposes flaws, and allows for comparison between systems. Thus 

from the Application programmer’s perspective, it helps them 

choose an Real Time Operating System which suits their 

application the best and from the OS programmer’s perspective, 

it helps them fine tune various aspects of Real Time Operating 

Systems. 

Keywords— Embedded Systems, Kernel, Real Time Operating 

Systems (RTOS), RTOS benchmarking, Performance test and 

Performance evaluation.  

I.  INTRODUCTION  

Real-time systems can be said to be systems that have to 
perform tasks timely. An aircraft, a car, a mobile phone and a 
radio base station are examples of machines and devices with 
Real-Time properties. A Real-Time system has one or more 
tasks it has to perform, the tasks can be of different priority and 
may have deadlines which must be met.  It’s the task of the 
Real Time Operating System to handle priorities and switch 
between tasks. The order in which the tasks are executing are 
decided by a scheduling algorithm. System performance. A  
Real Time  Operating  System  provides  a  set  of  system  
calls  to  the  developer  of  a  real-time system.  Support for 
semaphores, timers, scheduling and inter process 
communication such as message passing are common services. 
The use of such services facilitates the development of a real-
time system but imposes an overhead to the application.  This 
overhead depends on the implementation of the real-time 
operating system.  It may be useful or even necessary for an 
engineer to be able to quantify this imposed overhead on the 
real-time system to verify that task deadlines are met. A Real 
Time Operating System is different from a desktop or server 
operating system by usually being much smaller and focus on 
deterministic and timely behavior. Real Time Operating 
System kernels are based on microkernel architecture, which 
means they are small and most services and drivers are 
executed outside kernel space. 

A. RTOS benchmarking 

 There are different approaches towards RTOS 
benchmarking: based on applications or based on the most 

frequently used system services (fine-grained benchmarking) 
[1] As there are various types of applications with each having 
very different requirements, benchmarking against any generic 
applications will not be reflective of the RTOS strengths and 
weaknesses. There are various research publications related to 
benchmarking method based on frequently used system 

services. In [2] the Rhealstone benchmark is proposed with the 

following measurement: task switch time, preemption time, 
interrupts latency time, semaphore shuffling time, deadlock 
breaking time, and datagram throughput time. Rhealstone 
benchmark is not suitable for several reasons. Firstly, very few 
RTOSes are capable of breaking deadlock (which we will see 
later in the RTOSes survey). Datagram throughput time is 
based on message passing by copying to a memory area 
managed by the OS. However, not all RTOSes use the same 
concept for message passing. Some RTOSes pass messages by 
passing only the memory pointer, and hence there is no need to 
use the special memory area managed by the OS. This 
approach is also more suitable for small microcontrollers 
because there is no extra memory for OS internal use. Interrupt 
latency time as defined by Rhealstone is purely dependent on 
the CPU architecture and is not determined by the RTOS.  
Rhealstone, in general, are “somewhat adhoc”, and do not 
cover other situations commonly found in real-time 
applications [1]. 

In  [1],  some  metrics  are  proposed  (based  on  frequently 

used  system  services): inter-task synchronization and 

resource sharing, and inter-task data  transfer  (message  

passing).  Inter-task  data  transfer,  as explained  previously,  

is  also  based  on  data  copying  into  a memory  area  

managed  by  the  OS,  similar  to  the  “datagram throughput  

time”  in  Rhealstone  benchmark.  In the test for “response to 

external event (interrupt)”, the interrupt handler wakes up 

another task via a semaphore. Using a semaphore in this  case  

does  not  seem  to  be  the  best  approach. Waking  up the  

task  directly  by  using  system  service  call  (such  as 

sleep/wakeup   service   call)   instead   of   going   through   a 

semaphore is a better approach to reduce the overhead delay.  

In [4], the metrics proposed are (based on frequently used 

system services): tests for measuring the duration of message 

transfer and the communication through a pipe, tests for  

measuring  the  speed  of  task  synchronization  through  

proxy and  signal,  and  tests  for  measuring  the  duration  of  

task switching.  
 

598

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCRTS`14  Conference Proceedings

ISSN: 2278-0181



II. RTOS FEATURES 

A. Criteria for comparison 

The  objective  of  this  section  is  to  investigate  

RTOSes available   (open-source,commercial,   and   research)   

and determine  those  that  are  suitable. Information is mainly 

based on documentations and APIs available on websites.  

These  RTOSes  are:  μITRON, μTKernel,  μC-OS/II,  

EmbOS,  FreeRTOS,  Salvo,  TinyOS, SharcOS,  XMK  OS,  

Echidna,  eCOS,  Erika,  Hartik,  KeilOS and PortOS. 

As described in [5], criteria  used  for  selecting  an  RTOS 

includes  the  following:  language  support,  tool  

compatibility, system  service  APIs,  memory  footprint  

(ROM  and  RAM usage), performance, device drivers, OS-

awareness debugging, tools,technical   support,   source/object 

code distribution, licensing  scheme and company reputation. 

Similarly criteria mentioned in [6] are: configuration, API 

richness, documentation and support and and tools support. 

 

 

 

 
 

Figure 1: Influential factors in operating system selection . 

 

Design  objective:  The  origins  of  the RTOSes  being 

surveyed  are  different  from  one  another,  as  some  are 

open-source, some are personal hobby-based ,and some are  

commercial.  It  is  important  to  understand  the history  and  

the  background  motivation  that  led  to  the creation of each 

RTOS. A personal hobby-based RTOS would  be  less  likely  

to  be  as  stable  compared  to  a popular open-source, or to a 

commercial RTOS. 

 

Scheduling scheme: RTOS scheduling approach will be 

investigated to determine whether preemptive, cooperative or 

other scheduling scheme is used. 

 

Real-time capability and performance:  Real-time 

capability is generally considered   as   a system characteristic 

to describe whether the system is able to meet the timing 

deadline. Using an RTOS in the system takes up CPU cycles; 

however the RTOS must not have indeterminist behaviors. 

The  amount  of  CPU cycles and time consumed by the RTOS 

for any service call  should  be  measurable  and  of  low  or  

acceptable values  to  the  system  designers.  Real-time 

capability and performance information are not available for 

some RTOSes. Even if these information are available, they 

might be based on different hardware platforms. 

 

Memory  footprint:  Besides  CPU  cycles,  an  RTOS also  

occupies  additional  ROM  and  RAM  spaces.  This could 

lead to larger ROM and RAM sizes for the entire system.  

There  is  always  a  tradeoff  between  memory footprint  and  

the  functionalities  required  from  the  

RTOS.   To   have   more   robust   and   reliable   APIs, 

probably more lines of code are needed.  On the other hand,   

basic   and   simple   APIs   will   require   only minimum 

amount of code.   

 

Language support: Programming language supported by the 

RTOS. 

 

System  call/API  richness:  This  criterion  determines how  

comprehensive  the  RTOS  APIs  are  as  compared to the rest 

of the RTOSes. The total number of system calls for each 

RTOS will be counted.  

 

OS-awareness   debugging   support:   This   criterion 

determines  if  the  RTOS  is  being  supported  by  any  of the  

Integrated  Development  Environment  (IDE).  OS-awareness 

debugging [3] will ease the development work as users can 

use these RTOS internal information . 

 

License  type:  This  is  to  investigate  how  the  RTOS  is 

distributed:  free  or  fee-based  for  different  purposes such as 

educational or commercial. 

 

Documentation: This criterion will focus on what type of 

documentations is available for the RTOS (detail APIs, simple 

tutorial, book or specification). 

   

III. PERFORMANCE BENCHMARKING 

A. Benchmarking methods 

The following RTOSes will be benchmarked: 

μITRON, μTKernel, μC-OS/II and  EmbOS.  As discussed 

in the previous section.These four RTOSes are made 

599

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCRTS`14  Conference Proceedings

ISSN: 2278-0181



available on the same platform for the purpose of 

benchmarking: 

The Renesas M16C/62P starter kit with the HEW IDE 

together with the NC30 tool chain [7] is used.  For 

execution time measurements, oscilloscope and logic  

analyzer  have  been  used  in  combination  with  IO port  

toggling  to  achieve  the  best  accuracy  (in  terms  of 

micro-seconds). 

 

 
 

Figure 2: Oscilloscope based hardware 
 

The Renesas M16C/62P has a 16-bit CISC (complex 
instruction set computer) architecture CPU with a total of 91 
instructions available. Most instructions take 2 to 3 clock 
cycles to complete. The MCU is designed with a 4-stage 
instruction queue buffer which is similar to a simplified 
pipeline often used in larger 32-bit processor 

A. Benchmarking criteria  
 The  proposed  benchmarking  criteria  in  this  section are  
aimed  to  be  simple  and  easy  to  port  to  different platforms.  
For each criterion, execution    time measurement together with 
memory footprint (ROM and RAM) will be collected. 

(a) Task switch time 

Task  switch  time  is  the  time  taken  by  the  RTOS  

to transfer  the  current  execution  context from one 

task to another task. 

 

 

 

Figure 3: Task switch time measurement 

 

 
 

Table 1: API used for task switch time 
 

There are two tasks:  Task1 and Task2 with Task1  

having higher priority. At the beginning, Task1 is first 

executed, and it will go into sleep/inactive state.  The 

execution context is then switched over to Task2. 

Task2 will wake up/make active Task1, and right after 

waking up,  the  execution  context  is  switched  over  

to  Task1 because  it  has  higher  priority.  Different 

RTOSes use different    terms    to    describe    

sleep/inactive  and ready/active  states  (such  as  μC-

OS/II  and  EmbOS  use the term suspend, resume 

while μITRON and μTKernel use  the  term  

sleep/wakeup). 

 

(b) Get/Release semaphore time 

Semaphore is commonly used for synchronization 

primitive in RTOS. For  semaphore  benchmarking, the 

time taken by get and release semaphore service call 

will  be  measured,  and  the  time  required  to  pass  

the semaphore  from  one  task  to  another  task  will  

also  be measured. 

 

 
 

Figure 4: Get/Release semaphore time. 

600

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCRTS`14  Conference Proceedings

ISSN: 2278-0181



 
 

           Table 2: API used for semaphore benchmark. 

 

(c) Semaphore passing time  

To measure the performance of semaphore passing the 

following measurement is used. 

 

 
 

Figure 5: Semaphore passing time measurement. 

 

There are two tasks:  Task1 and Task2 with Task1 

having   higher   priority,   and   a   binary   semaphore 

(initialized to 0).  At  the  beginning,  Task1  is  first 

executed  and  it  tries  to  get  the  semaphore.  Since  

the semaphore   value   is   0,   Task1 will  be  put  into  

a sleep/inactive  state,  waiting  for  the  semaphore  to  

be released.  The  current execution context will  then  

be switched  to  Task2  which  will  release  the  

semaphore. The semaphore, once released, will wake 

up Task1, and the execution context will be switched 

over to Task1.  

 

(d) Pass/Receive message time  

Besides  semaphore,  message  passing  has  become 

more  and  more  popular  for  synchronization  

purposes. In this message passing mechanism based on 

memory pointer passing is used, i.e.  Not the copying 

of message into an internal RTOS area because not all 

RTOS support this approach. 

 

        
 

Figure 6: Pass/Retrieve message time. 

 

 
 

Table 3: APIs for message passing benchmark 

 

(e) Fixed-size memory acquire/release time 

In RTOS, only fixed-size dynamic memory allocation 

should be used 

 

      
 

Figure 7: Acquire/Release time measurement. 

 

(f) Task activation from within interrupt handler time 

An  RTOS  has  to  deal  with  external  interrupts  that 

may  be  asserted  at  any  time.  Execution  of  

interrupt handler  is  normally  kept  as  short  as  

possible  to  avoid affecting  the  system  response.  In 

the case where long processing is required, the handler 

can activate another task that  will  do  the  necessary  

processing.  The time from when the interrupt handler 

resumes the task till the time when the task is executed 

is crucial to the system design. 

 

 
 

Figure 8: Task activation from interrupt handler time 

measurement. 

 

 
 

Table 4: APIs for task activation from within interrupt 

handler benchmark. 

 

601

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCRTS`14  Conference Proceedings

ISSN: 2278-0181



B. Benchmarking results 

 

 (1)   Memory footprint  

For   each   criterion,   the   benchmarking   code   is 

compiled,  and  the  ROM  and  RAM  usage  can  be 

obtained  from  the  toolchain  report.  By averaging 

the ROM information across all the test criteria, the 

average ROM size can be obtained.  Figure 9 shows 

the code sizes for the 4 RTOSes when running the 7 

benchmarks. μTKernel can be seen to have a larger 

code size. 

 

 
 

Figure 9: Code size comparison for 4 RTOSes. 

 

Similar to the code size comparison, Figure 10 shows 

the RAM information for the 4 RTOSes. μTKernel 

and μITRON  can  be  seen  to  have  relatively  lower  

RAM usage, while μC-OS/II and EmbOS are slightly 

higher. Depending  on  the  requirement  of  each  

benchmark,  we set the number of tasks, stack size and 

number of RTOS objects (e.g. semaphore, event flags) 

to be the same for all  RTOSes.  The  amount  of  

RAM  differences  among the RTOSes range between 

7-10 bytes, which might be due  to  internal  

implementations  or  due  to  method  of  

designing the APIs. 

 

 
 

Figure 10: Data size comparison for 4 RTOSes 

 

 

     (2) Execution time 

Figure 11 shows the measurement of execution 

time among the RTOSes for different benchmark 

criteria. As the only variation in the system is  timer  

interrupt  (for OS tick), each benchmark was executed at 

least twice to ensure consistent results.  Nevertheless for 

all benchmarks, running once is enough to yield the 

correct measurement.   For   the   task   activation   from   

within interrupt  handler  benchmark,  there  will  be  

another variation  which  is  an  external  interrupt  

(besides  the timer interrupt  for  OS  tick). When 

performing  this benchmark,  the  external  interrupt  

may  or  may  not  be asserted  during  the  OS  critical  

section  (the  duration which OS disable interrupts). If it 

is asserted during the critical section, the response time 

of the OS will be slightly longer.   Hence   this   

measurement   maynot include the worst case scenario. 

μTKernel is shown to have the lowest task switching  

time, followed by μITRON, μC-OS/II and EmbOS. 

On the   other   hand,   μC-OS/II   semaphore   acquires     

is   the   fastest.The   fastest   inter-task semaphore 

passing is achieved by μITRON, while μC-OS/II and  

μTKernel  have  better  message  passing  and message 

retrieval  time  as  compared  to  μITRON  and EmbOS.  

As far as fixed-size memory is concerned, μC-OS/II has 

the best execution time, followed by EmbOS, μITRON 

and μTKernel. Finally, μTKernel has the best 

performance time for task activation from 

interrupthandler, followed by μC-OS/II, μITRON and 

EmbOS. With the benchmarking results shown above, 

each RTOS   stands   out   to   have   its   own strengths   

and weaknesses. As far as open-source RTOS is 

concerned, for  a  very  small  and  compact  ROM  size  

RTOS,  μC-OS/II   can   be   used. 

 

 
 

Figure 11: Execution time benchmark for four RTOSes 

 

 

602

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCRTS`14  Conference Proceedings

ISSN: 2278-0181



CONCLUSION 

Though there are many benchmarks to evaluate the 

performance of Real Time Operating Systems, it has been 

found that there is no single benchmarking tool that can be 

considered the standard tool or method of benchmarking Real-

Time Operating Systems.  It’s common for Real-Time 

Operating System vendors to publish a subset of the 

Rhealstone metrics, but information about the hardware setup 

and the system calls used is often missing, this limits the 

usefulness of such figures and makes it hard to draw any real 

conclusions from them. There is a need to develop a portable 

benchmark tool that needs to have similar and fair 

implementation for different Real Time Operating systems. A 

portable benchmark tool’s implementation should separate 

hardware and OS dependant code from the benchmarking 

code, and try not to make any weak assumptions about the 

operating system and the hardware it will execute on. It should 

be modular enough to facilitate benchmarking of special 

hardware features or algorithms to be implemented by the user 

according to the requirements of a special application. 

 

REFERENCES 

 [1]   A. Martinez, J. F. Conde, A. Vina, ”A comprehensive approach in 

evaluation of the performance for modern Real Time Operating 

Systems.” Proceedings of the 22nd EUROMICRO Conference, pp. 
61, 1996. 

   [2]  R. P.  Kar, K. Porter, “Rhealstone:  A Real Time benchmarking 

proposal”, Dr. Dobb's Journal, Feb. 1989. 
 [3]  J. Ganssle, “The challenges of Real Time 

programming”,Embedded System Programming magazine, vol. 11, 

pp.  20–26, Jul. 1997.  
 [4]  K. M.   Sacha,   “Measuring   the   real-time operating   system 

performance”,   Seventh   Euromicro workshop   on   Real-time 

systems proceedings, Odense, Denmark, pp. 34–40, Jun. 1995. 
  [5]        G. Hawley, “Selecting a RTOS” Embedded System                              

               Design Magazine 1999. 

  [6]        M.Timerman,L.Perneel, “Understand RTOS market”,  
                Dedicated Systems   RTOS  Evaluation project report, Sep. 2005. 

 [7]        Renesas Technology.,“Renesas high performance, 

                Embedded workshop http://www.renesas.com/fmwk 
.jsp?cnt=ide_hew_tools_product_landing.jsp&fp=/products/tools/i

de/ide_hew/, 2007 

  [8]        "RTX  Real-Time  Kernel," KEIL, http://www.kiel.c 
               Om/rl-arm/kernel.asp 

  [9]           K. Yu and N. Audsley,  "A Generic and Accurate    RTOS-centric 

Embedded System  Modelling  and  Simulation  Framework,UK  
Embedded  Forum 

[10]         K.  Yu  and  N.  Audsley,  "Combining  Behavioural  Real-time  

Software Modelling  with  the  OSCI  TLM-2.0  Communication  
Standard,"  in  7th International Conference on Embedded 

Software and Systems, (ICESS '10), 2010. 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

603

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

www.ijert.org

NCRTS`14  Conference Proceedings

ISSN: 2278-0181


