International Journal of Engineering Research & Technology (IJERT)
NCRTS 14 Conference Proceedings
ISSN: 2278-0181

The Need For Portable Benchmark to Evaluate
The Performance of Real Time Operating Systems

Shreesha Rao P Chandan KN
Department of Computer Science and Engineering Department of Computer Science and Engineering
SIBIT SIBIT

Bangalore, India
p.shreesha.rao@gmail.com

Abstract— The process of performance comparison of two or
more systems by measurements is called benchmarking, and the
workloads used in measurements are called benchmarks.
Benchmarking of computer systems is an important sometimes
tedious task that gives insights into the performance of a system,
exposes flaws, and allows for comparison between systems. Thus
from the Application programmer’s perspective, it helps them
choose an Real Time Operating System which suits their
application the best and from the OS programmer’s perspective,
it helps them fine tune various aspects of Real Time Operating
Systems.

Keywords— Embedded Systems, Kernel, Real Time Operating
Systems (RTOS), RTOS benchmarking, Performance test and
Performance evaluation.

l. INTRODUCTION

Real-time systems can be said to be systems that have to
perform tasks timely. An aircraft, a car, a mobile phone and-a
radio base station are examples of machines and devices with
Real-Time properties. A Real-Time system has one or more
tasks it has to perform, the tasks can be of different priority and
may have deadlines which must be met. It’s the task of the
Real Time Operating System to handle priorities and switch
between tasks. The order in which the tasks are executing are
decided by a scheduling algorithm. System performance. A
Real Time Operating System provides a set of system
calls to the developer of a real-time system. Support for
semaphores, timers, scheduling and inter process
communication such as message passing are Common Services.
The use of such services facilitates the development of a real-
time system but imposes an overhead to the application. This
overhead depends on the implementation of the real-time
operating system. It may be useful or even necessary for an
engineer to be able to quantify this imposed overhead on the
real-time system to verify that task deadlines are met. A Real
Time Operating System is different from a desktop or server
operating system by usually being much smaller and focus on
deterministic and timely behavior. Real Time Operating
System kernels are based on microkernel architecture, which
means they are small and most services and drivers are
executed outside kernel space.

A. RTOS benchmarking

There are different approaches towards RTOS
benchmarking: based on applications or based on the most

www.ijert.org

Bangalore, India
chandankn.321@gmail.com

frequently used system services (fine-grained benchmarking)
[1] As there are various types of applications with each having
very different requirements, benchmarking against any generic
applications will not be reflective of the RTOS strengths and
weaknesses. There are various research publications related to
benchmarking method based on frequently used system
services. In [2] the Rhealstone benchmark is proposed with the
following measurement: task switch time, preemption time,
interrupts latency time, semaphore shuffling time, deadlock
breaking time, and datagram throughput time. Rhealstone
benchmark is not suitable for several reasons. Firstly, very few
RTOSes are capable of breaking deadlock (which we will see
later in the RTOSes survey). Datagram throughput time is
based on message passing by copying to a memory area
managed by the OS. However, not all RTOSes use the same
concept for message passing. Some RTOSes pass messages by
passing only the memory pointer, and hence there is no need to
use the special memory area managed by the OS. This
approach is also more suitable for small microcontrollers
because there is no extra memory for OS internal use. Interrupt
latency time as defined by Rhealstone is purely dependent on
the CPU architecture and is not determined by the RTOS.
Rhealstone, in general, are “somewhat adhoc”, and do not
cover other situations commonly found in real-time
applications [1].

In [1], some metrics are proposed (based on frequently
used system services): inter-task synchronization and
resource sharing, and inter-task data transfer (message
passing). Inter-task data transfer, as explained previously,
is also based on data copying into a memory area
managed by the OS, similar to the “datagram throughput
time” in Rhealstone benchmark. In the test for “response to
external event (interrupt)”, the interrupt handler wakes up
another task via a semaphore. Using a semaphore in this case
does not seem to be the best approach. Waking up the
task directly by using system service call (such as
sleep/wakeup service call) instead of going through a
semaphore is a better approach to reduce the overhead delay.
In [4], the metrics proposed are (based on frequently used
system services): tests for measuring the duration of message
transfer and the communication through a pipe, tests for
measuring the speed of task synchronization through
proxy and signal, and tests for measuring the duration of
task switching.

598

International Journal of Engineering Research & Technology (IJERT)
NCRTS'14 Conference Proceedings
ISSN: 2278-0181

Il. RTOSFEATURES

A. Criteria for comparison

The objective of this section is to investigate
RTOSes available (open-source,commercial, and research)
and determine those that are suitable. Information is mainly
based on documentations and APIs available on websites.
These RTOSes are: pITRON, pTKernel, upC-OS/Il,
EmbOS, FreeRTOS, Salvo, TinyOS, SharcOS, XMK OS,
Echidna, eCOS, Erika, Hartik, KeilOS and PortOS.
As described in [5], criteria used for selecting an RTOS
includes the following: language support, tool
compatibility, system service APIs, memory footprint
(ROM and RAM usage), performance, device drivers, OS-
awareness debugging, tools,technical support, source/object
code distribution, licensing scheme and company reputation.
Similarly criteria mentioned in [6] are: configuration, API
richness, documentation and support and and tools support.

Which factors most influenced your decision to use a commercial
operaling system?

&1%
Recl-imé capability _m 5%
]

Technical support _'2?% 43%
|

4
Good sovers ol I (3%,
I 7%

Processor or hordware 43% R
v
e
41%
Overall ot | 5.
——————————————————— [yl

40%
Documentation N | %,
I (),

35%
Networking capabilly | -,
I 0%

: . 3%
Supplie's reputalion I 5,
——
0%

Foyulty-ree. I %
48%

; 20%
Codeu:;:;.; T
I 2%

0% 10% W% 0% 40% S0% e0% 70%

2007 (N= 325 HE 2006 (N=d447) B 2005 (N=441)
Base = Those who cumently use o "commerciol” or"commercial distibution®
oparaling system

Figure 1: Influential factors in operating system selection .

Design objective: The origins of the RTOSes being
surveyed are different from one another, as some are
open-source, some are personal hobby-based ,and some are
commercial. It is important to understand the history and
the background motivation that led to the creation of each
RTOS. A personal hobby-based RTOS would be less likely

www.ijert.org

to be as stable compared to a popular open-source, or to a
commercial RTOS.

Scheduling scheme: RTOS scheduling approach will be
investigated to determine whether preemptive, cooperative or
other scheduling scheme is used.

Real-time capability and performance: Real-time
capability is generally considered as a system characteristic
to describe whether the system is able to meet the timing
deadline. Using an RTOS in the system takes up CPU cycles;
however the RTOS must not have indeterminist behaviors.
The amount of CPU cycles and time consumed by the RTOS
for any service call should be measurable and of low or
acceptable values to the system designers. Real-time
capability and performance information are not available for
some RTOSes. Even if these information are available, they
might be based on different hardware platforms.

Memory footprint: Besides CPU cycles, an RTOS also
occupies additional ROM and RAM spaces. This could
lead to larger ROM and RAM sizes for the entire system.
There is always a tradeoff between memory footprint and
the functionalities required from the

RTOS. To have more robust and reliable APIs,
probably more lines of code are needed. On the other hand,
basic and simple APIs will require only minimum
amount of code.

Language support: Programming language supported by the
RTOS.

System call/API1 richness: This criterion determines how
comprehensive the RTOS APIs are as compared to the rest
of the RTOSes. The total number of system calls for each
RTOS will be counted.

OS-awareness debugging support: This criterion
determines if the RTOS is being supported by any of the
Integrated Development Environment (IDE). OS-awareness
debugging [3] will ease the development work as users can
use these RTOS internal information .

License type: This is to investigate how the RTOS is
distributed: free or fee-based for different purposes such as
educational or commercial.

Documentation: This criterion will focus on what type of
documentations is available for the RTOS (detail APIs, simple
tutorial, book or specification).

I1l. PERFORMANCE BENCHMARKING

A. Benchmarking methods

The following RTOSes will be benchmarked:
WITRON, pTKernel, pC-OS/Il and EmbOS. As discussed
in the previous section.These four RTOSes are made

599

available on the same platform for the purpose of
benchmarking:

The Renesas M16C/62P starter kit with the HEW IDE
together with the NC30 tool chain [7] is used. For
execution time measurements, oscilloscope and logic
analyzer have been used in combination with 10 port
toggling to achieve the best accuracy (in terms of
micro-seconds).

1 Neasuement e

The benchnark oo
L

/ Etlsird

The

Mmeaslrement
(mer

module

The given ardwre platom

Figure 2: Oscilloscope based hardware

The Renesas M16C/62P has a 16-bit CISC (complex
instruction set computer) architecture CPU with a total of 91
instructions available. Most instructions take 2 to 3 clock
cycles to complete. The MCU is designed with a 4-stage
instruction queue buffer which is similar to a simplified
pipeline often used in larger 32-bit processor

A. Benchmarking criteria

The proposed benchmarking criteria in this section are
aimed to be simple and easy to port to different platforms.
For each criterion, execution time measurement together with
memory footprint (ROM and RAM) will be collected.

International Journal of Engineering Research & Technology (1JERT)
NCRTS 14 Conference Proceedings
ISSN: 2278-0181

(a) Task switch time
Task switch time is the time taken by the RTOS
to transfer the current execution context from one
task to another task.

Taskt: (higher priorty) Task;
Go to sheep (A)
(B} Wakeup task1

Task switch time: time from (A} to (B)

Figure 3: Task switch time measurement

pC-08M1 | pTRernel | EmbOS | pITRON
OETaskduspend]) | el tekf] |03 Suspendi)| e lekf]

Priss
misszge A

Rétriive

OSTaskRnsumal) | th_wup_tsk]) |08 Resuma()| wup_tsk])

imessigs A

Table 1: API used for task switch time

There are two tasks: Taskl and Task2 with Taskl
having higher priority. At the beginning, Task1 is first
executed, and it will go into sleep/inactive state. The
execution context is then switched over to Task2.
Task2 will wake up/make active Task1, and right after
waking up, the execution context is switched over
to Taskl because it has higher priority. Different
RTOSes use different terms to describe
sleep/inactive and ready/active states (such as pC-
OS/Il and EmbOS use the term suspend, resume
while pITRON and pTKernel use the term
sleep/wakeup).

(b) Get/Release semaphore time
Semaphore is commonly used for synchronization
primitive in RTOS. For semaphore benchmarking, the
time taken by get and release semaphore service call
will be measured, and the time required to pass
the semaphore from one task to another task will
also be measured.

Taski:

Ay

Get semaphone

(B)

Release semaphorne
(<l

Time to get semaphore: (A) to (B}
Tire to releass semaphore: (B) 1o (C)

Figure 4: Get/Release semaphore time.

www.ijert.org 600

International Journal of Engineering Research & Technology (IJERT)
NCRTS'14 Conference Proceedings
ISSN: 2278-0181

Table 2: API used for semaphore benchmark.

(c) Semaphore passing time

(d) Pass/Receive message time Task: ftigher priociy] TuiaZ, et
Besides semaphore, message passing has become ot slomn Dnmnmmnn/ fa fami pmosssing
more and more popular for synchronization {&l ';'Iumm

To measure the performance of semaphore passing the
following measurement is used.

Taskt: (higher priotity} Task2,
Gt semaphore (put into wait list) ~ (4)

(B} Release semaphore

Tifme {o pass semaphore from Taskd o Task2: (A to (B)

Figure 5: Semaphore passing time measurement.

There are two tasks: Taskl and Task2 with Taskl
having higher priority, and a binary semaphore
(initialized to 0). At the beginning, Taskl is first
executed and it tries to get the semaphore. Since
the semaphore value is 0, Taskl will be put into
a sleep/inactive state, waiting for the semaphore to
be released. The current execution context will then
be switched to Task2 which will release the
semaphore. The semaphore, once released, will wake
up Taskl, and the execution context will be switched
over to Task1.

purposes. In this message passing mechanism based on
memory pointer passing is used, i.e. Not the copying
of message into an internal RTOS area because not all
RTOS support this approach.

Tanki:
L]
Pass massage bo e quaus

{:IE.: message s capled into the quews) u[!.nﬂm ”-THH“{'I FI'I'Ib{]'TI IIITRG“

Ristrigs massagi from this Sams s Ty b e

@ TH'“" OSTaskSuspond) | _slp k) | 05 Susponc) | - sp sk
Tt s s f;i."w"uﬁ.'ﬂf: O8TaekReune) | v)| 05 Resure) | g B

Figure 6: Pass/Retrieve message time.

www.ijert.org

WCOSIT | pTherned | EmbO3 | pITRON UC-OSTE | TKernel | EmbOS | pITRON
(it semaphare oo Y —
Ul (08 SamPend()| bk wai samf) | 08 WalC3amal) | wai semi) F*”'Il';l”l.‘ 0SCPos) |k and)| 05.0Pul) | s)
Rl semaphioet] 2o b e
i IU&barﬂPﬂhl[J I i) sami] | 05_SignalCSama) EJENU_&&NIII mﬁ::mhq oskpt) | o) | 05 0 Get) | s)
[

Table 3: APIs for message passing benchmark

(e) Fixed-size memory acquire/release time

In RTOS, only fixed-size dynamic memory allocation
should be used

Lagkl;

A

Acquing iwed-size block
(8

Roloase fined sizne block
(4]

Time bo scquine memary black: (A) ta (B)
Tima te relanse mamory black: (B) ta (C)

Figure 7: Acquire/Release time measurement.

(f) Task activation from within interrupt handler time

An RTOS has to deal with external interrupts that
may be asserted at any time. Execution of
interrupt handler is normally kept as short as
possible to avoid affecting the system response. In
the case where long processing is required, the handler
can activate another task that will do the necessary
processing. The time from when the interrupt handler
resumes the task till the time when the task is executed
is crucial to the system design.

Do gcemved priscassing

Timw from infernag? handiar resuming skl 4l Task? b resumed: (&) 10 (B)

Figure 8: Task activation from interrupt handler time
measurement.

Table 4: APIs for task activation from within interrupt
handler benchmark.

601

International Journal of Engineering Research & Technology (IJERT)
NCRTS'14 Conference Proceedings
ISSN: 2278-0181

B. Benchmarking results

(2) Execution time

(1) Memory footprint
For each criterion,

the benchmarking code

is

compiled, and the ROM and RAM usage can be

obtained from the toolchain report.

the ROM information across all the test criteria,

By averaging

the

average ROM size can be obtained. Figure 9 shows
the code sizes for the 4 RTOSes when running the 7
benchmarks. pTKernel can be seen to have a larger

code size.

Tl size [ROM

B Tk warich ima

w Tl K eelapen

warnipbon {1 k|

Faas surrasturs

flrom o another k)

Piss & rai

MELEN)E K JLE

- Piss S

= fivam 4 i anoher tek)

g ecgiine & rakasi
Anacksipe memory biock

o Tars acksalion from
g

Hytes

EsnibS

WC-DETT pTHeme WITRON

Figure 9: Code size comparison for 4 RTOSes.

Similar to the code size comparison, Figure 10 shows
the RAM information for the 4 RTOSes. uTKernel
and pITRON can be seen to have relatively lower
RAM usage, while pC-OS/Il and EmbOS are slightly

higher. Depending on the

requirement of each

benchmark, we set the number of tasks, stack size.and
number of RTOS objects (e.g. semaphore, event flags)

to be the same for all RTOSes.

The amount of

RAM differences among the RTOSes range between

7-10 bytes, which might be due to
implementations or due to method of
designing the APIs.

Juts mire { RAM)

& Tick amitch tima
» Gtk ralann
samaphon (1 sk
Pk o
(from 1 ip anoiner task)
Pk & riiawi
RSSO 10 queiE
Pt massgd
(from | i pncier aak)
o Aoquina & ndease
Prand-atra mamory biack
o Tiork otharkon from
iniemugl

s

B

CRCOSM pTKemel EmblS pITROM

Figure 10: Data size comparison for 4 RTOSes

internal

www.ijert.org

Figure 11 shows the measurement of execution
time among the RTOSes for different benchmark
criteria. As the only variation in the system is timer
interrupt (for OS tick), each benchmark was executed at
least twice to ensure consistent results. Nevertheless for
all benchmarks, running once is enough to yield the
correct measurement. For the task activation from
within interrupt handler benchmark, there will be

another variation which is an external interrupt
(besides the timer interrupt for OS tick). When
performing this benchmark, the external interrupt

may or may not be asserted during the OS critical
section (the duration which OS disable interrupts). If it
is asserted during the critical section, the response time
of the OS will be slightly longer. Hence this
measurement maynot include the worst case scenario.
pTKernel is shown to have the lowest task switching
time, followed by pITRON, uC-OS/Il and EmbOS.

On the other hand, pC-OS/lIl semaphore acquires
is the fastest.The fastest inter-task semaphore
passing is achieved by puITRON, while pC-OS/Il and
uTKernel have better message passing and message
retrieval time as compared to WITRON and EmbOS.
As far as fixed-size memory is concerned, uC-OS/Il has
the best execution time, followed by EmbOS, pITRON
and uTKernel. Finally, uTKernel has the best
performance time for task activation from
interrupthandler, followed by pnC-OS/ll, WtITRON and
EmbOS. With the benchmarking results shown above,
each RTOS stands out to have its own strengths
and weaknesses. As far as open-source RTOS is
concerned, for a very small and compact ROM size
RTOS, pC-OS/Il can be used.

leIJI‘“IH“MIl

nCO8N1
oy TKemel
Fmb0S
a‘(‘ i i FéF *-*"b @° $ TR0
4!'*\ \45(\ e’,f E‘P ﬁ‘p \F Q‘:‘ﬁ'y {'-‘n é‘“ ‘0;9‘\
¢ ¢ g F o &
¢ § oo 5§
& & & & @ §
LA N &
2 é"' %e \.ﬁ 3 ‘;{.
1;‘5‘\ ¢ f ?&) gor
¢
-r“&& ¢

Figure 11: Execution time benchmark for four RTOSes

602

CONCLUSION

Though there are many benchmarks to evaluate the
performance of Real Time Operating Systems, it has been
found that there is no single benchmarking tool that can be
considered the standard tool or method of benchmarking Real-
Time Operating Systems. It’s common for Real-Time
Operating System vendors to publish a subset of the
Rhealstone metrics, but information about the hardware setup
and the system calls used is often missing, this limits the
usefulness of such figures and makes it hard to draw any real
conclusions from them. There is a need to develop a portable
benchmark tool that needs to have similar and fair
implementation for different Real Time Operating systems. A
portable benchmark tool’s implementation should separate
hardware and OS dependant code from the benchmarking
code, and try not to make any weak assumptions about the
operating system and the hardware it will execute on. It should
be modular enough to facilitate benchmarking of special
hardware features or algorithms to be implemented by the user
according to the requirements of a special application.

REFERENCES

[1] A. Martinez, J. F. Conde, A. Vina, ”A comprehensive approach in
evaluation of the performance for modern Real Time Operating
Systems.” Proceedings of the 22nd EUROMICRO Conference, pp.
61, 1996.

[2] R. P. Kar, K. Porter, “Rhealstone: A Real Time benchmarking
proposal”, Dr. Dobb's Journal, Feb. 1989.

[3] J. Ganssle, “The challenges of Real Time
programming”,Embedded System Programming magazine, vol. 11,
pp. 20-26, Jul. 1997.

[4] K. M. Sacha, “Measuring the real-time operating system
performance”, Seventh Euromicro workshop on Real-time
systems proceedings, Odense, Denmark, pp. 34-40, Jun. 1995.

[5] G. Hawley, “Selecting a RTOS” Embedded System

Design Magazine 1999.

[6] M.Timerman,L.Perneel, “Understand RTOS market”,

Dedicated Systems RTOS Evaluation project report, Sep. 2005.

[7] Renesas Technology.,“Renesas high performance,

Embedded workshop http://www.renesas.com/fmwk
Jjsp?cnt=ide_hew_tools_product_landing.jsp&fp=/products/tools/i
de/ide_hew/, 2007

[8] "RTX Real-Time Kernel," KEIL, http://www.kiel.c

Om/rl-arm/kernel.asp

[9] K. Yu and N. Audsley, "A Generic and Accurate RTOS-centric
Embedded System Modelling and Simulation Framework,UK
Embedded Forum

[10] K. Yu and N. Audsley, "Combining Behavioural Real-time
Software Modelling with the OSCI TLM-2.0 Communication
Standard,” in 7th International Conference on Embedded
Software and Systems, (ICESS '10), 2010.

www.ijert.org

International Journal of Engineering Research & Technology (IJERT)
NCRTS'14 Conference Proceedings
ISSN: 2278-0181

603

