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Abstract—Real-time dynamic attitude determination using 

GNSS signal is of great significance for the vehicles. The single 

epoch attitude determination algorithm utilizing multi-

frequency multi-mode observation is the point for the current 

research, since it is insensitive to cycle slips and has a higher 

success rate and a higher accuracy than that of attitude 

determination with single frequency observation. The 

coverage, integrity and availability can also be improved for 

the practical application. In this contribution, the GNSS 

baseline model which combining multiple constellations is 

discussed based on orthogonal transformation of single 

differences, which is a numerically stable approach; the 

computation process of float solution for the GNSS model is 

deduced and the assessment of accuracy is achieved for GNSS 

compass based on the actual L1/L2/B1 data. The experiment 

demonstrates that the accuracy of heading can reach 0.1 

degree/meter and the accuracy of elevation can reach 0.2 

degree/meter for L1/L2/B1 triple-frequency observation and it 

is two times higher than that of the B1 single frequency 

observation. 

Keywords—GNSS; attitude determination; orthogonal 

transformation; integer ambiguity resolution; accuracy 

I.  INTRODUCTION 

The high precision, real-time attitude determination 
system is indispensable and important for many different 
dynamic vehicles in terrestrial, sea, air and space, because it 
takes an important place in the development of many 
navigation, guidance and control systems. The attitude 
determination is in essence the problem of estimating the 
precise orientation of a platform which carries the sensors 
with respect to a chosen frame of reference. It is described 
normally by attitude coordinates, and consists of at least two 
coordinates for compass type attitude determination (heading 
angle and pitch angle). Many sensors and technologies are 
available to estimate the attitude of a platform, such as the 
magnetic compass and the gyrocompass. In recent years, 
there is a growing interest in GNSS compass type attitude 
determination and GNSS-based full attitude determination. 
Compared with the above two devices, the GNSS compass 
can point to any desired direction and it presents several 
obvious advantages: it is low-cost and less drift, minor 
maintenance is required and there is no ground reference [1]. 
For this technique, two antennas are attached to a vehicle, 
and then a baseline vector defined as a vector from reference 
antenna to another antenna can be determined using GNSS 

relative positioning technique. Thus, one is able to estimate 
the pointing direction, namely the compass solution, with 
two antennae/single baseline, while configuration of three or 
more non-collinear antennae allow the user to estimate the 
full attitude of a platform (heading/yaw, elevation/pitch and 
roll).  

In order to obtain accurate measurements of a platform 
attitude, the GNSS carrier phase observations must be 
employed. However, the carrier phase observations are 
inherently affected by an integer ambiguity, and once this 
has been done successfully, the carrier phase data will act as 
very precise pseudorange data, thus making very precise 
attitude determination possible [2]. Integer ambiguity 
resolution (IAR) is the process of resolving the unknown 
cycle ambiguities of the carrier phase data as integer, and 
many studies have been carried out to investigate the IAR 
method and performance of GNSS-based attitude 
determination. More recent attitude determination methods 
make use of the Constrained LAMBDA method to estimate 
the integer ambiguity, which is a fast, reliable and widely 
used implementation of the ILS (Integer Least-Squares) 
estimator [3]. To utilize this method, the float ambiguity 
solution must be estimated based on GNSS carrier 
phase/code double difference (DD) observation equations. 
However, specific care must be taken in parametrizing the 
phase ambiguities when there are cycle slips [4], which is 
one challenging case of GNSS data processing. Ambiguity 
resolution in single epoch can guarantee a total independence 
from carrier phase slips and losses of lock, as this technique 
uses only the fractional value of carrier phase measurement. 
Thus, the focus moves on the single epoch ambiguity 
resolution for GNSS-base attitude determination. 

The probability of correct integer ambiguity estimation, 
the so-called ambiguity success rate, is determined by the 
strength of the underlying GNSS model; the stronger the 
model, the higher the success rate. Since the success rate of 
single frequency ambiguity resolution is often not high 
enough for single epoch, the multi-frequency scheme is 
focused for strengthening the model and improving the 
success rate [5]. Beside the success rate and the accuracy, the 
coverage, integrity and availability also take an important 
place in the practical application of GNSS compass. This can 
be resolved by using observables from multiple GNSS 
constellations. Nowadays, several different implementations 
of GNSS including GPS of the USA, Glonass from Russia, 
Galileo from European Union, and Compass from China as 
well as regional navigation constellations such as QZSS of 
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Japan and IRNSS of India are and will be available for users. 
It is desired from the perspective of users to exploit the 
possibilities and opportunities of fusing signals from 
different constellations so as to enhance coverage, accuracy, 
integrity, and availability. In this contribution, the multi-
frequency multi-constellation GNSS compass model is 
studied, based on the orthogonal transformation of single 
difference equations. The assessment of accuracy is also 
achieved for this scheme. Actual experiments based on 
L1/L2/B1 observations have been performed to verify the 
correctness of new method and the accuracy of attitude 
determination. 

 
II. THE GNSS COMPASS MODEL 

A. Heading and Elevation Estimation 
For the GNSS compass system, two antennas are utilized 

to provide the observability of heading (or yaw) and 
elevation (or pitch). If the baseline vector from reference 
antenna to another antenna is parameterized with respect to 
the local East-North-Up frame, the heading ψ and the 
elevation θ can be computed from the baseline components 
(coordinates) bE, bN and bU as 

1 1

2 2
tan , tan UE

N N E

bb

b b b
  

  
   
    

 (1) 

B. GNSS Baseline Model 

For single baseline, the standard GNSS model is given by 
the linear observation equations, which is called a (mixed) 
integer least-squares (ILS) problem [6]. It is defined as: 

   , , ,n pE D Z R   
y

y = Aa Bx y Q a x  (2) 

where y is the given GNSS data vector, and a and x are the 
unknown parameter vectors of order n and p respectively. 
E(·) and D(·) denote the expectation and dispersion 
operators, respectively, and A and B are the given design 
matrices that link the data vector to the unknown parameters. 
The variance matrix of y is given by the positive definite 
matrix Qy. The n-vector a contains the integer ambiguities 
and the real-valued p-vector x contains baseline vector b and 
other remaining unknown parameters r, such as for instance 
possibly atmospheric delay parameters (troposphere, 
ionosphere) and clock bias parameter, which depend on the 
baseline length and difference model respectively. 

C. GNSS Compass Model 

For the compass problem, the possibly atmospheric delay 

parameters can omitted due to the very short distance 

between the two antennas. If the clock bias term is also 

eliminated with some approach in the model, then the real-

valued p-vector x only contains baseline vector b. Since the 

baseline length is often known in practical applications, this 

priori given baseline information can be treated as a useful 

constraint as well. Thus, in this case the standard GNSS 

model (2) is extended to 

 

 

3, , ,nE Z R l

D

   

 y

y = Aa Bb a b b

y Q

 (3) 

 

 

This nonlinearly constrained model will be referred to as the 

GNSS Compass model. It is a linear GNSS model with a 

nonlinear constraint on the baseline vector [3]. Once a is 

resolved, the least-squares solution for b, can be written as  

     
1

1 1ˆ T T


  y yb a B Q B B Q y Aa   (4) 

The variance-covariance matrix of conditional least-squares 

solution of b is given as 

   
1

1

ˆ

T


 yb a
Q B Q B    (5) 

Now we consider the case that a is completely unknown. To 

solve the GNSS model (3), one usually applies the least-

squares principle. This amounts to solving the following 

minimization problem: 

 
 

3
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ˆ

2
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,
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ˆˆ ˆmin min

n y

n

Z R l

Z R l

  

  

 

 
     

 y a
b a

Qa b b

2

Q Q Qa b b

y Aa Bb

e a a b a b

(6) 

where      
2 1T    

y
yQ

Q  and ê  is the least squares 

residuals. Note that the minimization problem thus involves 

two types of constraints: the integer constraints on the 

ambiguities and the length constraint on the baseline vector. 

Thus, the integer least-squares principle with quadratic 

equality constraints is used to formulate the following cost 

function [7]: 

 
 

3ˆ
ˆ

2

,

ˆˆmin min
nZ R l  

 
   

 a
b a

2

Q Qa b b
a a b a b  (7) 

In this case, the conditional least-squares solution for b and 

its variance-covariance matrix are both required for the 

estimator. The solution to the minimization problem follows 

therefore as 

 
 

 

3ˆ
ˆ

2

,

ˆˆmin min

ˆ

R l
arg

  

 
    

 



n a
b a

2

Q Qa Z b b
a a a b a b

b b a

 (8) 

This can be solved by the Constrained (C-) LAMBDA 

method with high efficiency and high success rate [8]. 

III. MODEL REALIZATION 

The short baseline model is often constructed by the 
double difference method. The paper attempts to address an 
orthogonal transformation method to construct the short 
baseline model, solving GNSS compass problem when 
measurements from multiple constellations are used. The 
proposed method is seen to be both efficient and accurate. 

Firstly, the single-differenced model for single frequency 
is given, then we deduce the orthogonal transformation 
model. Next, the multi-frequency single constellation model 
is created based on the orthogonal transformation model. 
Finally, the multiple constellation model are presented, 
which is a combination of multiple multi-frequency single-
constellation models.  

A. The Single Difference Model for Single Frequency 

For two nearby antennas A and B, the Single-Differenced 
(SD) carrier phase and code observation equations on band Li 
of GNSS constellation g can be modeled as 
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   
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  (9) 

where g

i  is the wavelength of Li carrier; ,

,

g k

i AB  and ,

,

g k

i ABa  

denote the SD fractional phase and integer ambiguity 

respectively; ,

,

g k

i AB  denotes the SD code observable; ,

,

g k

i ABv  and 

,

,

g k

i AB denote the SD phase and code observable noise 

respectively; ,g k

ABr is the SD geometric range of two receivers 

for satellite k GNSS constellation g; δtA and δtB are clock 
biases of receiver A and B; c is the velocity of light. For 
short baseline, since both antennas ’see’ the same satellite in 
the same direction and the lines of sight (LOS) are 
approximately parallel for both antennas, the SD geometric 
range of two antennas for satellite k can be treated as the 
projection of the baseline in the direction of LOS, say 

, ,g k g k

ABr  s b  where  , , , ,

1 2 3

T
g k g k g k g ks s ss  is the 

normalized line-of-sight vector. For 
gm  visible satellites of 

stand-alone GNSS constellation g, with 2

, ,g i  and 2

, ,g i   being 

the variance of carrier phase and code on band Li, the SD 
carrier phase and code equations can be expressed in 
compact vector and matrix notation as [9] 
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  



 
 

 
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y E b a e v v 0 I

y E b e v v 0 I

 (10) 

where ,

,

g

i S


y  and ,

,

g

i S


y  are SD phase and code observations in 

units of cycles, g
E  is the  1 3m   matrix of normalized SD 

line-of-sight vectors, ,

,

g

i S


v  and ,

,

g

i S


v  are SD phase and code 

noise vectors, 
,

g

i Sa  is the SD integer ambiguity vector, 
gme is a 

vector of order 
gm  for which each entry is 1 and 

 A Bc t t     is the clock bias. All the involved vectors are 

given as follows: 
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B. The Orthogonal Transformation Model 

The orthogonal transformation of single differences can 
also eliminate the clock bias term of (10) and the vector of 
DD integer ambiguities is still available [10]. Let 

g gm mg R


P  be an orthogonal transformation such that 

1gm gmPe u  and the Householder transformation is used to 

form g
P  as follows: 

1

2 1
,

g g

T
g

m mT

gm
   

tt
P I t u e

t t

  (12) 

where    1 1,0, ,0 1
T T

 u 0 . By simple algebraic 

operations, we obtain for this matrix 
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1 1 1
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where 1 1 1

1

g g g

g

T

m m mg

m

g g gm m m

  



 
  
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e e e
P I . Applying g

P  to the 

carrier phase observation of (10), we obtain 

, ,

, , ,

, ,

, , ,

11
g g g g g gg g

i S i S i S

gg g g g g gg g g
i S i S i Si

m
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
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p y p a p vp E
b

P y P a 0 P vP E

(14

) Note that only the first equation involves the clock bias 
term, the remaining part can be written as 

, ,

, , ,

1g g g g g g g g

i S i S i Sg

i

 


  P y P E b P a P v  (15) 

It can be verified that [11] 

1 1

1 1 1, ,
g g

g g g

T

m mg g g g g
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 

  
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e e
P F D F I D e I (16) 

where g
F  is nonsingular and g

D  is the DD operator. Thus, 
the DD integer ambiguity vector can also be obtained by the 
following algebraic operations: 

, , ,

g g g g g g g

i S i S i D P a F D a F a   (17) 

Replacing 
,

g g

i SP a  in (15) by (17), we obtain 
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 

  P y P E b F a P v
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   (18) 

where the DD integer ambiguity vector exists. The 
transformed noise vector still follows the same distribution 
because orthogonal transformation will not change the 

statistical properties of white noise. Similarly, applying g
P  

to the code observation of (10), we obtain the following 
orthogonal transformation of SD code observation equation: 

 
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, , , 1
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g

g g g g g g

i S i Sg

i

g g

i S g i mN
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The combination expression of (18) and (19) reads 
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g g g

gi i i
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where , ,

,

g g g

i i S

 y P y , , ,

,

g g g
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 v P v , , ,

,

g g g

i i S

 v P v . Thus the standard 

GNSS model can be obtained as follows: 
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where all the terms are given as 
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C. The Multi-frequency Single-constellation Model 

Assume that the number of available frequencies is Ig for 
the GNSS constellation g, the multi-frequency single 
constellation model can be obtained on basis of the 
combinations of (21): 
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The notations ‘col’ and ‘diag’ above are defined as 
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D. The Multiple Constellations Model 

Assume that the number of available constellations is G, 
the multi-frequency single constellation compass model can 
be written as follows: 

    3, , , ,nE D Z R l    
y

y = Aa Bb y Q a b b  (26) 

where 
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 
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

y
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   (27) 

Now we obtain the multiple constellations GNSS 
baseline model for single epoch observation, and the 
expression is consistent with (3).  

E. Computation process of float solution for the GNSS 

model 

The solution to (26) can be obtained by resolving cost 
function (8). However, the float solution must be calculated 
before the ambiguity search. To gain a clearer computation 
process and the structure of float solution, it is helpful to first 
apply the following matrix notations for (26): 

1

1

T 
y

X A Q A , 1

2

T 
y

X A Q B , 1

3

T 
y

X B Q B   (28) 

1

1

T 
y

l A Q y , 1

2

T 
y

l B Q y   (29) 

Thus, on basis of (4) and (5), we have 

 
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Q X
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   (30) 

With the well-known partition matrix inversion Lemma, the 
float ambiguity vector and its variance-covariance matrix can 
be calculated as 

  

  
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ˆ ˆ1 2 2

ˆ ˆ1 2 2
ˆ

T

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a b a

Q X X Q X

a Q l X Q l

  (31) 

For the multi-frequency single constellation case, the 
computation of (28) and (29) has a more direct way, which is 
given as follows: 
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(32) 

where 
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  (33) 

F. The Difference of Different Constellations 

Both receivers can receive and process signals from 

different constellations to establish more accurate attitude 

determination. However, different navigation constellations 

may differ in their reference frames and time systems. The 

difference in reference frame is, in general, insignificant and 

can be easily corrected. On the other hand, since each 

constellation maintains its time system independently, when 

the user attempts to process measurements from different 

constellations, the clock bias with respect to each 

constellation must be estimated. A possible remedy to 

account for the timing offset between two constellations is 

to disseminate the timing offset via both constellations so 

that the receiver can process measurements from different 

constellations more coherently [12].  
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IV. EXPERIMENTS 

This section presents the evaluation of the propose 
method based on actual tests. The accuracies of yaw and 
pitch are also compared between the multiple constellation 
scheme and single frequency scheme. 

A. Platform and Test Environment 

In order to achieve the attitude determination with actual 
multiple constellation GNSS signals, the NovAtel’s 
OEM628 board is utilized, which is designed with 120 
channel and can tracks all current and upcoming GNSS 
constellations and satellite signals including GPS, 
GLONASS, Galileo and Compass. Configurable channels 
optimize satellite availability in any condition, no matter 
how challenging. For this experiment, the GPS L1/L2 and 
Compass (or BDS) B1 are exploited to construct the propose 
model. 

Two Trimble® Zephyr™ Model 2 antennas are utilized 
for the experiment, which contain advanced technology for 
minimizing multipath, outstanding low elevation satellite 
tracking, and extremely precise phase center accuracy. 
Trimble® Zephyr™ Model 2 antenna supports the GPS 
L1/L2 and Compass (or BDS) B1 bands and has an excellent 
performance for GNSS relative positioning. 

Fig.1 The experiment environment 

The experiment was achieved in the playground of Civil 
Aviation University of China and the baseline was placed in 
the plane of local geodetic horizon approximately, pointing 
to the east. The baseline length is approximate 1m, which is 
demonstrated in Fig.1. During about 800 seconds 
observation, the number of available satellites equals seven 
for GPS and eight for Compass most of the time, with a few 
drops to seven. The constellation of GPS satellites in this 
experiment is shown in Fig.2 and the constellation of 
Compass satellites in this experiment is shown in Fig.3, and 
each satellite is discernible by its PRN number. Note that the 
star symbol denotes the geostationary satellites of Compass. 
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Fig.2 The constellation of GPS satellites 

-50 0 50

-80

-60

-40

-20

0

20

40

60

80

0

30

6
0

9
0

1
2
0

150

180

210

2
4
0

2
7

0

3
0
0

330

30

45

60

75

90

1
22222222222222222222222222222

3

44444444444444444444444444444444444444444444444444444444444444444

6

7

9

10

 

Fig.3 The constellation of Compass satellites 

B. Comparison of Attitude Determination 

The heading/yaw and elevation/pitch are resolved based 
on the model (23) with Constrained (C-) LAMBDA method. 
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Fig.4 The yaw comparison for L1/L2/B1 and only B1 schemes 
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Fig.5 The pitch comparison for L1/L2/B1 and only B1 schemes 

The yaw and pitch results are demonstrated in Fig.5 and 
Fig.6, respectively. As is shown, the accuracy of L1/L2/B1 
scheme is much higher than that of the B1 scheme. The 
resolved baseline length is also given in Fig.6. Also, the 
baseline length of L1/L2/B1 scheme has a smaller noise level 
than that of the B1 scheme. 
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Fig.6 The baseline length comparison for L1/L2/B1 and B1 schemes 

C. Accuracy Assessment of Attitude Determination 

      As shown in Table I, the average and standard deviation 

of attitude angle measurements of various methods are 

given.  

TABLE I.  ACCURACY ASSESSMENT FOR ONE METER BASELINE 

Table 

Head 

Mean Value (degree) Standard deviation (degree) 

Yaw Pitch Yaw Pitch 

B1 87.4498 0.4088 0.3609 0.6669 

L1/L2 87.4555 0.0003 0.1422 0.3004 

L1/L2/B1 87.3876 0.1232 0.0979 0.2015 

 

 

 

 

This indicates the L1\L2\B1 can obtain the optimal 

accuracy compared to the other two schemes listed in the 

table. For the baseline with one meter length, the accuracy 

of yaw can reach 0.1 degree and the accuracy of elevation 

can reach 0.2 degree for L1/L2/B1 triple-frequency 

combination observation and it is two times higher than that 

of the single frequency observation and about 1.5 times 

higher than that of L1/L2 dual frequency observation. With 

the actual experimental results above, the correctness of 

proposed method for multiple constellations can be verified. 
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