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Abstract: The retrace patterns from supermarket datasets is 

an interesting data mining issue. The hourly fuzzy pattern is 

an example of such patterns where the pattern holds in some 

fuzzy time interval in each hour. The issue involves first 

frequent set mining and then deduces association rules from 

the frequent sets. We call it hourly fuzzy patterns. In the 

beginning works were mainly concentrated about a user-

specified fuzzy pattern mining. In as much as, in some 

applications,the  user may not have previous knowledge about 

the datasets under opinion, so may not be able to specify fuzzy 

time interval. Identical may happen due to the boundary of 

natural language. In this paper, we are intending a method of 

finding such patterns. The nicety about the method is that the 

fuzzy time intervals are generated by the method itself. The 

impact of our method is exhibited with experimental results. 

 

Keywords: Temporal Patterns, Temporal Association Rules, 

Superimposed Intervals, Fuzzy Set, Right Reference Functions, 

Left Reference Functions, Membership Functions. 

 

I. INTRODUCTION 

 

The analysis of temporal data has been pondered as an 

important data mining problem. An example of such is 

super market dataset mining. In real world supermarket 

data if a transaction happens its time also recorded. In [1], 

the authors have addressed such problems in details. In 

their work, the attribute associated with the dataset has 

been pondered like any other attribute. The taking into 

account time attribute aside, pattern can be extracted which 

are time-dependent and cannot be extracted by [1]. Ale et al 

[2], first studied such problems in detail. They proposed a 

method of discovering association rules that hold within 

the life-span an itemset. In this spot life-span of an itemset 

is the time period between first transactions, including the 

itemset to the last transaction inclusive the equal in the 

dataset. The life-span of an itemset is not necessary equal 

as that of dataset. 

The idea of local Patterns has been proposed by Anjana et 

al [3], which are patterns that are frequently in certain time 

intervals and may or may not be frequent throughout the 

life-span of the itemset. They proposed an algorithm which 

can extract locally frequent itemsets along with a list of 

sequences of time intervals where each locally frequent 

itemsets is frequent in a sequential time intervals. The 

considering the time-stamp in the form year_month_day 

i.e. time hierarchy a method is discussed in [4] which can 

extract yearly, monthly, periodic or partially periodic 

patterns. In [4] a method called set superimposition is used 

to keep the intervals of the frequency with overlapping. 

The superimposed intervals turn out to be fuzzy intervals 

associated with each locally frequent itemsets. Considering 

time stamp year_month_ day_hou r_minute_second, 

methods were proposed in [6, 7, 8], for finding yearly, 

monthly, and daily fuzzy frequent itemsets. Unless if only 

minute_second are pondered in time-hierarchy, then there 

may exist some patterns which are hourly fuzzy frequent. 

In this paper, we have discussed hourly fuzzy patterns and 

devised an algorithm for finding such patterns. Talk about 

this algorithm similar to that in [6, 7, 8]. The paper is 

organized as follows. In section-2, we discuss related 

works. In section-3, we discuss terms, definitions and 

notations used in the algorithm. In section-4, the algorithm 

is discussed. In section-5, we discuss about results and 

analysis. Finally a summary and lines for future works are 

discussed in section-6. 

 

II. RELATED WORKS 

 

The association rules discovery problem was first proposed 

by Agrawal el al [1]. In their work,  if I, is the set of items 

and D, a large collection of transactions involving the 

items, the question is to find kinship among the presence of 

various items in the transactions. The temporal data mining 

[9] is an important extension of conventional data mining. 

If time aspect is taken into account, then more interesting 

patterns that are time dependent can be extracted. The 

process of association rule discovery is also extended to 

incorporate temporal aspects. The corresponding problems 

are to find valid time periods during which association 

rules hold and the discovery of possible periodicities that 

association rules have. This author proposed an algorithm 

for the discovery of temporal association rules [2]. For 

each item (or itemset),a life-span is defined which is the 

time gap between the first occurrence and the last 

occurrence of the item in the transaction in the dataset. 

Next itemsets are calculated only during its life-span of 

itemset. After that each rule has associated with it a time-

frame. In [3], the works done in [2] have been extended by 

considering time gap between two consecutive transactions 

containing an item set into account. The acceptance the 

periodicity of patterns into rumination, Ozden [10] 

proposed a method, which is able to find user-specified 

periodic patterns. In [11], the authors discussed about a 
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method of discovering temporal association rules with 

respect to fuzzy match, i.e. association rule holding during 

“enough” number of intervals given by the corresponding 

calendar pattern. 

In common with works were done in [12] incorporating 

multiple granularities of time intervals (e.g. first working 

day of every month) from which both cyclic and user 

defined calendar patterns can be cognizable. Mining fuzzy 

patterns from datasets have been studied by many 

researchers. In [13], the authors presented a method for 

mining fuzzy temporal patterns from a given 

process instance. In common with work is done in [14]. 

Next the method of extracting fuzzy periodic association 

[15] rules is discussed. In [6], authors have presented a 

method of finding yearly fuzzy patterns. In [7], the works 

were done in mining monthly fuzzy patterns. In [8], 

methods were discussed for finding daily fuzzy patterns. 

 

III. TERMS, DEFINITIONS AND NOTATIONS 

 

Let us scrutiny some definitions and notations used in this 

paper. Let E be the universe of discourse. A fuzzy set A in 

E is characterized by a membership function A(x) lying in 

[0, 1].  

A(x) for xE represents the grade of membership of x in A. 

Thus a fuzzy set A is defined as 

 A={(x, A(x)), xE } 

A fuzzy set A is said to be normal if A(x) =1 for at least one 

xE. An -cut of a fuzzy set is an ordinary set of elements 

with membership grade greater than or equal to a threshold 

, 0  1. Thus an -cut A of a fuzzy set A is 

characterized by A={xE; A(x)} [see e.g. [16]] 

A fuzzy set is said to be convex if all its -cuts are convex 

sets. 

A fuzzy number is a convex normalized fuzzy set A 

defined on the real line R such that  

1. there exists an x0R such that A(x0) =1, and  

2. A(x) is piecewise continuous. 

Thus a fuzzy number can be thought of as containing the 

real numbers within some interval to varying degrees.  

 Fuzzy intervals are special fuzzy numbers satisfying the 

following.  

1. there exists an interval [a, b]R such that 

A(x0)=1for all x0 [a, b], and  

2. A(x)is piecewise continuous. 

A fuzzy interval can be thought of as a fuzzy number with 

a flat region. A fuzzy interval A is denoted by A = [a, b, c, 

d] with a < b < c < d where A(a) = A(d) = 0 and A(x) = 1 

for all x[b, c]. A(x) for all x[a, b] is known as left 

reference function and A(x) for x [c, d] is known as the 

right reference function. The left reference function is non-

decreasing and the right reference function is non-

increasing  

The support of a fuzzy set A within a universal set E is the 

crisp set that contains all the elements of E that have non-

zero membership grades in A and is notified by S(A). Thus 

  S(A)={ xE; A(x)  0} 

The core of a fuzzy set A within a universal set E is the 

crisp set that contains all the elements of E having 

membership grades 1 in A. 

 

Set Superimposition                  

In [17] an operation called superimposition (S) was 

proposed. If A is superimposed over B or B is 

superimposed over A, we have 

 

 A (S) B = (A-B) (+) (AB)(2) (+)(B-A)               ….   (1) 

 

Where (AB)(2) are the elements of (AB) represented 

twice, and (+) represents union of disjoint sets. 

To explain this, an example has been taken. 

If A= [a1, b1] and B= [a2, b2] are two real intervals such that 

AB, we would get a superimposed portion. It can be 

seen from (1)  

 

 [a1, b1](S)[a2, b2]= [a(1),a(2)) (+) [a(2),b(1)](2) (+) (b(1),b(2)]            

                                                       …   (2) 

 

Where a(1)=min(a1, a2)           a(2)=max(a1, a2) 

b(1)=min(b1, b2), and     b(2)=max(b1, b2) 

(2) Explains why if two line segments are superimposed, 

the common portion peeps doubly dark [5]. The identity (2) 

is called thefundamental identity of superimposition of 

intervals. 

Let now, [a1, b1](1/2) and [a2, b2](1/2) be two fuzzy sets with 

constant membership value ½ everywhere (i.e. equi-fuzzy 

intervals with membership value ½). If [a1, b1]  [a2, b2] 

 then applying (2) on the two equi-fuzzy intervals we 

can write   

 

[a1,b1](1/2)(S)[a2,b2](1/2)=[a(1),a(2))(1/2)(+)[a(2),b(1)](1)(+)(b(1),b(2)

](1/2)                                                                              … (3) 

 

Let [xi,yi], i=1,2,…,n, be n real intervals such that 

 
n

i

ii yx
1

,


. Generalizing (3) we get  

 [x1, y1](1/n)(S)[x2, y2](1/n)(S)...(S) [xn,yn](1/n)=[x(1), x(2)) 

(1/n)(+)[x(2), x(3))(2/n) (+) ... (+) [x(r), x(r+1))(r/n)(+) ... (+) [x(n), 

y(1)](1)(+)(y(1), y(2)]((n-1)/n)(+) ... (+) (y(n-r),y(n-

r+1)](r/n)(+)...(+)(y(n-2),y(n-1)](2/n)(+)(y(n-1),y(n)](1/n)         …   (4) 

 

In (4), the sequence {x(i)} is formed by sorting the sequence 

{xi} in ascending order of magnitude for i=1,2,…n and 

similarly {y(i)} is formed by sorting the sequence {yi} in 

ascending order. In as much as the set superimposition is 

operated on the closed intervals, it can be extended to 

operate on the open and the half-open intervals in the 

trivial way.   

 

LEMMA 1. (THE GLIVENKO-CANTELLI LEMMAOF 

ORDER STATISTICS) 

Let X = (X1, X2, …,Xn) and Y = (Y1, Y2,…,Yn) be two 

random vectors, and (x1, x2,…,xn) and (y1, y2, …,yn) be two 

distinctive realizations of X and Y respectively. Assume 

that the sub-fields induced by Xk, k = 1, 2, …, n are 
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identical and independent. Accordingly assume that the 

sub- fields induced by Yk, k = 1, 2, …, n are also identical 

and independent. Let x(1), x(2), …, x(n)  be the values of x1, 

x2, …, xn, and y(1), y(2), …, y(n) be the values of y1, y2, …, yn 

arranged in ascending order. 

For X and Y if the experiential probability distribution 

functions 1(x) and 2(y) are defined as in (5) and (6) 

respectively. Then, the Glivenko-Cantelli Lemma of order 

statistics states that the mathematical expectation of the 

empirical probability distributions would be given by the 

respective theoretical probability distributions. 

 

0           x<x(1)  

    

 1(x)   =    (r-1)/n       x(r-1) ≤ x≤ x(r) 

    …  (5) 

   1 x  x(n) 

  

   0             y<y(1)  

    

 2 (y)   =    (r-1)/n       y(r-1)≤ y≤ y(r)                                                                         

…     (6) 

   1 yy(n)  

  

 

Now, let Xk is random in the interval [a, b] and Yk is 

random in the interval [b, c] so that P1(a, x) and P2(b, y) are 

the probability distribution functions followed by Xkand Yk 

respectively. Then in this case Glivenko-Cantelli Lemma 

gives 

)7(....
),,()]([

,),,()]([

12

11









cybybPyE

andbxaxaPxE




 

It can be take a notion that in equation (4) the membership 

values of [x(r), x(r+1)](r/n), r = 1, 2, …, n-1 look like 

experiential probability distribution function P1(x) and the 

membership values of [y(n-r), y(n-r+1)](r/n)
, r=1,2,….,n-1 look 

like the values of experiential complementary probability 

distribution function or experiential survival function [1- 

P2(y)]. 

Therefore, if A(x) is the membership function of an L-R 

fuzzy number A=[a, b, c]. We get from (4) 

)8(
),,(1

),,(
)(

2

1










cxbxbP

bxaxaP
xA  

It remains to be seen P1(x) can indeed be the Dubois-Prade 

left reference function and (1 - P2(x)) can be the Dubois-

Prade right reference function [19]. Baruah [17] has 

shown that if a possibility distribution is viewed in this 

way, two probability laws can, indeed, give rise to a 

possibility law. 

 

IV. ALGORITHM 

 

In our proposed algorithm the time-stamps stored in the 

transactions of temporal data are the time hierarchy of the 

type second_minute_hour_day_month_year, then we do 

not contemplate year, month, day, and hour in time 

hierarchy and only contemplate minute and second. Now 

we extract frequent itemsets using method discussed in [3]. 

Each frequent itemset will have a sequence of time 

intervals of the type [min_second, min_second] associated 

with it where it is frequent [18]. Using the sequence of time 

intervals, we can discover the set of superimposed intervals 

[Definition of superimposed intervals is given in section-3] 

and each superimposed intervals will be a fuzzy intervals. 

The algorithm is alike that of [6, 7, 8]. The method is as 

follows for a frequent itemset the set of superimposed 

intervals is initially empty, algorithm visits each interval 

associated with the frequent itemset sequentially, if an 

interval is intersecting with the core of any existing 

superimposed intervals [Definition of core is given in 

section-3]in the set it will be superimposed on it and 

membership values will be adjusted otherwise a new 

superimposed intervals will be started with the this interval. 

This procedure will be continued till the end of the 

sequence of time intervals. The proposed procedure will be 

repeated for all the frequent itemsets as well as possible 

each frequent itemsets will have one or more superimposed 

time interval. Additionally the superimposed time intervals 

are used to generate fuzzy intervals, each frequent itemset 

will be associated with one or more fuzzy time intervals 

where it is frequent. In addition to this each superimposed 

intervals is represented in a compact manner discussed in 

section-3. 

For representing each superimposed interval of the form  

..........],.......[],[],[],[ /)1()(/3)4()3(/2)3()2(/1)2()1( nrrrnnn tttttttt 

 

nnnnnnn

n

n tttttttt /1)(')1('

2

)1(')2('

1

)2(')1('1)1(')( ],[],.........[],[],[ 



 

 

In this algorithm, we lay two arrays of real numbers, one 

for storing the values t(1), t(2),  t(3),….t(n) and the other for 

storing the values  
)1('t , 

)2('t  ,….
)(' nt each of which is a 

sorted array. At the moment if a new interval ],[ 'tt is to be 

superimposed on this interval we add t to the first array by 

finding its position (using binary search) in the first array 

so that it remnant sorted. In like manner 
't  is added to the 

second array.  

Data structure used for representing a superimposed 

interval is 

 structsuperinterval 

   { intarsize, count; 

   short *l, *r; 

    } 

Here arsize represents the maximum size of the array used, 

count represents the number of intervals superimposed, and 

l and r is two pointers pointing to the two associated arrays. 
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Algorithm 4.1 

for each locally frequent item set s do 

  {L sequence of time intervals associated with s 

Ls set of superimposed intervals initially set to 

null 

lt = L.get(); 

    // lt is now pointing to the first interval in L 

Ls. append(lt); 

While ((lt = L.get()) != null) 

 {flag = 0; 

While ((lst = Ls.get()) != null) 

 if(compsuperimp(lt, lst)) 

  flag = 1; 

       if (flag == 0) Ls.append(lt); 

} 

  } 

compsuperimp(lt, lst) 

{ if( intersect(lst, lt)!= null) 

 { superimp(lt, lst); 

 return 1; 

 } 

return 0; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The correspondingly function compsuperimp(lt, lst) first 

computes the intersection of lt with the core of lst. If the 

intersection non-empty it superimposes lt by calling the 

function superimp(lt, lst) which virtually the carries on the 

superimposition process by updating the two lists 

associated as described earlier. The function return 1 if lt 

has been superimposed on the lst else returns 0. Obtain and 

tag on are functions operating on lists to get a pointer to the 

next element in a list and to tag on an element into a list. 

 

V. RESULTS PROCURED 

 

In this paper experimental result purpose, we have used a 

synthetic dataset T10I4D100K, available from FIMI1 

website. A summarized view of the dataset is presented in 

table 1.The dataset mentioned in table 1and some procured 

results are presented in table 2. 

 

http://fimi.cs.helsinki.fi/data/ 

 
 

Table 1.T10I4D100K dataset characteristics

Table 2. The daily fuzzy frequent itemsets for different set of transactions for itemset {5}

Figure 1. The daily fuzzy frequent itemsets for different set of transactions for itemset {5}
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So far as dataset is non-temporal, we incorporate temporal 

features into it. To this spot we keep the life-span of our 

datasets as 1year. Firstly, we take only 10,000 transactions 

and found that the itemset {5} has a superimposed intervals 

superimposed on one place and hence it has one fuzzy time 

interval where it is frequent. For 20,000 and 30,000 

transactions the same itemset has two superimposed 

intervals and so two fuzzy intervals, in the end from 

60,000-100,000 transactions, we get {5} is frequent in four 

fuzzy time intervals figure 1 shown.  

 

VI. CONCLUSION AND LINE FOR FUTURE WORK 

 

In this paper, we are discussing methods for discovering 

hourly fuzzy patterns. The method receive as input a list of 

time intervals associated with a frequent itemset generated 

using a method discussed [4]. In spite of, our work we do 

not contemplate the year, month, day and hour at the time 

hierarchy and only contemplate minute, second. Finally, 

every frequent itemset will be associated with a sequence 

of time intervals of the form [minute_second, 

minute_second] where it is frequent. The algorithm sees 

each other interval in the sequence one by one and stores 

the intervals in the superimposed form. Next every frequent 

itemset is associated with one or more superimposed time 

intervals. Each superimposed interval gives fuzzy time 

intervals. In this case we will have each frequent itemset is 

associated with one or more fuzzy time intervals. The 

nicety about the method is that the algorithm is fewer user-

reliant on i.e. fuzzy time intervals are citation by algorithm 

automatically. Future work may be possible in the 

following ways. 

 A further type of fuzzy patterns, namely 

weekly, quarterly, half yearly patterns can be 

extracted. 

 Clustering of patterns can be done based on 

their fuzzy time interval associated with yearly 

patterns using some statistical measure. 

 

REFERENCES 

 

[1] R. Agrawal, T. Imielinski, and A. N. Swami; Mining association 
rules between sets of items in large databases, In Proc. of 1993 

ACM SIGMOD Int’l Conf on Management of Data, Vol. 22(2) of 

SIGMOD Records, ACM Press, (1993), pp 207-216. 
[2] J. M. Ale, and G. H. Rossi; An Approach to Discovering Temporal 

Association Rules, In Proc. of 2000 ACM symposium on Applied 

Computing (2000). 
[3] A. K. Mahanta, F. A. Mazarbhuiya,and H. K. Baruah; Finding 

Locally and Periodically Frequent Sets and Periodic Association 

Rules, In Proc. of 1st Int’l Conf. on Pattern Recognition and 
Machine Intelligence, LNCS 3776 (2005), pp. 576-582. 

[4] A. K. Mahanta, F. A. Mazarbhuiya, and H. K. Baruah (2008). 

Finding Calendar-based Periodic Patterns, Pattern Recognition 
Letters, Vol. 29(9), Elsevier publication, USA, pp. 1274-1284. 

[5] H. K. Baruah (2010); The Randomness-Fuzziness consistency 

principle, International Journal of Energy, Information and 
Communications,Vol 1(1), Nov 2010, Japan. 

[6] F. A. Mazarbhuiya (2014); Discovering Yearly Fuzzy Patterns, 

International Journal of Computer Science and Information 
security (IJCSIS) Vol. 12, No. 9, September 2014. 

[7] M. Shenify and F. A. Mazarbhuiya (2015); Discovering Monthly 
Fuzzy Patterns, International Journal of Intelligence Science (IJIS), 

37-43, USA. 

[8] F. A. Mazarbhuiya (2015); Extracting daily fuzzy patterns, 

International Journal of Computer Science and Information 

security (IJCSIS) Vol. 13, No. 10, October 2015 (communicated). 

[9] C. M. Antunes, and A. L. Oliviera; Temporal Data Mining an 

overview, Workshop on Temporal Data Mining-7th ACM SIGKDD 
Int’l Conf. on Knowledge Discovery and Data Mining, (2001). 

[10] B. Ozden, S. Ramaswamy, and A. Silberschatz; Cyclic Association 

Rules, In Proc. of the 14th Int’l Conf. on Data Engineering, USA 
(1998), pp. 412-421. 

[11] Y. Li, P. Ning, X. S. Wang, and S. Jajodia; Discovering Calendar-

based Temporal Association Rules, Elsevier Science, (2001). 
[12] G. Zimbrado, J. Moreira de Souza, V. Teixeira de Almeida, and W. 

Arauja de Silva; An Algorithm to Discover Calendar-based 

Temporal Association Rules with Item’s Lifespan Restriction, In 
Proc. of the 8th ACM SIGKDD 2002. 

[13] R.B.V. Subramanyam, A. Goswami, Bhanu Prasad; Mining fuzzy 

temporal patterns from process instances with weighted temporal 
graphsInt. J. of Data Analysis Techniques and Strategies, 2008 

Vol.1, No.1, pp.60 – 77. 

[14] S. Jain,S. Jain, and A. Jain; An assessment of Fuzzy Temporal 
Rule Mining, International Journal of Application or Innovation in 

Engineering and Management (IJAIEM), Vol. 2, 1, January 2013, 

pp. 42-45. 
[15] Wan-Ju Lee, Jung-Yi Jiang and Shie-Jue Lee; Mining fuzzy 

periodic association rules, Data & Knowledge Engineering, Vol. 

65, Issue 3, June 2008, pp. 442-462. 
[16] Klir, J. and Yuan, B.; Fuzzy Sets and Logic Theory and 

Application, Prentice Hill Pvt. Ltd. (2002). 
[17] H. K. Baruah; Set Superimposition and its application to the 

Theory of Fuzzy Sets, Journal of Assam Science Society, Vol. 10 

No. 1 and 2, (1999), pp. 25-31. 
[18] F A Mazarbhuiya, Yusuf Perwej, “An Efficient Method for 

Generating Local Association Rules”, International Journal of 

Applied Information Systems 9(2):1-5, June 2015. Published by 
Foundation of Computer Science, New York, USA, DOI: 

10.5120/ijais15-451368 

[19] D. Dubois and H. Prade; Ranking fuzzy numbers in the setting of 
possibility theory, Inf. Sc.30, (1983), pp. 183-224. 

 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS100576

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 10, October-2015

559


