The $L(2,1)$ - Labeling of Dragon and Armed Crown Graphs
 Priyam Vashishta

Abstract

An $L(2,1)$-labeling of a graph G is a function from the vertex set $V(G)$ to the set of all nonnegative integers such that $|f x-f y| \geq 2$ if $d x, y=1$ and $|f x-f y| \geq 1$ if $d x, y=2$. The $L(2,1)$ labeling number of G, denoted by λG or λ, is the smallest number k such that $\max f v: v \in V G=k$. In this paper I will

 completely determine λG-number for dragon and armed crown graphs.key - words:
L(2,1)-labeling, λ-number, dragon, armed crown.

1. Introduction

The channel assignment problem is to assign a channel (non negative integer) to each TV or radio transmitters located at various places such that communication do not interfere. In 1980, Hale [5] introduced the notion of T - coloring of a graph. He formulated the channel assignment problem as a graph coloring problem.

In 1988, Roberts proposed a variation of the channel assignment problem in which close transmitters must receive channels that are at least two apart. In a graph model of this problem, the transmitters are represented by the vertices of a graph. Two vertices are very close if they are adjacent in the graph and close if they are at a distance two apart in the graph. In [4], Griggs and Yen motivated by the above problem proposed by Roberts introduced $L(2,1)$ - labeling.
Definition 1.1: An $L(2,1)$ - labeling (or distance two labeling) of a graph $G=V G, E G$ is a function f from vertex set $G=V G, E G$ to the set of all nonnegative integers such that the following conditions are satisfied:
(1) $|f x-f \quad y| \geq 2$ if $d x, y=1$
(2) $|f x-f \quad y| \geq 1$ if $d x, y=2$

A $L(2,1)$ - labeling in which no label is greater than k is called a $k-L(2,1)-$ labeling. The smallest number k such that G has a $k-L(2,1)$ - labeling is called the $L(2,1)$ - labeling number of G and is denoted by λG or λ. The $L(2,1)$ - labeling has been studied extensively in recent past by many researchers like Yeh [8], Sakai [6], Georges, Mauro and Whittlesey [3], Georges and Mauro [2], and Vaidya, Vihol, Dani and Bantva[7].

Throughout this work, I will consider the finite, connected and undirected simple graph $G=V G, E G \quad$. Following is the brief summary of definitions and information which are prerequisites for the present work.

Definition 1.2: A Dragon, $D_{n} m$ is a graph in which path P_{m} is attached to any vertex of cycle C_{n}.

Definition 1.3: An armed crown, $C_{n} \square P_{m}$ is a graph in which path P_{m} is attached at each vertex of the cycle C_{n}.

Proposition 1.4: [4] The λ-number of a star $K_{1, \Delta}$ is $\Delta+1$, where Δ is the maximum degree.

Proposition 1.5: [4] The λ-number of a complete graph K_{n} is $2 n-2$.

Proposition 1.6: [1] $\lambda H \leq \lambda G$, for any subgraph H of a graph G.

2. Main Result

Theorem 2.1: The λ-number of a Dragon $D_{n} m$ for $n \geq 3$ and $m \geq 1$ is 4 .
Proof: Let $v_{0}, v_{1}, \ldots, v_{n-1}$ be the vertices of the cycle of $D_{n} m$ such that v_{i} is adjacent to v_{i+1}, $0 \leq i \leq n-2$ and v_{0} is adjacent to v_{n-1}. Also, let $u_{0}, u_{1}, \ldots, u_{m-1}$ be the vertices of the path or tail of
$D_{n} m$ such that u_{j} is adjacent to u_{j+1}, $0 \leq j \leq m-2$ and u_{0} is adjacent to v_{0}. The graph $K_{1,3}$ is a subgraph of $D_{n} m$ and hence by Proposition 1.4 and $1.6 \lambda D_{n} m \geq 4$. Now define $f: V D_{n} m \rightarrow 0,1,2,3,4$ as follows. We start vertex labeling from v_{0}.
(1) $\boldsymbol{n} \equiv \mathbf{0} \bmod \mathbf{3}$
$f v_{i}= \begin{cases}0 & , i \equiv 0 \bmod 3 \\ 2 & , i \equiv 1 \bmod 3 \\ 4 & , i \equiv 2 \bmod 3\end{cases}$
and
$f u_{j}= \begin{cases}3 & , j \equiv 0 \bmod 4 \\ 1 & , j \equiv 1 \bmod 4 \\ 4 & , j \equiv 2 \bmod 4 \\ 0 & , j \equiv 3 \bmod 4\end{cases}$
(2) $\boldsymbol{n} \equiv \mathbf{1} \bmod 3$ then redefine the above f at $v_{n-4}, v_{n-3}, v_{n-2}, v_{n-1}$ as
$f v_{i}= \begin{cases}0 & , i=n-4 \\ 3 & , i=n-3 \\ 1 & , i=n-2 \\ 4 & , i=n-1\end{cases}$
and

$$
f u_{j}= \begin{cases}3 & , j \equiv 0 \bmod 4 \\ 1 & , j \equiv 1 \bmod 4 \\ 4 & , j \equiv 2 \bmod 4 \\ 0 & , j \equiv 3 \bmod 4\end{cases}
$$

(3) $\quad \boldsymbol{n} \equiv \mathbf{2} \bmod 3$ then redefine f in (1) at v_{n-2} and v_{n-1} as
$f \quad v_{i}= \begin{cases}1 & , i=n-2 \\ 3 & , i=n-1\end{cases}$
and

$$
f u_{j}= \begin{cases}4 & , j \equiv 0 \bmod 4 \\ 1 & , j \equiv 1 \bmod 4 \\ 3 & , j \equiv 2 \bmod 4 \\ 0 & , j \equiv 3 \bmod 4\end{cases}
$$

Hence, $\lambda D_{n} m=4$.
Illustration 2.2: In the following Figure-1 the $L(2,1)$-labeling of graph $D_{6} 4$ is shown.

Figure - 1
Theorem 2.3: The λ-number of an armed crown $C_{n} \square P_{m}$ for $n \geq 3$ and $m \geq 1$ is 5 .

Proof: Let $v_{0}, v_{1}, \ldots, v_{n-1}$ be the vertices of the cycle of $C_{n} \square P_{m}$ such that v_{i} is adjacent to v_{i+1}, $0 \leq i \leq n-2$ and v_{0} is adjacent to v_{n-1}. Also, let $u_{0}, u_{1}, \ldots, u_{m-1}$ be the vertices of the path which is attached to every vertex of C_{n} such that u_{j} is adjacent to $u_{j+1}, 0 \leq j \leq m-2$. We denote the vertices of the path adjacent to the vertex v_{i}, , as $u_{i 0}, u_{i 1}, \ldots, u_{i m-1}$ where $u_{i 0}$ adjacent to v_{i} $0 \leq i \leq n-1$. The graph $K_{1,3}$ is a subgraph of $D_{n} m$ and hence by Proposition 1.4 and 1.6 $\lambda C_{n} \square P_{m} \geq 4$. Now define $f: V C_{n} \square P_{m} \rightarrow 0,1,2,3,4,5$ as follows.
(1) $\boldsymbol{n} \equiv \mathbf{0} \bmod 3$
$f v_{i}=0, i \equiv 0 \bmod 3$
$f u_{i j}= \begin{cases}5 & , j \equiv 0 \bmod 3 \\ 3 & , j \equiv 1 \bmod 3 \\ 0 & , j \equiv 2 \bmod 3\end{cases}$
$f v_{i}=2, i \equiv 1 \bmod 3$
$f u_{i j}= \begin{cases}5 & , j \equiv 0 \bmod 3 \\ 0 & , j \equiv 1 \bmod 3 \\ 2 & , j \equiv 2 \bmod 3\end{cases}$
and
$f v_{i}=4, i \equiv 2 \bmod 3$
$f u_{i j}= \begin{cases}1 & , j \equiv 0 \bmod 3 \\ 3 & , j \equiv 1 \bmod 3 \\ 5 & , j \equiv 2 \bmod 3\end{cases}$
(2) $\boldsymbol{n} \equiv \mathbf{1} \bmod 3$ then redefine the above f at $v_{n-4}, v_{n-3}, v_{n-2}, v_{n-1}$ and the corresponding $u_{i j}$'s as $f v_{i}=0, i=n-4$,
$f u_{i j}= \begin{cases}5 & , j \equiv 0 \bmod 3 \\ 3 & , j \equiv 1 \bmod 3 \\ 0 & , j \equiv 2 \bmod 3\end{cases}$
$f v_{i}=3, i=n-3$,
$f u_{i j}= \begin{cases}5 & , j \equiv 0 \bmod 3 \\ 2 & , j \equiv 1 \bmod 3 \\ 0 & , j \equiv 2 \bmod 3\end{cases}$
$f v_{i}=1, i=n-2$,
$f u_{j}= \begin{cases}5 & , j \equiv 0 \bmod 3 \\ 2 & , j \equiv 1 \bmod 3 \\ 0 & , j \equiv 2 \bmod 3\end{cases}$

and

$f v_{i}=4, i=n-1$,
$f u_{i j}= \begin{cases}2 & , j \equiv 0 \bmod 3 \\ 5 & , j \equiv 1 \bmod 3 \\ 0 & , j \equiv 2 \bmod 3\end{cases}$
(3) $\quad \boldsymbol{n} \equiv \mathbf{2} \bmod 3$ then redefine f in (1) at v_{n-2} and v_{n-1} and the corresponding $u_{i j}$'s as
$f v_{i}=4, i=n-3$,
$f u_{i j}= \begin{cases}0 & , j \equiv 0 \bmod 3 \\ 3 & , j \equiv 1 \bmod 3 \\ 5 & , j \equiv 2 \bmod 3\end{cases}$
$f v_{i}=1, i=n-2$,
$f u_{i j}= \begin{cases}5 & , j \equiv 0 \bmod 3 \\ 0 & , j \equiv 1 \bmod 3 \\ 2 & , j \equiv 2 \bmod 3\end{cases}$
and

$$
f v_{i}=3, i=n-1,
$$

$f u_{i j}= \begin{cases}5 & , j \equiv 0 \bmod 3 \\ 0 & , j \equiv 1 \bmod 3 \\ 2 & , j \equiv 2 \bmod 3\end{cases}$
Hence, $\lambda D_{n} m=5$.
Illustration 2.4: In the following Figure-2 the $L(2,1)$-labeling of graph $C_{5} \square P_{3}$ is shown.

Figure - 2

3. Conclusion

Here I have proved that the λ number of a dragon is 4 and the λ number of an armed crown is 5 .

4. References

[1] G. J. Chang, and D. Kuo, "The $L(2,1)$-labeling problem on graphs", SIAM J. Discrete Math. 9(2), 1996, pp.309-316.
[2] J. Georges, and D. Mauro, "Generalized vertex labelings with a condition at distance two", Congr. Numer. 109, 1995, pp.141-159.
[3] J. Georges, D. Mauro, and M. Whittlesey, "Relating path covering to vertex labelings with a condition at distance two", Discrete Math. 135, 1994, pp.103-111.
[4] J. R. Griggs, and R. K. Yeh, "Labeling graphs with a condition at distance 2", SIAM J. Discrete Math. 5, 1992, pp.586-595.
[5] W. K. Hale, "Frequency assignment: Theory and applications", Proc. IEEE, 68, 1980, pp.1497-1514.
[6] D. Sakai, "Labeling chordal graphs: Distance two condition", SIAM J. Discrete Math. 7(1), 1994, pp.133-140. [7] S. K. Vaidya, P. L. Vihol, N. A. Dani, and D. D. Bantva, " $L(2,1)$ - labeling in the context of some graph operations", Journal of Mathematics Research, 2(3), 2010, pp. 109-119.
[8] R. K. Yeh, "Labeling graphs with a condition at distance two", Ph. D. Thesis, Dept. of Math., University of South Carolina, Columbia, SC, 1990.

