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Definition: 4.1 
         A non- empty set D V of a graph G is a dominating set of G if every vertex in V-D is adjacent to some vertex in D.  The 

domination number    (G) is the minimum cardinality taken over  all the minimal dominating sets of G.   Let D be the 

minimum dominating set of G.  If  V-D contains a dominating set D then D  is called the Inverse dominating set of G w.r.to 

D.   The Inverse dominating number    (G) is the minimum cardinality taken over all the minimal inverse dominating sets of G.   

A dominating set D of G is a connected dominating set if the induced subgraph <D> is connected.  The connected domination 

number  c(G) is  the  minimum  cardinality  of  a  connected  dominating  set. Unless stated, the graph G has n vertices  and m 

edges.   A dominating  set  D   V  of  a  graph  G  is  a  split  (non-split) dominating set if the induced subgraph <V-D> is 

disconnected (connected).   The split (non-split) domination number   s(G) (ns(G))  is  the  minimum  cardinality  of  a  split  

(non-split) dominating set. 

 

Example 4.2 

 

Consider the following graph in figure 1. 
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Graph G:  Figure 1 

Here   4,3D    

 5,1'D   

 6,4,3,2'DV  

2)('&2)(  GG   

2)(' Gns  

When  5,1D    

 4,2'D   

 6,5,3,1'DV  

2)('&2)(  GG   

2)(' Gs  
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Theorem 4.3  

        For any graph )(')('&)(')(' GGGG nss    

Proof 

           Since every inverse split dominating set of G is an inverse dominating set of G, we have   )(')(' GG s   

   Similarly every inverse n o n - split dominating set of G is an inverse dominating   set of G, we have )(')(' GG ns   

 

Theorem 4.4 

For any graph G,  

 

‘(G) = min { ‘ s (G) ,  ‘ns (G) } 

Proof 

    Since every inverse split dominating set and every inverse non-split dominating set of G are the inverse dominating set 

of G.  

  We have )(')(' GG s   and )(')(' GG ns   

 And hence ‘(G) = min { ‘ s (G) ,  ‘ns (G) } 

 

Theorem 4.5  

Let T be a tree such that any two adjacent cut vertices u and v with atleast one of u and v is adjacent to an end vertex 

then )(')(' TT s   

Proof  

 Let D’ be a ‘set of T, and then we consider the following two cases: 

Case (i)  

 Suppose atleast one of ,', Dvu  then <V-D’> is disconnected with atleast one vertex. Hence D’ is a ‘set of T. thus 

the theorem is true.  

Case (ii) 

 Suppose ,', DVvu  since there exists an end vertex   adjacent to either u or v say u, it implies that 'D  

Thus it follows that    uDD  ''' ‘set of T.  

Hence by case (i), the theorem is true  

 

Theorem 4.6 

  For any tree T, pnTns )(' where p is prime number of vertices adjacent to end vertices.  

 

Theorem 4.7 

For any graph G, )()(' GnGns   , where )(G   is the minimum degree among the vertices of G.  

 

Note 4.8  

 For any tree T, 1)( T  

 Hence 1)('  nTns  

 

Remarks 4.9  

 We obtained the relationship between )(' Gns and )(' Hns where H is any connected spanning subgraph of G. 

similar result for )(' Gs and  )(' Hs  

 If H is any connected spanning subgraph of G then )(')(' HG    

 

Theorem 4.10 

 Let G be a graph which is not a cycle with atleast 5 vertices. Let H be a connected spanning subgraph of G then  

  (i) )(')(' HG nsns    

  (ii) )(')(' HG ss    

Proof  

 Since G is connected then any spanning tree T of G is minimally connected subgraph of G such that 
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)(')(')(' HTG sss    

  In a similar way )(')(')(' HTG nsnsns    

  Hence the proof.  
 

Theorem 4.11 

 If T is a tree which is not a star then .32)('  nnTns  

Proof  

  Since T is not a star, there exists two adjacent cut vertices u and v with degree u and degree .2v this implies that V-

{u,v}is an inverse non-split dominating set of T. Thus the theorem is true. 

         

     CONCLUSION 

       Graph theory serves as a model for any binary relation.   In domination, both dominating sets and their inverses have 

important roles to play.  Whenever, D is a dominating set, V-D is also a dominating set.  In an information retrieval system, 

we always have a set of primary nodes to pass on the information. In  case,  the system fails,  we have  another  set  of 

secondary nodes, to do the job in the complement.  When the complement set is connected, then there will be flow of 

information among the members of the complement.  Thus, the dominating sets and the elements in the inverse dominating 

sets can stand together to facilitate the communication process.   They play very vital role in coding theory, computer science, 

operations research, switching circuits, electrical networks etc. 

 

Thus in this paper, we defined the notions of inverse split and non split domination in graphs. We got many bounds 

on inverse split and non split domination numbers. Nordhaus- Gaddum   type   results   are   also   obtained   for   these   new 

parameters. Edge analog of these two parameters are also discussed in a detailed manner. 
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