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ABSTRACT  
 
This paper is concerned with integrated formulation of the tau methods for 
numerical solution of initial value problems in non-overdetermined third order 
ordinary differential equations. The error estimate for this variant of the tau method 
is obtained and numerical results are provided. The numerical evidence shows that 
the variant is more accurate than the differential variant earlier reported.  
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1. INTRODUCTION  

 
 Accurate approximate solution of initial value problems and boundary value 
problems in linear ordinary differential equations with polynomial coefficients can 
be obtained by the tau method introduced by Lanczos in 1938. Techniques based on 
this method have been reported in literature with application to more general 
equation including non-liner ones as well as to both deferential and integral 
equations. We review briefly here two of the variants of the method.  
 
Differential form of the Tau Method 
 
Consider the following boundary value problem in the class of m-th order ordinary 
differential equations: 
 

bxaxfxyxp
m

r

r
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)(   …(1.1a) 
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where  are given real numbers, 
and the functions  and  
 

mrxpxp
rN

k

k

krr )1(0,)(
0

,    ….(1.2) 

 
are polynomial functions or sufficiently close polynomial approximants of given real 
functions . 
 
Definition 1.1 
 
The number of over-determination, s, of equation (1.1a) is defined as 
 

                          (1.3) 
for  and . 
 
Definition 1.2 
 
Equation (1.1a) is said to be non-overdetermined if s, given by (1.3) is zero, i.e. if s = 
0. Otherwise it is over-determined. 
  
For the solution of (1.1) by the tau method ( Ortiz1969,1974, Lanczos 1938, 1956), 
we seek an approximant  

n

r

r

rn xaxy
0

)( , n < +     …(1.4)  

 
ofy(x) which satisfies exactly the perturbed problem 
 

bxaxTxfxLy
sm

r

rmnsmn ,)()()(
1

0

11 ,  …(1.5a) 

mkxyL krkn )1(1,)(*                                                     (1.5b) 

     
where , r = 1(1)m +s, are fixed parameters to be determined along with , r = 
0(1)n, in (1.4)by equating the coefficients of power of x in (1.5). The polynomial  
 

r

k

kr

kr xC
ab

ax
CosrxT

0

)(1 1
22

cos)(   …(1.6) 

 
is the r-th degree Chebyshev polynomial valid in [a, b] (see Fox and Parker 1968) 
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1.2 The Integrated Formulation of the Tau method  

The integrated form of (1.1a) is given by 

     LY(x) = dxxfm )(


 + (m(x)           …(1.7) 

Where (m(x) denotes an arbitrary polynomial of degree (m – 1), arising from the 

constants of integration, and  

I L = dxLm )(


             …(1.8) 

is the m times indefinite integration of L (s). The integrated tau problem 

corresponding to (1.4) is therefore  

I, ))(ˆ( xy  = dxxfm )(


 + (m(x)) +
1

0

11 )(ˆ
sm

r

rnsm xT           …(1.9a) 

   L* )(ˆ( rkn xY = k, k = 1(1)m          ….(1.9b) 

where  

   nŶ (x) = 
n

r

r

r xb
0

  y(x),  n  +            …(1.10) 

Problem (1.9) often gives a more accurate approximant of Y(x) than (1.4) does, due 

to its higher order perturbation term (see[7] and [14]). 

 
 
2. ERROR ESTIMATION OF THE TAU METHOD  
 
We review briefly here error estimation of the tau method for the variants of the 
preceding section and which was earlier reported ( Adeniyi et al 1990, 1991 and 
2007) 
 
2.1 Error Estimation for the Differential Form   
 
While the error function  
 

en(x) = y(x) – yn(x)             …(2.1) 
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satisfies the error problem ( see Onumanyi and Ortiz 1982) 

1

0

11 )(ˆ)(
sm

r

rmnsmn xTxLe    …(2.2a) 

 …(2.2b) 
 

The polynomial error approximant 
 

(en(x))n+1 = 
)1(

1

1 )()(
mn

mn

mnnm

C

xTxv
           …(2.3) 

 
ofen(x) satisfies the perturbed error problem ( Adeniyi et al 1990, 1991, Onumanyi 
et al 1882 ) 
 

1

0

111 )(())((
sm

r

rmnsmnn xTxeL  + ))(ˆ
21 xT rmnsm …(2.4a) 

0))(( 1

*

nrkn xeL                                                                                              (2.4b) 

     
where the  extra parameters r

ˆ r = 1(1)m + s, and  in (2.3) – (2.4) are to be 

determined and  in (2.3) is a specified polynomial of degree in which ensures 
that 1))(( nn xe satisfies the homogenous conditions (2.4b). 

 
With 2.3) in (2.4) we get a linear system of m + s +1 equations, obtained by equating 
the coefficients of  xn+s+1, xn+s, …xn – m +1, for the determination of  by forward 
elimination, since we do not need the ˆ ’s in (2.3) consequently, we obtain an 
estimate  
 

1))((maxε nn
bxa

xe  =   
)1(

1

mn

mn

n

C
)((max xen

bxa
  …(2.5) 

 
 

2.2 Error Estimation for the Integrated From  

 The error polynomial function  

))(~( xen  = 
)1(

1

1 )(ˆ)(
mn

mn

mnnm

C

xTx
 ~ Y(x) – )(ˆ xyn )(ˆ xen          …(2.6) 

Satisfies the perturbed integrated error problem  
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I2 1))(~( nn xe  =  – 
1

0

1 )(()(
sm

r

rmnrsm xmdxxTm


 + 
1

0

1 )(ˆ
sm

r

rnrsm xT     …(2.7a) 

L* ))(~( rkn xe  = 0         …(2.17b) 

Equations (2.7) together with (2.6) yield a linear system of m + s +1 equations, 

obtained by equating the coefficients if xn + s + m + 1, xn+s+m, xn+1 for the determination of 

n subsequently we obtain  

)1(

1

1))(~maxε
mn

mn

n

bxx

nn
C

xe   )(~max xen
bxa

 = 4 

3 A CLASS OF NON-OVERDETERMINED THIRD ORDER    

 DIFFERENTIAL EQUATIONS  

We consider here the integrated form of the tau methods and its error estimate for 

the class of problems: 

Ly(x): = ( 0 + 1x + 2x2 +  3x3 ) y (x) + ( 0 + 1x + 2x2 ) y (x)  

       + ( 0 + 1x)y (x) + oy(x) = 
n

r

r

r xf
0

, a < x < b                     …(3.1a) 

y(a) = 0,  y (a) = 1,  y (a) = 2           …(3.1b) 

that is, the case when m = 3 and s = 0 in (1.1) 

 Without loss of generality, we shall assume that a = 0 and b = 1, since the 

transformation  

)(

)(

ab

axv
,  a < x < b             …(3.2) 

takes (3.1) into the closed interval [0, 1]. 

3.1 Tau Approximant by the Integrated Form  

By applying (1.9) we have  
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x u t

0 0 0

( 0 + 1v + 2v2 + 3v3) y  (v)dvdtdu  + 
x u t

0 0 0

( 0 + 1v + 2v2 + 3v3) y  (v)dvdtdu 

+ 
x u t

0 0 0

( 0 + 1v) y (v)dvdtdu +   0

x u t

y
0 0 0

(v) dvdtdu 

= 
x u t F

r

r

rvf
0 0 0 0

dvdtdu + 1Tn + 3(x) +  2Tn + 1(x) =  3Tn+ 1(x) 

That is  

0

n

r

a
0

rxr + 1

n

r

a
0

rxr+1 +  2

n

r

a
0
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n
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2
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= 
n

r

r

r

rrr

xf

0

3

)3)(2)(1(
 + 1

3

0

)2(
n

r

rn

r xC  +    2

2

0

)2(
n

r

rn

r xC  + 3

1

0

)1(
n

r

rn

r xC  

We equate corresponding coefficients of powers of x to obtain the system  

0a0  –  1
)3(

0

nC  –  2
)2(

0

nC    –  3
)1(

0

nC  = 0 0 ( 0 – 2 1 + 0)a1  –  1
)3(

1

nC    
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–  2
)2(

1

nC     – 3
)1(

1

nC  = 2 1 0  – 0 1 – 0 1  

2

1
[(2 2  – 1 + 0)a0 +( 0 – 1]a1 + 2 0a2  – 2 1

)3(

2

nC   –   2 2
)2(

2

nC    

– 2 3
)1(

2

nC  = 1 0 –  0 2  – 2 2 0  – 0 0 + 1 0  –  1 1  – 1

1

01 ]βα)3[(
ka

k

k
 

+  2
0212

2

)1(

]α)2(6)3(6)3(βα)2)2(3)2[(
ka

kk

kkkkk
 

 

+ [(k – 3)3 – 9(k – 3)2 + 2(k – 3) – 18) 3 – (k – 3)2  + 7 (k – 3 + 4) 2  

+ (k – 2) 1 + 0 – 0]ak – 3   

                                              (k – 2)(k – 1)k 

1
)3(n

kC  + 2
)2(n

kC  + 3
)1(n

kC  = 
)2)(1(

)3(

kkk

f k
, k = 3(1)n    ... (3.11) 

+ na
n

n

)1(

]βα3)1(α[ 011   +  [(n – 2)3 – 9(n – 2)2 + 2(n – 2) – 18) 3  – (n – 2)2  + 7(n – 

2) + 4) 2 + (n – 1) 1 + 0 + 0]a(n – 2) –  1
)3(

1

n

nC  

                                           n(n – 1)(n + 1) 

 – 2
)2(

1

n

nC  + 3
)1(

1

n

nC  =  
)1)()(1(

2

nnn

fn  

[n3 + 3n + 2) 2 + (n – 1) 1 – 6n 2 + 0]an          

               (n +2)(n + 1) 

 

  + [(n – 1)3 – (n – 1)2 + 2(n – 1) – 18)  3 – ((n – 1)2 + 7(n – 1) + 4) 2]an – 1  

      n(n +1)(n + 2) 

– 1
)3(

2

n

nC  + 2
)2(

2

n

nC  =  
nnn

fn

)1)(2(

1  
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  + [(n3 – 9n2 + 2n – 18] 3 –  (n2 + 7n + 4) 2 + (n + 1) 1 + 0 + 0]an 

      (n +1)(n + 2)(n +3) 

3
)3(

3

n

nC  =  
)3)(2)(1( nnn

fn  

We solve this to subsequently obtain the approximant )(ˆ xYn . 

3.2.1 Error Estimation for the Integrated From  

For problem (3.1) we have, from (2.7)  

x u t

0 0 0

( 0 + 1v + 2v2 + 3v3)(en(v)n + 1 dvdtdu  + 
x u t

0 0 0

( 0 + 1v + 2v2 ) 

(en(v)n + 1 dvdtdu +  
x u t

0 0 0

( 0 + 1v )(en(v)n  + 1 dvdtdu  +   
x u t

0 0 0

0λ (en(v)n + 1 dvdtdu 

= 
x u n

r

rn

r

t

VC
0 0 0

)(

0

1(  + 
1

0

)1(

2

n

r

rn

r VC   +  
2

0

)2(

3 )
n

r

rn

r VC  dvdtdu  

+ 
4

0

)4(

1̂

n

r

rn

r xC   +  
3

0

)3(

2
ˆ

n

r

rn

r xC  +  
2

0

)2(

3
ˆ

n

r

rn

r xC  

From the coefficients if xn + 3,  xn + 2,  xn + 1, we get the system  

)4(

41̂

n

nC  = [18 3(n +2)(1– (n +3)+10 2(n + 2)(n + 3)+6(2 2 – 6 3 + 0] )2(

2

n

nC  

6(n + 2)(n + 3)(n + 4) 

 )4(

31̂

n

nC  + )3(

32
ˆ n

nC   – 
)3)(2)(1(

1

nnn

C n

n  =  

{12(n +5) – 6 2(n +2)(n + 3) + 1(n + 5)((n + 2+ 4) – 1(n +2)(n + 5)) 2

2

n

nC  

     2(n + 2)(n + 3)(n + 5) 

 

[9 3(n +1) – (n +1)(n + 2)(18 3 + 10 2)) + 6(2 2 – 6 3 + 0 – 1) )2(

3

n

nC } 

    6(n + 1)(n + 2) (n + 3)  

 

)4(

21̂

n

nC  + )3(

22
ˆ n

nC  + )2(

23
ˆ n

nC   – 
)2)(1(

11

nnn

C n

n  – 
)2)(1(

)1(

12

nnn

C n

n  
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)2(

γβ2α3β n

nC
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(6 2(2(n + 5) – (n +1)(n +2)) + ((n +1)(n + 5)( 1 – 1)) 2

2

n

nC ] 

2(n +1)(n +2)(n + 5) 

 

+ [(9 3n (1 – 2(n + 1) + 10 2n (n + 1) + 6(12 2 – 6 3 + 0 – 1)) )2(

4

n

nC    

    6n(n +1)(n + 2) 

)1)(1(
ˆ 21)2(

13
nnn

C
C

n

nn

n   – 
)1)()(1(

)1(

22

nnn

C n

n  – 
)1)()(1(

)2(

23

nnn

C n

n  =  

{[ )2(

4
112

)1(2

γ)4(β)2(α6 n

nC
nn

nnn
 + )2(

3
0110

)2(

γβ2α3β n

nC
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+ 9 3(n – 1)(n +2)(1–2n) +10 2n(n +1)(n – 1) + 6 ((2 2 – 6 3 + 0 – 1) )2(

5

n

nC      

    6n(n +1)(n – 1) (n + 2)          ...(3.12) 

where   = n( )2(

2

n

nC )– 1 

we solve this system by forward elimination of n and subsequently obtain from 

(2.8) the error estimate  

ε  =  22n – 4| 3| – | 1|2 )(

2

n

nC  + | 2|(n – 1) )1(

2

n

nC  – 2n )1(

2

n

nC                         (3.13) 

   2n(n + 1)(n – 1)22n – 4 |p4| 

where  

p4 = 
52

)2(

4112

2)1(2

)γ)4(β)2(α6(
n

n

nC

nn

nnn
        –  

2

)2(n
   

)1(

)γα3β( 010

n
 

 

+ (9 3(n – 1)(n +2)(1–2n) +10 2n(n +1)(n –1) + 6 (n + 2)(2 2 – 6 3 + 0 – 1) )2(

5

n

nC    

   6n(n + 1)(n – 1) (n + 2)      22n – 5 

+ 
2

)2(n
p3] 
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p3 = 
)2(

)β2α3β( 0110

n
   

– (n – 1)( (6 2(2n + 10) – (n + 1)(n + 2) + (n + 1)(n + 5)( 2 – 1) 

   4(n + 1)(n + 2) (n + 5)     

 

+ (9 3n(–2n – 1)  +  10 2n(n + 1) + 6 (2 2 – 6 3 + 0 + 1 52

)2(

5

2 n

n

nC
 – 172

)4(

2

2
p

C
n

n

n  + 2
2

)3(
p

n
    

                    6n(n + 1) (n + 2) 

 

p2 = 6(n +1)(n +2)(n +3)(12(n + 5)) – 6 2( n +2)(n +3) + 1(n +5)((n + 2) + 4) – 1((n 

+ 2)(n + 5) – (n – 2) (18 2(n +1) – (n +1)(n + 2)(18 2 – 10 2) + 3(2 2 –6 3 + 0  – 1) 

+ 3(n + 1)(n + 2) (n + 3)(n + 4)p1 

6(n + 1) (n + 2) (n + 3)   

p1 = 18 3(n + 2)(1 – (n + 3) + 10 2(n + 2)(n + 3)  + 6(2 2 – 6 3 + 0 – 1)  

6(n + 2)(n +3)(n + 4) 

 

In an earlier work  ( Ojo and Adeniyi (2011), we obtained the corresponding error 

estimate for the differential form as 

      

 = 
7

3

102 ||2

p

n

          ... (3.14) 

where 

 

p7 = {[(n + 1)(n – 1) 0 – (n – 1)(n – 3) 2](n – 1)(n – 2) 1 + (n – 1) 0)
)2(

4

n

nC  

+ ((n – 2)(n – 3)(n – 4) 3 + (n – 2) 1 + 0)
)2(

5

n

nC  – n(n – 1)(n – 2)
2

1 

+ n(n – 1)(n – 2) 0]  

 

Computed results from this are contained in Table 4.2 below. 

 

 

 

4  A NUMERICAL EXPERIMENT  
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We consider here the following problem for experimentation with our results of the 

preceding sections. The exact error is defined by  

 
*
 = 

10
max

x
{|y(xk)-yn(xk)|}, 0 < x < 1  {xk} = {0.01k},  for k = 0 (1)100 

 

Example 

 

Ly(x) = y (x) – 5y (x) + 6y (x) = 0 , 0 < x < 1   

y(0) = 0, y (0) = 1, y (0) = 0  

 

The exact solution is  

 

y(x) = 
6

5    + xe22
3  –   xe33

2
 

 

The numerical results are presented in Table 4.1 below. 

 

Table 4.1:  Error and Error Estimates using (3.13)   

      Degree(n) 

Error  

5 6 7 

ε~  9.88 x10 – 5  5.99 x 10 – 5  3.85 x10 – 5  

* 1.96 x10 – 4  2.29 x10 – 5  4.25 x10 – 7  

 

  

 

5 CONCLUSION  

 The integrated form of the tau method for the solution of Initial Value 

Problems (IVPs) in a class of third order differential equations with non-over-

determination has been presented. The error estimate is good as it closely captures 

the order of the error. This is better achieved than for the case of the direct series 

substitution approach otherwise referred to as the differential form thus lending 

credence to the preference of the former. This may be attributed to the higher order 

perturbation term which the integrated form involves.  
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