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Abstract - This paper discusses the influence of wall 

thickness and additional mass flux on peristaltic pumping of a 

Jeffrey fluid in a cylindrical tube. The flow is investigated in a wave 

frame of reference moving with velocity of the wave. Using the 

perturbation technique, for modified Reynolds number, solutions 

are obtained for the non-linear differential equations with suitable 

boundary conditions. The axial velocity, pressure rise, friction force 

are obtain. The effect of various parameters of interest on flow rate 

and frictional force are discussed with help of graphs.          

Keywords: wall thickness, additional mass flux, Jeffrey fluid, 

Peristaltic pumping.  

 

1. INTRODUCTION 

 

Peristaltic motion is a form of fluid transport that 

occurs when a progressive wave of area contraction or 

expansion propagates along the length of a distensible tube or 

channel containing the fluid. Peristalsis is a well known major 

mechanisms for fluid transport in many biological systems 

like swallowing food through the esophagus, urine transport 

from the kidney to the bladder through the ureter, movement 

of chyme in the gastro intestinal tract, movement of ovum in 

the female fallopian tubes, the transport of spermatozoa in the 

ducts efferent us of the male reproductive tract and in the 

cervical canal, the transport of lymph in the lymphatic vessels, 

and in the vasomotion in small blood vessels, such as 

arterioles and capillaries. Peristaltic pumping is one of the 

most important characteristics of fluid transport mechanism in 

many biological systems. It pumps the fluid against pressure 

rise since the first investigation of Latham reference [1], a 

number of analytical, numerical and experimental studies of 

peristaltic pumping of different fluids have been reported 

under different conditions with reference to physiological and 

mechanical situations. Srinivas et al. [2], discussed the 

influence of heat and mass transfer, wall properties and slip 

conditions for Newtonian fluid. Most of bio-fluids such as 

blood exhibit the behavior of non-Newtonian fluids may help 

to get better understanding of the working of biological 

systems. 

             Ravi Kumar et al.[3], studied unsteady peristaltic 

pumping in a finite length tube with permeable wall. 

Vajravelu et al.[4], considered the peristaltic transport of 

Herschel-Bulkley fluid in an inclined tube. Alsaedi et al.[5], 

considered couple stress fluid in their investigations. Subba 

Reddy et at.[6], studied the peristaltic motion of a power-law  

fluid in an asymmetric channel. Hayat and Ali [7], Srinivas 

and Kothandapani [8], Nadeem and Akram [9], and Pandey 

and Tripathi [10], have considered Jeffrey fluid in their study. 
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Ravi kumar [11], considered Jeffry fluid in their analysis 

related to peristaltic pumping. Vajravelu et al.[12], 

Kothandapani [13] considered Jeffrey fluid, and Hina et 

al.[14] considered third grade fluid in their work. 

 

2. FORMULATION OF THE PROBLEM 

                We consider the problem of peristaltic transport of 

a Jeffrey fluid in a circular cylindrical tube to study the 

effects of wall thickness and constantly added flux per unit 

volume. 

The geometry of the wall surface is described as 
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Figure1. Physical Model 

where a is the mean radius of the tube, 𝑏  is the wave 

amplitude, 𝑑 is the tube wall thickness, 𝜆  is the wavelength of 

the peristaltic wave, 𝑐 is the wave propagation velocity and t  

is the time. Here the flow is completely symmetrical about the 

axial coordinate Z . 

                    We choose the cylindrical coordinate system

),( ZR , where the Z -axis lies along the centerline of the tube, 

and R  is the distance measured radially. Let U  and W  be 

the velocity components in the radial and axial directions 

respectively. 

                    In the fixed frame of reference ),( ZR , the flow is 

unsteady. However, in a coordinate frame moving with the 

wave speed c , ),( zr  is stationary.  

The transformation from fixed frame to wave frame is given 

by 

z = tcZ  , r = R , ctcZRWzrw  ),(),(    

                            (2) 

),(),( tcZRUzru                                             (3) 

where u and w  are the dimensional velocity components in 

the direction of r and w   respectively. 

The governing equations in the wave frame are given as 
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where P  is the pressure, 𝜇 is the coefficient of viscosity, 𝜌 is 

the density and q  is the constantly added mass flux per unit 

volume, 
1  is the Jeffrey parameter. 

Now, we introduce the following non-dimensional variables 
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And defining the modified Reynolds number and wave 

number as 
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where 𝜑 is the amplitude ratio when thickness ratio tends to 

zero, 1
a

b
 , 𝜀  is thickness ratio and q is the additional 

parameter which is equal to the ratio between period time of 

relaxation and contraction to additional time of secretion to 

flow region in the small intestine. 

Equations of motion in the dimensionless form have been 

reduced to 
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where   is the additional Reynolds number which is equal to 

the ratio between additional force and viscosity force,

*
Req .  

The instantaneous volume flow rate in the laboratory frame is 

given by  


H

RdRWQ
0

2

  

                                                 (11) 

The rate of volume flow in the wave frame is given by 



H

rdrwF
0

2                                                  (12) 

If we substitute equations (2) and (3) into equation (11) and 

make use of (12), we find that the two rates of volume flow 

are related through 
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The dimensionless time-mean volume flow rates  and F

respectively in the fixed and wave frame as 
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where   
H
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 On the symmetry plane  0r  the normal velocity 

component and the slope of the velocity profile are zero. Also, 

the tangential component of the fluid velocity on the wall is 

usually determined from the mechanical property of the wall. 

Choosing the simple condition here that the wall has only 

transverse displacements at all times in the fixed frame, then 

the tangential component of fluid velocity in the wave frame 

on the wall is 

cW    at )(zHr                                        (18) 

Using the concept of differentiation under the integral sign of 

(12) and make use of (18) and (4), 

We have 
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The dimensionless boundary conditions in the wave frame are 
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3. NUMERICAL SOLUTION 

We use perturbation method to find the solution. For this, we 

expand FPwu ,,, in terms of the modified Reynolds 

numbers  *Re  of first order is considered as 

.....Re 1

*
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Substituting Eq.(22) into Eqs. 8-10, and 20 -21 we get the 

zeroth order and first order problems as mentioned below 

3.1 ZEROTH-ORDER PROBLEM 

The governing equations  

q
z

wru

rr

















 0

1

0

1

1


                               (23) 

00 




r

P
                                                               (24) 























r

wr

rrz

P 0

1

0

1

1


                               (25) 

The boundary conditions are given by 
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On solving Eqs. (23) - (25) subject to boundary conditions 

given by Eqs. (26) and (27), we get the solution of the zeroth 

order problem as   
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3.2 FIRST-ORDER PROBLEM 

The governing equations  
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The boundary conditions are given by 
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where 
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 The pressure gradient, at this order, is given as 
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The expressions for the axial velocity component and the axial 

pressure gradient, up to first order, may be respectively 

written as 
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The above results can be expressed to first-order by defining 
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0 Re FFF   then substituting 1
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Eq. (42) and (43), neglecting the terms greater than  ,*
Re  

we find 
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(45) 

The pressure rise P  and friction force F  (at the wall) in 

the tube of length   in their non-dimensional forms, are 

given by 

 






1

0
dz

dz

dP
P                                                       (46) 

  






1

0

2
dz

dz

dP
HF                                                (47) 

Substituting Eq (45) into Eq (46) and Eq (47) yields 
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substituting Eq. (16) and Eq. (50) into Eq.(48) and Eq. (49) 

gives 
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(52) 
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The trapping limits are determined by calculating the ratio 

between minimum time-mean flow 
min

  and maximum 

time-mean flow min
)1(

  as a function of amplitude ratio   

as   tends to zero. The minimum time-mean flow is obtained 

by Eq.(44) when we put 0w at ,1,0  Hr  and 

0H   solving it for  then we get 













 


2

22

1
2

1

1min


 e

L                                          (53) 

where 
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L
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



 

The maximum time-mean flow  min
)1(

  is obtained by 

putting 0 P  in equation (51) and solving it for min
)1(

  

The absolute values of 
min

  and min
)1(

  must be real and 

satisfy the relation .min
)1(

min
0  Therefore trapping 

occurs such that 1min
)1(

min
0   for all given 

values of  ,  and  . 

4. RESULTS AND DISCUSSIONS 

           The effects of flow rate parameter  on pressure rise 

at 2.0,6.0  for different values of Jeffrey parameter 

 
1
  is discussed through Fig.2 and Fig.3. From Fig.2(a) and 

Fig.2(b), it is observed that the pressure rise decreases with 

increasing thickness ratio    in the peristaltic pumping case 

and its absolute value increases with increasing thickness 

ratio    in augmented pumping case for  6.0 . From 

Fig.2(a) and Fig.2(b), it can be seen that the increases in the 

value of Jeffrey parameter  
1
  decreases the value of P

for a fixed values of thickness ratio. Similar phenomenon is 

observed from Fig.3 which is drawn for 2.0  

                From Fig.2 and Fig.3, it is observed that pressure 

rise at 2.0 is much smaller than the corresponding value 

at 6.0 for certain values of thickness ratio    with flow 

rate as a parameter. 

              Fig.4, shows that the pressure rise decreases with 

increasing additional Reyn 

olds number   in the pumping  ,0 P free pumping

 0 P  and co-pumping  0 P  regions. The effect 

of Jeffrey parameter is observed from the Fig.4(a) and 4(b), 

which are drawn for 5.0
1
 and 1.5 respectively . It can be 

seen that increase in Jeffrey parameter decreases the pressure 

rise for the fixed values of remaining parameters. 

            The effect of various parameters on friction force can 

be observed from Figs 5 - 9. Fig.5 and Fig.6 are drawn to 

study the effects of flow rate F on friction force at  

6.0  and 2.0 respectively. From Fig.5(a), it is 

noticed that reflux occurs at 4.0,2.0  and the peristaltic 

pumping occurs at 0  for all values of   but the reflux 

occurs at all the values of 4.0,2.0,0  can be observed 

from Fig.5(b). From these two, we can study the effect of 

Jeffrey parameter i.e. increase in the Jeffrey parameter 

effects the pumping phenomenon. From Fig.6, it is noticed 

that increase in flow rate increases the friction force for any 

fixed value of thickness ratio   . 

            It can be seen from Fig.6 that the friction force 

increases with an increase in the flow rate   for a given 

thickness ratio . From Figs.5 and 6 it can be concluded that 

the decreases in  for a given flow rate   , decreases the 

friction force  ( F ).   

            The effects of additional Reynolds number   on 

friction force for 6.0  and 2.0  is observed from 

Figs. 7 and 8. It is observed that the friction force increases 

with increasing  at 6.0  and 2.0  For a given  , 
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F  increases with an increase in   value is noticed from 

Figs.7 and 8. And also for a fixed Jeffrey parameter  
1
 and 

additional Reynolds numbers   , the frictional force 

increases with decreasing  . Also, it is observed that the 

increase in the Jeffrey parameter  
1
  decreases the friction 

force for any given value of  . 

           From Fig.9, it is observed that the time-mean flow 

ratio decreases with the increasing additional Reynolds 

number    for a given amplitude ratio   . It is noticed 

from Fig.10, that the time mean flow ratio increases with 

increasing  . 

5. CONCLUSIONS 

         The influence of wall thickness and additional mass 

flux on the peristaltic pumping of non-Newtonian fluid is 

studied by considering Jeffrey fluid model. 

The following are the conclusion drawn from this study. 

1. The pressure rise decreases with increasing thickness 

ratio. 

2. The pressure rise decreases with increasing Jeffrey 

parameter for any given thickness ratio and flow rate 

parameter. 

3. Increase in the additional Reynolds number decreases 

the pressure rise. 

4. The friction force increases with increasing thickness 

ratio for any given flow rate parameter. 

5. The friction force increases with increasing 

additional Reynolds number for a fixed thickness 

ratio. 

6. The trapping limit increases with increasing 

thickness ratio and the additional Reynolds number. 
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𝐹𝑖𝑔. 2  𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑟𝑖𝑠𝑒 𝑤𝑖𝑡𝑕 𝑡𝑕𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜  

     𝑓𝑜𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓  with 𝜑 = 0.6 𝑎𝑛𝑑    

 𝑎 𝜆1 = 0.5, (𝑏)𝜆1 = 1.5. 
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 𝐹𝑖𝑔. 3  𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 𝑤𝑖𝑡𝑕 𝑡𝑕𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜  

           𝑓𝑜𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓  with 2.0  𝑎𝑛𝑑    

 𝑎  𝜆1 = 0.5    (𝑏) 𝜆1 = 1.5. 
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 𝐹𝑖𝑔. 4 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑟𝑖𝑠𝑒 𝑤𝑖𝑡𝑕 𝑡𝑕𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜  

𝑓𝑜𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓  with  𝜑 = 0.6 𝑎𝑛𝑑   

  𝑎 𝜆1 = 0.5  (𝑏)𝜆1 = 1.5. 
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𝐹𝑖𝑔. 5  𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 𝑤𝑖𝑡𝑕 𝑡𝑕𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜  

           𝑓𝑜𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓  with 6.0  𝑎𝑛𝑑    

 𝑎  𝜆1 = 0.5    (𝑏) 𝜆1 = 1.5. 
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𝐹𝑖𝑔. 6 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 𝑤𝑖𝑡𝑕 𝑡𝑕𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜  

            𝑓𝑜𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓  with  2.0  𝑎𝑛𝑑    

 𝑎  𝜆1 = 0.5      𝑏  𝜆1 = 1.5. 
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𝐹𝑖𝑔. 7 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 𝑤𝑖𝑡𝑕 𝑡𝑕𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 

 𝑓𝑜𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓  with 6.0  𝑎𝑛𝑑   

 𝑎  𝜆1 = 0.5   (𝑏) 𝜆1 = 1.5. 
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(a) 

 

 
 

(b)                                                                                                           
𝐹𝑖𝑔. 8 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 𝑤𝑖𝑡𝑕 𝑡𝑕𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜  

𝑓𝑜𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓  with 2.0  𝑎𝑛𝑑  

 𝑎  𝜆1 = 0.5     𝑏  𝜆1 = 1.5. 

 

 
(a) 

 

 
(b) 

 
𝐹𝑖𝑔. 9 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑚𝑒𝑎𝑛 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑖𝑜  𝑤𝑖𝑡𝑕  

        𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑟𝑎𝑡𝑖𝑜 𝑓𝑜𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓  with   

         2.0 , 4.0  08.0 𝑎𝑛𝑑    

 𝑎  𝜆1 = 0.5    𝑏 𝜆1 = 1.5. 
 

 
(a) 

                                                                     
(b)                                         

 
𝐹𝑖𝑔. 10 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑚𝑒𝑎𝑛 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑖𝑜 𝑤𝑖𝑡𝑕  

      𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑟𝑎𝑡𝑖𝑜 𝑓𝑜𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓   with    

      4.0 , 4.0   08.0 𝑎𝑛𝑑   

     𝑎  𝜆1 = 0.5     𝑏 𝜆1 = 1.5. 
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