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Abstract - Meta-learning, broadly defined as learning to learn, 

has evolved from a niche optimization strategy into a 

foundational paradigm reshaping how artificial intelligence 

systems acquire, transfer, and generalize knowledge across tasks 

and domains. This paper presents a narrative and conceptual 

review tracing the evolution of meta-learning through its 

theoretical foundations, algorithmic paradigms, and taxonomic 

developments. Beginning with the bilevel optimization 

formulation and episodic training framework, the review 

examines the emergence of three paradigmatic families—metric-

based, optimization-based, and model-based methods—and 

documents how the scope of what is learned progressively 

widened from model parameters to learning rates, loss functions, 

and neural architectures. The paper analyzes the progressive 

dissolution of boundaries between meta-learning, transfer 

learning, and multi-task learning, and examines how in-context 

learning within foundation models represents a conceptual 

reconvergence of classical meta-learning principles at 

unprecedented scale. Cross-domain implications are explored 

across knowledge-based systems, predictive modeling, 

personalized assessment, and user-centered adaptive systems. 

The review identifies persistent open challenges — including 

scalability constraints, task distribution assumptions, theoretical 

gaps, and ethical considerations — that arise directly from the 

evolutionary trajectory documented herein. 

Keywords—Meta-Learning, Few-Shot Learning, Taxonomy, 

Foundation Models, Bilevel Optimization, Transfer Learning, 
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I. INTRODUCTION

The trajectory of artificial intelligence research reveals a 
recurring tension between generality and specialization. Early 
AI systems pursued generality through hand-crafted knowledge 
representations [1], while machine learning shifted intelligence 
from explicit rules to statistical regularities extracted from data 
[2]. Deep learning further amplified this paradigm through 
hierarchical representations [3]. Yet each advance reinforced a 
fundamental limitation: the assumption that learning occurs in 
isolation, from scratch, for each new task. Meta-learning—the 
systematic study of how learning systems can acquire the 
capacity to learn more efficiently across tasks—represents a 
principled attempt to transcend this limitation. 

This paper provides an evolutionary analysis of meta-
learning within the broader AI landscape: tracing its conceptual 
genealogy, examining its theoretical and algorithmic 
maturation, mapping its taxonomic boundaries, and articulating 
its cross-domain implications. Unlike technical catalogs that 
inventory algorithms, this review adopts a narrative-analytical 

approach seeking to understand why meta-learning emerged, 
how its core ideas have evolved, and what this evolution 
implies for adaptive intelligence. 

A. Conceptual Genealogy and Motivation

Russell and Norvig [1] established the canonical framework
in which AI encompasses computational systems designed to 
perceive, reason, and act. Within this framework, machine 
learning constitutes a subfield concerned with algorithms that 
improve through data exposure, and deep learning represents a 
methodological specialization employing multi-layered neural 
networks [2]. Chua et al. [2] demonstrated that conflation of 
AI, ML, DL, and data mining creates methodological 
inconsistencies, and their systematic taxonomy clarified that AI 
functions as the encompassing domain, ML as its learning-
capable subset, and DL as a representation-specialized stratum. 
This hierarchical clarification is essential for meta-learning, 
which operates at a fundamentally different level of 
abstraction: rather than learning input-to-output mappings 
within a fixed task, it learns to optimize the learning process 
itself across a distribution of tasks. 

The motivation for meta-learning emerges from the 
empirical observation that no single learning algorithm 
dominates across all tasks. Abdullah et al. [3] demonstrated 
that neither standalone nor hybrid ML techniques can satisfy 
all evaluated metrics simultaneously, echoing the classical No 
Free Lunch theorems. If no universal algorithm exists, then the 
capacity to select, configure, or construct appropriate 
algorithms for novel tasks becomes a form of intelligence. In 
deployment scenarios—medical diagnostics with limited 
records, robotics in unpredictable environments, NLP for low-
resource languages—the assumption that sufficient labeled data 
exists for training each new model is frequently violated [4], 
[5]. Meta-learning addresses this by optimizing a learning 
procedure across a distribution of tasks, each potentially 
characterized by minimal data. 

B. Scope and Differentiation

The meta-learning literature has been served by significant
surveys, each adopting distinct analytical lenses. Vettoruzzo et 
al. [4] provided the most comprehensive recent technical 
review in IEEE TPAMI, covering state-of-the-art approaches 
and relationships with adjacent fields. Bahranifard and Ghaffari 
[5] offered a complementary paradigm survey organizing the
field around four core paradigms. Despite their contributions,
these surveys treat meta-learning primarily as a technical
domain. The present review addresses this gap through three
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differentiating commitments summarized in Table 1: (a) 
foregrounding conceptual evolution over algorithmic 
inventory, (b) integrating cross-domain implications as a co-
equal analytical component, and (c) establishing causal 
linkages between evolutionary analysis and open problems. 

TABLE I.  DIFFERENTIATION OF THE PRESENT REVIEW FROM EXISTING 

SURVEYS 

Analytical 

Dimension 

Vettoruzzo et al. 

[4] 

Bahranifard & 

Ghaffari [5] 

Present Review 

Primary Focus Technical 

methods & 

benchmarks 

Paradigm 

taxonomy & 

applications 

Conceptual 

evolution & 

implications 

Analytical Lens Algorithmic 

inventory 

Paradigm 

classification 

Evolutionary 

narrative 

Cross-Domain 

Coverage 

Limited to ML 

domains 

Selected 

application areas 

Thematic 

implications 

across domains 

Open Problems 

Framing 

Listed as future 

directions 

Identified as 

challenges 

Causally linked to 

evolutionary 

shifts 

Foundation Model 

Analysis 

Mentioned briefly Emerging 

direction 

Dedicated section 

(Sec. 6) 

This paper adopts a narrative review methodology, selected 
over systematic review protocols for reasons intrinsic to its 
analytical objectives. The reference corpus comprises 44 
sources spanning foundational AI texts [1] to cutting-edge 
contributions published in 2025 [2], [3], organized thematically 
rather than by domain. 

II. THEORETICAL FOUNDATIONS 

A. The Bilevel Optimization Formulation 

The formal distinction between meta-learning and 
conventional machine learning is expressed through their 
respective optimization structures. In standard supervised 
learning, parameters θ minimize a loss L(θ, D) on a single task. 
Meta-learning introduces a second level: rather than treating 
the learning configuration as given, it treats it as learnable—
what Bouchattaoui [7] terms the "meta-knowledge" ω. At the 
inner level, a base learner optimizes task-specific parameters 
given ω and a task's training data. At the outer level, the meta-
learner optimizes ω across a distribution of tasks to minimize 
expected loss on held-out data: 

 (1) 

subject to: 

 (2) 

This bilevel structure encodes the fundamental 
epistemological shift defining meta-learning: in conventional 
learning, the practitioner occupies the outer loop—manually 
selecting architectures, learning rates—while the algorithm 
occupies only the inner loop. Meta-learning automates the 
outer loop. The mathematical prerequisites draw upon 
optimization theory foundations: Rameshkumar [6] articulated 
the underpinnings of gradient-based optimization from basic 
gradient descent through adaptive methods such as Adam, 
establishing convergence properties dependent on loss surface 
geometry. Mohammadi et al. [8] observed that meta-learning 
differs from classical ML "with respect to the level of 
adaptation," distinguishing between the fixed bias of base 
learning and the learnable bias of meta-learning. 

B. Representation Learning and Generalization Bounds 

A central theoretical insight is that meta-knowledge ω can 
be understood as a shared representation—a mapping from raw 
inputs to an intermediate feature space capturing structure 
common across tasks. Bouchattaoui [7] decomposed the 
hypothesis space , where F constitutes the shared 
representation space and G the task-specific head space. The 
meta-learning objective reduces to finding the representation 
that minimizes empirical loss averaged across tasks. The 
theoretical power lies in generalization guarantees: Theorem 
3.1 bounds per-task examples m required for good within-task 
generalization, and Theorem 3.2 extends this to bound both 
tasks n and examples m for across-task generalization. 

The key structural insight is that the shared representation 
compresses the learning problem's complexity: instead of 
requiring each task to independently learn features, the 
representation learner amortizes this cost across tasks. Per-task 
sample complexity depends only on G's capacity, while the 
representation cost is distributed across n tasks. This is the 
formal basis for meta-learning's few-shot capability (Table 2). 

TABLE II.  COMPARISON OF GENERALIZATION FRAMEWORKS 

Dimension Standard Learning Meta-Learning 

Data Structure Single dataset D from 

one task T 

Meta-sample: n tasks × 

m examples per task 

Optimization Single-level: minθ L(θ, 

D) 

Bilevel: outer (ω) and 

inner (θ) 

What Is Learned Task-specific 

parameters θ 

Shared representation f 

+ task-specific heads g_i 

Generalization Bound Depends on capacity of 

H and \|D\| 

Depends on capacity of 

G and F, plus n and m 

[7] 

Sample Efficiency Requires large \|D\| per 

task 

Small m per task; 

amortized across n tasks 

No Free Lunch Fully applicable Mitigated by non-

uniform task distribution 

[7] 

C. Task Distributions and Episodic Training 

Both the bilevel formulation and representation learning 
framework presuppose a concept absent from classical ML: a 
distribution over tasks. Bouchattaoui [7] formalized this as an 
environment E defined over task distributions, from which 
individual tasks are sampled. Performance is measured by the 

transfer risk: , 

evaluating the expected risk when confronted with a new task. 
A critical observation is that the No Free Lunch theorem does 
not constrain meta-learning in the same way—because tasks 
are sampled from a non-uniform distribution E, there exists 
exploitable structure that a meta-learner can leverage [7]. 

The episodic training paradigm operationalizes these 
constructs: each episode samples a task, splits it into support 
and query sets, and optimizes meta-parameters to minimize 
query loss after adaptation on the support set. This directly 
implements bilevel optimization within the stochastic task-
sampling framework. The episodic structure explicitly 
optimizes for rapid adaptation—evaluating performance after 
adaptation, not merely on training data—enabling few-shot 
generalization [4], [8]. 
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D. Evolution of the Formal Framework 

The theoretical foundations emerged progressively through 
four phases (Table 3): (I) conceptual foundations articulating 
"learning to learn" as informal principle [8]; (II) bilevel 
optimization formalization establishing mathematical 
objectives [7]; (III) representation learning theory with 
generalization bounds via hypothesis space decomposition [7]; 
and (IV) task-distribution formalism with environmental 
measures and transfer risk [7]. Each phase enabled new 
algorithmic classes: bilevel formulation motivated MAML; 
representation theory motivated metric-based methods; task-
distribution formalism provided the episodic training paradigm. 

TABLE III.  EVOLUTION OF META-LEARNING'S THEORETICAL 

FRAMEWORK 

Phase Theoretical 

Contribution 

Key Formalism Algorithmic 

Enablement 

I: 

Conceptual 

"Learning to 

learn" as 

informal 

principle [8] 

Descriptive vocabulary; no 

unified objective 

Heuristic algorithm 

configuration 

II: Bilevel 

Opt. 

Meta-learning 

as nested 

optimization 

[7] 

minω ∑ ℒmeta(θ*(ω)) s.t. 

θ* = argmin ℒtask 

Gradient-based 

meta-learning 

(MAML) 

III: 

Representati

on 

Hypothesis 

decompositio

n H = G ∘ F 

[7] 

Theorems on m (per-task) 

and n (tasks) bounds 

Metric-based and 

embedding 

methods 

IV: Task-

Distribution 

Environmenta

l measure E; 

transfer risk 

[7] 

R(A,E) = 

E_{D~E}[E_{S~D⊗m}[R

(A(S),D)]] 

Episodic training; 

task-sampling 

III. PARADIGMS AND ALGORITHMIC EVOLUTION 

A. Metric-Based Methods 

Metric-based meta-learning operationalizes the 
representation learning framework by learning an embedding 
function under which semantic similarity corresponds to 
geometric proximity, reducing classification to nearest-
neighbor retrieval. He et al. [10] traced the lineage from 
Siamese networks through Matching Networks (introducing 
episodic training to metric learning), Prototypical Networks 
(computing class prototypes as mean embeddings), and 
Relation Networks (replacing fixed distance metrics with 
learned similarity functions). Gharoun et al. [13] clarified that 
the paradigm's principal advantage lies in computational 
efficiency—adaptation requires no gradient computation—but 
at the cost of constraining task-specific adaptation to fixed 
distance functions. He et al. [10] reported competitive 
performance on standard benchmarks (MiniImageNet, 
TieredImageNet), particularly in very few-shot settings, while 
revealing struggles with tasks requiring complex decision 
boundaries. 

B. Optimization-Based Methods and MAML 

Model-Agnostic Meta-Learning (MAML), introduced by 
Finn et al. [11], trains initial parameters θ such that few 
gradient steps on a new task's support data yield parameters θ′ 
that generalize well on query data. The meta-objective 

computes , where 

 Finn et al. [11] demonstrated 
model-agnosticism and problem-agnosticism—applicable to 

classification, regression, and reinforcement learning. Finn and 
Levine [12] subsequently proved that for sufficiently deep 
networks, MAML combined with gradient descent has the 
same representational power as any arbitrary learning 
algorithm, resolving whether MAML's simplicity came at a 
representational cost. Alom [9] noted that MAML catalyzed 
extensions including first-order approximations (FOMAML, 
Reptile) and variants that meta-learn inner-loop learning rates, 
adaptation steps, or loss functions. 

C. Model-Based Methods 

Model-based methods learn an entire learning algorithm 
implemented as a neural network, typically a recurrent or 
memory-augmented architecture that ingests the support set 
and produces predictions in a single forward pass. He et al. [10] 
identified their defining characteristic as external or internal 
memory for accumulating task-specific knowledge. Finn and 
Levine's [12] universality analysis established that recurrent 
meta-learners are universal learning procedure approximators, 
but that MAML achieves the same universality. The critical 
difference lies not in expressive capacity but in inductive bias 
and statistical efficiency: model-based methods make no 
assumption about learning algorithm structure, offering 
flexibility at the cost of requiring more meta-training data [9], 
[13]. 

D. Widening Scope: From Parameters to Architectures 

The preceding paradigms share a significant constraint: the 
neural architecture is fixed during meta-learning. Elsken et al. 
[14] introduced MetaNAS, integrating gradient-based NAS 
with MAML—both methods optimize nested objectives using 
gradient descent and can be combined into a single bilevel 
procedure that jointly meta-learns weights and architecture. 
Zhao et al. [15] extended this with H-Meta-NAS, addressing 
hardware heterogeneity by integrating MAML into a hardware-
aware NAS flow, reducing search complexity from O(T × H × 
C) to O(1). This trajectory reflects meta-learning's maturation 
from a technique for few-shot classification into a 
comprehensive framework for adaptive system design. 

E. Comparative Analysis 

The paradigms represent fundamentally different answers 
to what meta-knowledge should consist of. The evolutionary 
trajectory reveals a consistent pattern: each successive 
paradigm broadens the scope of what is meta-learned (Table 4). 
This expansion has not rendered earlier paradigms obsolete—
metric-based methods remain preferred in latency-critical 
applications, and MAML's simplicity continues to make it a 
dominant baseline. 

TABLE IV.  COMPARATIVE ANALYSIS OF META-LEARNING PARADIGMS 

AND THEIR THEORETICAL FOUNDATIONS 

Paradigm Meta-

Knowledge 

Inner-

Loop 

Expressiveness Key 

Innovation 

Ref. 

Metric-

Based 

Embedding 

space 

Non-

parametric 

distance 

Limited by 

fixed metric 

Learned 

similarity 

with non-

parametric 

classification 

[10], 

[13] 

Optimization 

(MAML) 

Initialization 

θ 

Gradient 

descent 

Universal 

(proven [12]) 

Model-

agnostic 

initialization 

for rapid 

[11], 

[12] 
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adaptation 

Model-

Based 

Learned 

learning 

algorithm 

Forward 

pass 

Universal (by 

construction) 

External 

memory for 

task 

knowledge 

accumulation 

[10], 

[13] 

Architecture-

Level 

Architecture 

+ weights 

Gradient 

on both 

Universal + 

structure 

Joint meta-

learning via 

DARTS + 

hardware 

awareness 

[14], 

[15] 

 

 

Fig. 1. Hierarchical scope of meta-learning paradigms. Concentric regions 

represent progressively broader scopes: embedding space (metric) → 

initialization (optimization) → learning algorithm (model-based) → 

computational structure (architecture-level). 

IV. TAXONOMIC EVOLUTION AND PARADIGM 

BOUNDARIES 

A. Meta-Learning vs. Transfer Learning vs. Multi-Task 

Learning 

Upadhyay et al. [16] provided the most systematic 
comparative analysis of these three paradigms. All involve 
tasks defined over domains  with loss 
functions, but differ in how knowledge-sharing is structured: 
transfer learning operates sequentially (source trained first, 
knowledge transferred to target); multi-task learning operates 
simultaneously (joint training with shared representations); 
meta-learning operates episodically (bilevel optimization 
extracting meta-knowledge φ enabling rapid adaptation to 
unseen tasks). The formal distinction becomes blurred in 
practice because multi-task and meta-training objectives are 
structurally similar—the distinction lies in the presence of the 
outer-loop meta-objective. Upadhyay et al. [16] revealed that 
the taxonomy is inherently multi-axis, with each paradigm 
occupying a distinct region in a space defined by training 
structure, knowledge type, and optimization level. Bahranifard 
and Ghaffari [5] independently corroborated this multi-axis 
view. 

Multimodal, Continual, and Self-Supervised Extensions 

Ma et al. [17] established multimodal meta-learning as a 
distinct research area, identifying two fundamental problems: 

enrichment of task inputs through complementary multimodal 
information, and generalization across heterogeneous task 
distributions with different modality combinations. Their 
taxonomy organized algorithms by meta-knowledge type: 
learning the optimization (multimodal bilevel parameters), 
learning the embedding (multimodal prototypes and attention 
kernels), and learning the generation (cross-modal data 
augmentation). Bahranifard and Ghaffari [5] identified 
continual meta-learning (integrating rapid adaptation with 
catastrophic forgetting mitigation for non-stationary task 
distributions), self-supervised meta-learning (constructing 
pseudo-tasks from unlabeled data using contrastive learning or 
pretext tasks), and causal meta-learning (learning interventional 
meta-knowledge for robust out-of-distribution generalization) 
as emerging extensions. These expand meta-learning along 
three orthogonal dimensions: temporal dynamics, supervision 
requirements, and reasoning structure [5]. 

B. Cross-Domain Taxonomic Positioning 

Cross-domain taxonomies reveal how meta-learning is 
perceived outside its native context. Vissers-Similon et al. [22] 
evaluated AI techniques for early architectural design across 
seven categories; notably, meta-learning does not appear as an 
independent category—its adaptive capabilities are distributed 
across Classic ML and Transformer categories. Castro Pena et 
al. [23] corroborated this in their review of AI for conceptual 
architectural design, where taxonomic organization follows 
application function rather than algorithmic lineage. Li et al. 
[24] demonstrated that design applications require 
combinations of generative, discriminative, and adaptive 
capabilities—a functional decomposition that crosscuts 
algorithmic taxonomy. This evidence reveals meta-learning's 
taxonomic transformation: from a specific algorithmic family 
to a general-purpose paradigm to a fundamental computational 
capability transcending any single category (Table 5). 

TABLE V.  CROSS-DOMAIN TAXONOMIC POSITIONING OF META-
LEARNING 

Study Domain Taxonomic 

Approach 

Meta-Learning's 

Role 

Vissers-Similon et 

al. [22] 

Architectural 

design 

Seven AI 

categories across 

four potential 

levels 

Implicitly 

distributed; not 

independent 

category 

Castro Pena et al. 

[23] 

Conceptual design Application-

function-centered 

taxonomy 

Subsumed under 

adaptive AI 

capabilities 

Li et al. [24] AI for design 

efficiency 

Functional: 

generative, 

discriminative, 

adaptive 

Positioned as the 

adaptive 

capability 

Upadhyay et al. 

[16] 

ML (general) Multi-axis 

paradigm 

comparison 

Distinct 

paradigm; 

converging 

toward hybrids 

V. CONCEPTUAL SHIFTS AND PARADIGM MATURATION 

A. Evolutionary Phases and Technique-to-Paradigm 

Transition 

Meta-learning's evolution reveals four distinct phases. The 
foundational period (pre-2017) articulated "learning to learn" 
as programmatic rather than algorithmically precise [8], 
recognizing that single-task learning's limitations were 
structural [4]. The algorithmic crystallization (2017–2020), 
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catalyzed by MAML [11], generated the paradigmatic diversity 
documented in Section 3 and enabled the field to identify its 
structural dimensions. The taxonomic expansion (2020–2023) 
witnessed continual, self-supervised, causal, and multimodal 
extensions [5] alongside progressive convergence with transfer 
and multi-task learning [16]. The capability transformation 
(2023+) sees meta-learning transition from a paradigm defined 
by specific mechanisms to a fundamental computational 
capability—as evidenced by cross-domain taxonomies [22], 
[23], [24]. 

This trajectory constitutes a genuine technique-to-paradigm 
transition, evidenced by three structural markers: (a) 
convergence on shared theoretical vocabulary (bilevel 
optimization, task distributions) rather than ad hoc formalisms 
[4]; (b) development of systematic internal taxonomy with 
recognized trade-offs [5]; and (c) capacity to subsume adjacent 
fields—the bilevel structure generalizes multi-task learning and 
recovers transfer learning as special cases [16]. A technique 
has variants; a paradigm has schools of thought (Table 6). 

B. Inductive Bias: From Hand-Crafted to Learned 

The foundational conceptual shift unifying meta-learning's 
entire trajectory is the transition from hand-crafted to learned 
inductive biases. In classical ML, inductive bias is determined 
a priori: hypothesis class, loss function, regularization, 
optimization procedure [8]. Meta-learning's insight is that these 
choices can be parameterized and optimized through 
experience across tasks. Each paradigm implements this 
differently: metric-based methods learn the embedding space 
(similarity bias), optimization-based learn the initialization 
(starting-point bias), model-based learn the entire algorithm 
(procedural bias), and architecture-level learn computational 
structure (structural bias). Vettoruzzo et al. [4] documented a 
characteristic pattern: each generation expands the set of 
learnable components while preserving some fixed ones, and 
the next generation then makes those fixed components 
learnable. Finn et al.'s [11] universality theorem establishes that 
this shift does not sacrifice representational power—it is a strict 
generalization. 

TABLE VI.  PARADIGM MATURATION AND PROGRESSIVE EXPANSION OF 

LEARNABLE INDUCTIVE BIASES 

Stage Learnable 

Component 

Fixed 

Components 

Evidence 

Classical ML Parameters 

(weights) only 

Architecture, init, 

learning rate, loss, 

hypothesis class 

Standard 

supervised 

learning [8] 

Metric-based 

Meta-Learning 

Embedding space 

(similarity metric) 

Architecture, 

adaptation 

procedure, task 

structure 

Prototypical / 

Matching 

Networks [4] 

MAML 

(Optimization-

based) 

Initialization θ for 

gradient descent 

Architecture, 

adaptation steps, 

LR schedule 

Finn et al. [11]; 

Universality [12] 

Model-based 

Meta-Learning 

Entire learning 

algorithm 

Meta-architecture, 

memory access 

patterns 

MANNs, 

recurrent meta-

learners [4], [5] 

Architecture-level Structure + 

initialization + 

weights 

NAS search 

space, hardware 

constraints 

MetaNAS [14], 

H-Meta-NAS [15] 

Frontier 

Extensions 

Task distributions, 

supervision, 

causality 

Core learning-to-

learn objective 

Continual, self-

supervised, causal 

ML [5] 

Paradigm Status: 

Technique → 

Shared formalism, 

internal 

N/A [4], [5], [11], [16] 

Paradigm taxonomy, 

subsumptive 

capacity 

 

 

Fig. 2. Four evolutionary phases of meta-learning and the progressive 

liberation of inductive biases from hand-crafted to learned. Each 

generation expands what is learnable; the trajectory continues through 

frontier extensions. 

VI. META-LEARNING IN THE FOUNDATION 

MODEL ERA 

A. In-Context Learning as Implicit Meta-Learning 

The rise of foundation models intersects with meta-
learning's evolution at a critical juncture. Kılınç and 
Keçecioğlu [18] traced generative AI's development from 
Shannon's communication theory through GANs (2014) to the 
Transformer architecture (2017)—the same year MAML 
catalyzed meta-learning's algorithmic crystallization. Both 
developments represented moves from domain-specific to 
general-purpose frameworks. The Transformer's attention 
mechanism enabled training on vastly larger datasets, 
producing models capable of learning transferable 
representations. 

The most significant intersection lies in in-context learning 
(ICL)—the capacity of large language models to adapt 
behavior to new tasks based on demonstration examples within 
the input prompt, without parameter updates. In the standard 
meta-learning framework, a meta-learner optimizes 
initialization through an outer loop such that few gradient steps 
yield good performance. In ICL, a pretrained model achieves 
an analogous outcome through a fundamentally different 
mechanism: the forward pass processes demonstrations 
(analogous to the support set) and generates predictions 
(analogous to the query set), with adaptation occurring within 
activation patterns rather than through parameter optimization. 
This functional equivalence suggests that meta-learning's core 
functional capability—few-shot task adaptation—has become 
an emergent property of systems trained at sufficient scale on 
sufficiently diverse data [18], [19]. 

The distinction between explicit and implicit meta-learning 
carries profound implications. Explicit meta-learning treats the 
learning-to-learn objective as a distinct optimization problem 
requiring specialized procedures. Implicit meta-learning 
achieves functionally equivalent outcomes as an emergent 
property of large-scale pretraining. This suggests the learned 
inductive bias framework may be more general than its original 
bilevel optimization instantiation, and challenges taxonomic 
boundaries by suggesting meta-learning's identity may reside in 
functional capability rather than specific optimization structure 
(Table 7). 

TABLE VII.  COMPARISON OF EXPLICIT AND IMPLICIT META-LEARNING 

FRAMEWORKS 

Dimension Explicit Meta-

Learning 

Implicit Meta-

Learning (ICL) 
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Adaptation Mechanism Gradient-based 

parameter updates via 

bilevel optimization 

Attention-mediated 

context processing; no 

parameter updates 

Training Paradigm Episodic training over 

task distribution 

Autoregressive 

pretraining on diverse 

corpora; task structure 

implicit 

Task Specification Formal: T = (D_train, 

D_test, L) with class 

structure 

Natural language 

demonstrations; task 

boundaries implicit 

Inductive Bias Source Learned 

initialization/embedding 

optimized over tasks 

Learned attention 

patterns from massive 

pretraining 

Data Requirements Curated episodic 

datasets with task 

boundaries 

Massive unstructured 

corpora; few-shot at 

inference only 

Personalization in the Foundation Model Era 

The convergence finds concrete expression in 
personalization—adapting general-purpose models to 
individual users with minimal data. Zhu et al. [21] 
demonstrated this rigorously for personalized image aesthetics 
assessment (PIAA), reconceptualizing each user's aesthetic 
preferences as a meta-learning task. Their BLG-PIAA 
approach directly instantiates bilevel optimization: the meta-
training phase learns an aesthetic meta-learner through bilevel 
gradient updates, extracting shared prior knowledge about how 
people judge aesthetics—not what any individual judges, but 
the shared capacity for aesthetic judgment. Newton [25] 
documented that generative models in specialized domains face 
a persistent data curation bottleneck that meta-learning's few-
shot capabilities directly address. Soares Koshiyama et al. [19] 
anticipated multi-capability foundation model systems 
combining generative, sequential, and adaptive components for 
capital markets. This cross-domain consistency suggests 
personalization via meta-learning represents a fundamental 
operational mode for the foundation model era. 

 

Fig. 3. Parallel and converging trajectories. Upper: generative AI milestones 

[18]. Lower: meta-learning milestones. Convergence at 2017 

(Transformers + MAML) and the foundation model era (ICL 

operationalizes meta-learning). 

VII. CROSS-DOMAIN IMPLICATIONS 

This section demonstrates how meta-learning's core 
principles manifest in applied contexts extending beyond 
canonical few-shot benchmarks. Rather than organizing by 
domain, the analysis follows four thematic trajectories 
revealing progressive deepening of meta-learning's relevance. 

A. From Knowledge-Based to Learning-Based Systems 

The trajectory from rule-based AI to data-driven learning 
constitutes the foundational arc upon which meta-learning's 
cross-domain implications are built. El-Attar [26] developed a 
computational framework encoding architectural design 
expertise as explicit rules and case-based prototypes, 

epitomizing the knowledge-based paradigm's bounded 
generalization. Mahmoodi [27] proposed cognitive meta-
strategies for design education that anticipated meta-learning's 
formal objective of task-general inductive biases. Eastman [28] 
automated evaluation of preliminary courthouse designs using 
BIM, prefiguring the task-distribution framework where a 
common evaluation mechanism operates across diverse 
instances. Sönmez [29] traced the evolution from hand-
operated Shape Grammars through Case-Based Design to ML 
approaches, noting that few-shot learning from precedent 
examples is precisely the operational mode meta-learning 
formalizes. Bhatt et al. [30] demonstrated predictive, evidence-
based architecture design integrating spatial reasoning with 
empirical behavioral data, exemplifying the multi-modal cross-
task transfer that meta-learning enables. This trajectory reveals 
progressive expansion of computational autonomy—from 
executing rules to learning from data to learning how to 
learn—driven precisely by the limitations meta-learning was 
designed to overcome. 

B. Predictive and Performance-Based Systems 

In domains characterized by data scarcity and cross-context 
variation, meta-learning's few-shot capabilities become 
operationally significant. Alotaibi [31] integrated multiple ML 
algorithms with explainable AI for residential energy 
prediction; the multi-model evaluation framework constitutes 
an informal approximation of meta-learning's model selection 
objective. Elbeltagi et al. [32] exposed the interoperability gap 
between parametric design tools and simulation engines—a 
bottleneck meta-learning's transferable prediction functions 
directly address. Runge and Zmeureanu [33] documented 
persistent challenges in model generalization across building 
types, mapping onto meta-learning's distinction between 
within-task and cross-task transfer. Panchalingam and Chan 
[34] found building AI heavily skewed toward domain-specific 
models with little cross-context transfer, underscoring meta-
learning's unrealized potential. Krishnan et al. [35] introduced 
ArchGym, finding that with sufficiently tuned 
hyperparameters, no single ML algorithm consistently 
dominated—the "hyperparameter lottery" directly motivating 
meta-learning's task-adaptive strategy. 

C. Personalized Assessment and Aesthetic Judgment 

Personalized aesthetics is a domain where meta-learning is 
structurally necessary: each user constitutes a distinct task with 
limited data, while shared perceptual structure provides cross-
task regularity. Zhu et al. [21] established the bilevel 
framework (Section 6.2). Zhu et al. [36] extended this to multi-
attribute interactive reasoning, modeling interactions between 
objective image attributes and subjective user attributes. Yang 
et al. [37] provided the PARA dataset (31,220 images, 438 
subjects, 13 dimensions), demonstrating that personalized 
preferences exhibit structured patterns correlated with 
measurable user characteristics—enabling meta-learning to 
leverage user metadata for more informative task 
representations. Zhang and Ban [38] represented the pre-meta-
learning baseline (GIAA)—population-level prediction without 
personalization. Hartanto et al. [39] validated using EEG and 
eye-tracking that aesthetic responses have consistent 
physiological correlates, grounding meta-learning's assumption 
that individual tasks share underlying structure. 
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D. User-Centered Adaptive Systems 

The most forward-looking implications emerge where 
meta-learning intersects with user-centered design leveraging 
physiological and behavioral data. Abdelmohsen et al. [40] 
introduced an affective computing framework generating 
emotionally responsive environments through multi-modal 
sensing—each user's emotional profile constitutes a 
personalization task operationalizing meta-learning's few-shot 
adaptation in real-time. Ma et al. [41] proposed IVR-based 
discrete choice modeling predicting design preferences across 
162 alternatives; meta-learning could learn a shared preference 
model rapidly adaptable to new users. Tu and Nagakura [42] 
demonstrated measurable correlations between multi-modal 
physiological data and spatial parameters, providing the 
sensing infrastructure meta-learning personalization requires. 
Cho et al. [43] developed CNN-LSTM models for EEG-based 
architectural preference prediction; meta-learning could resolve 
their precision-recall tradeoff through task-adaptive ERP 
feature weighting. Zhang et al. [44] found expertise level 
moderates emotional perception of AI-generated architecture, 
constituting a task-defining variable in the meta-learning sense 
(Table 8). 

TABLE VIII.  CROSS-DOMAIN EVIDENCE FOR META-LEARNING 

IMPLICATIONS 

Trajectory Representative 

Studies 

Key Finding Meta-Learning 

Connection 

Knowledge → 

Learning 

El-Attar [26]; 

Sönmez [29]; 

Bhatt et al. [30] 

Progressive 

computational 

autonomy from 

rules to evidence-

based prediction 

Few-shot learning 

from precedents; 

cross-task transfer 

via learned 

representations 

Predictive 

Systems 

Alotaibi [31]; 

Runge & 

Zmeureanu [33]; 

Krishnan et al. 

[35] 

No single 

algorithm 

dominates; 

generalization 

across contexts 

limited 

Task-adaptive 

strategy; 

transferable 

prediction 

functions; 

hyperparameter 

lottery 

Personalized 

Assessment 

Zhu et al. 

[21],[36]; Yang et 

al. [37]; Hartanto 

et al. [39] 

Individual 

aesthetics 

structured by 

measurable 

attributes; 

physiological 

correlates 

Bilevel user-as-

task formulation; 

structured task 

distribution via 

user metadata 

User-Centered 

Adaptive 

Abdelmohsen et 

al. [40]; Tu & 

Nagakura [42]; 

Cho et al. [43] 

Multi-modal 

physiological 

responses 

correlate with 

design parameters 

Real-time few-

shot emotion 

adaptation; task-

adaptive neural 

feature weighting 

 

Fig. 4. Three-stage trajectory in applied AI: knowledge-based systems [26–

28] → learning-based systems [29–30] → meta-learning systems, driven 

by successive paradigm limitations. 

VIII. OPEN PROBLEMS ARISING FROM THE 

EVOLUTION 

The evolutionary analysis reveals that meta-learning's open 
problems are logical consequences of its developmental 
trajectory, not arbitrary gaps. Each conceptual advance 

simultaneously opened new capabilities and exposed new 
limitations. 

Scalability is a direct consequence of the field's widening 
scope. The bilevel optimization structure imposes costs that 
scale multiplicatively with inner-loop steps, model size, and 
task count [4]. First-order approximations sacrifice precise 
meta-gradient information, creating a fundamental trade-off 
[5]. The architecture-level integration compounds this: 
MetaNAS [14] requires trilevel optimization, and H-Meta-NAS 
[15] demonstrated that naive multi-task multi-hardware 
deployment creates O(T × H × C) complexity. However, 
Kuszczak et al. [20] showed meta-learned initializations 
reduced optimization iterations by 33.6% in neural topology 
optimization, with effective cross-resolution transfer, 
suggesting domain-informed strategies can manage the 
complexity-performance trade-off. 

Task distribution assumptions were exposed by cross-
domain transfer. Standard methods learn a single globally 
shared meta-parameter set, but performance degrades as task 
dissimilarity increases [4]. Meta-learning's generalization 
guarantees depend on test tasks being drawn from the same 
distribution as training tasks—systematically violated in cross-
domain scenarios (Section 7). In building energy prediction, 
geographic and climatic factors create distribution shifts; in 
personalized aesthetics, user populations vary across cultures; 
in physiological systems, measurement artifacts create 
unpredictable shifts. The fundamental question is what 
constitutes a "task" when the task space itself is ill-defined [4], 
[5]. 

Theoretical gaps trace to boundary dissolution. The 
intersections between meta-learning and adjacent paradigms—
mapped by Vettoruzzo et al. [4] across multi-task learning, 
transfer learning, domain adaptation, self-supervised learning, 
federated learning, and continual learning—create regions 
where existing formal guarantees do not apply. Causal meta-
learning exposes gaps between statistical learning and 
structural causal models [5]. The NAS–meta-learning 
integration [14] lacks convergence analysis for the joint 
architecture–weight space. These gaps represent a widening 
disconnect between empirical capabilities and theoretical 
understanding. 

Foundation model integration generates a distinct class of 
problems. The conceptual recognition that ICL constitutes 
implicit meta-learning raises unresolved questions: under what 
conditions does explicit bilevel optimization provide benefits 
beyond ICL? How can meta-learning's data-efficiency 
principles reduce foundation model training requirements? The 
bidirectional integration—where generative capabilities 
enhance meta-learning through synthetic task generation—
creates feedback loops whose theoretical properties are 
unexplored [4], [5]. 

Ethical implications arise from scope expansion into 
human-centered domains. Meta-learning's few-shot 
personalization creates a structural tension between utility and 
privacy: the paradigm builds individualized models from 
minimal user-specific data, potentially making users more 
identifiable than in aggregate approaches. The EEG-based 
systems of Cho et al. [43] and physiological sensing of Tu and 
Nagakura [42] collect intimate neurophysiological data that, 
processed through few-shot personalization, could enable 
granular profiling. Abdelmohsen et al.'s [40] environmentally 
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responsive framework raises consent and autonomy questions. 
Addressing these challenges requires both technical solutions 
(differential privacy, consent-aware protocols) and normative 
frameworks for determining when few-shot user modeling is 
appropriate (Table 9). 

TABLE IX.  OPEN PROBLEMS: EVOLUTIONARY ORIGINS AND RESEARCH 

PRIORITIES 

Open 

Problem 

Evolutionary 

Origin 

Current Status Research Priority 

Scalability Widening 

scope (Sec. 3); 

cross-domain 

transfer (Sec. 

7) 

First-order 

approximations; 

implicit 

differentiation 

(SAMA) 

Domain-informed 

initialization; modular 

meta-learning 

[4],[5],[14],[15],[20] 

Task 

Distribution 

Taxonomic 

expansion 

(Sec. 4); cross-

domain 

implications 

(Sec. 7) 

Multi-modal 

distribution 

methods; 

clustered 

initialization 

Task space 

characterization; task-level 

regularization [4],[5] 

Theoretical 

Gaps 

Boundary 

dissolution 

(Sec. 4); 

paradigm shift 

(Sec. 5) 

Paradigm-

specific 

guarantees; no 

unified 

framework 

Unified theory for 

boundary paradigms; 

architecture ML bounds 

[4],[5],[14] 

Foundation 

Model 

Integration 

Generative AI 

convergence 

(Sec. 6) 

ICL recognized 

as implicit ML; 

bidirectional 

integration 

nascent 

Hybrid ICL–bilevel 

frameworks; continual 

meta-learning [4],[5],[20] 

Ethical 

Implications 

Human-

centered 

applications 

(Sec. 7) 

Federated meta-

learning; no 

normative 

frameworks 

Differential privacy; 

consent-aware adaptation 

protocols [4],[5] 

IX. CONCLUSION 

This paper has traced the evolution of meta-learning from 
its formal inception as a bilevel optimization strategy to its 
current position as a foundational paradigm within artificial 
intelligence. The evolutionary narrative reveals a field whose 
development follows a discernible logic: each conceptual 
advance simultaneously resolved limitations and generated new 
challenges, producing the recursive pattern of capability 
expansion and problem emergence that characterizes genuinely 
transformative paradigms. 

The review established that meta-learning's theoretical 
architecture rests upon bilevel optimization, representation 
learning with generalization bounds, and the task-distribution 
formalism (Section 2). Three paradigmatic families—metric-
based, optimization-based, and model-based—represent 
fundamentally different answers to what constitutes 
transferable meta-knowledge, while the integration of NAS 
expanded the scope from parameters to computational structure 
itself (Section 3). The taxonomic analysis (Section 4) revealed 
progressive dissolution of boundaries between meta-learning 
and adjacent paradigms, reflecting a transition from technique 
to paradigm evidenced by shared formalism, systematic 
taxonomy, and subsumptive capacity (Section 5). The 
foundational shift from hand-crafted to learned inductive biases 
unifies the entire trajectory—a strict generalization that does 
not sacrifice representational power. 

The foundation model era (Section 6) revealed that in-
context learning constitutes an implicit instantiation of meta-
learning principles at unprecedented scale, validating that 

learning to learn is a fundamental computational principle 
rather than merely an algorithmic technique. The 
complementarity between foundation models' broad 
representational capacity and meta-learning's structured 
adaptation emerges as a defining theme. Cross-domain 
validation (Section 7) demonstrated meta-learning's 
implications across knowledge-based systems, predictive 
modeling, personalized assessment, and user-centered adaptive 
design—confirming its status as a general paradigm whose 
principles possess a generality transcending few-shot 
classification benchmarks. 

The five open problems identified (Section 8)—scalability, 
task distribution, theoretical gaps, foundation model 
integration, and ethical implications—are not arbitrary gaps but 
structural consequences of the field's own developmental 
trajectory. Each solution creates conditions for the next set of 
problems, a recursive dynamic characteristic of paradigms with 
genuine intellectual depth. Ultimately, meta-learning's 
significance lies in its demonstration that the capacity to learn 
how to learn constitutes a qualitatively distinct level of 
adaptive intelligence—one bridging narrow task-specific 
optimization and the flexible, generalizable intelligence that 
remains the central aspiration of AI research (Table 10). 

TABLE X.  CONSOLIDATED EVOLUTIONARY SYNTHESIS 

Phase Key 

Developments 

Conceptual 

Contribution 

Paradigmatic 

Significance 

Theoretical 

Foundations (Sec. 

2) 

Bilevel 

optimization; 

episodic training 

Formal separation 

of learning levels 

Mathematical 

architecture for 

all subsequent 

developments 

Algorithmic 

Paradigms (Sec. 

3) 

Metric → 

Optimization → 

Model-based; NAS 

Progressive scope 

widening 

What is learned 

can itself be 

learned 

Taxonomic 

Evolution (Sec. 

4) 

Boundary 

dissolution with 

adjacent paradigms 

From discrete 

categories to 

continuous 

spectrum 

Revealed 

structural 

commonalities 

across paradigms 

Conceptual Shifts 

(Sec. 5) 

Technique → 

Paradigm; 

inductive bias 

reconceptualization 

From isolated 

strategy to 

coherent 

paradigm 

General principle 

of adaptive 

intelligence 

Foundation 

Model Era (Sec. 

6) 

ICL as implicit 

meta-learning; 

personalization 

Reconvergence of 

classical 

principles 

Principles operate 

beyond original 

bilevel framework 

Cross-Domain 

(Sec. 7) 

Knowledge 

systems; 

prediction; 

aesthetics; user-

centered 

Domain-specific 

instantiation of 

abstractions 

Validated 

generality across 

application 

ontologies 

Open Problems 

(Sec. 8) 

Scalability; 

distributions; 

theory; integration; 

ethics 

Causal linkage 

between advances 

and challenges 

Research agenda 

generated by 

developmental 

trajectory 

 

Fig. 5. Consolidated trajectory through seven phases: foundations → 

algorithms → taxonomy → concepts → foundation models → cross-

domain → open problems. Arrows indicate causal relationships between 

phases and generated problems. 
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