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Abstract - Meta-learning, broadly defined as learning to learn,
has evolved from a niche optimization strategy into a
foundational paradigm reshaping how artificial intelligence
systems acquire, transfer, and generalize knowledge across tasks
and domains. This paper presents a narrative and conceptual
review tracing the evolution of meta-learning through its
theoretical foundations, algorithmic paradigms, and taxonomic
developments. Beginning with the bilevel optimization
formulation and episodic training framework, the review
examines the emergence of three paradigmatic families—metric-
based, optimization-based, and model-based methods—and
documents how the scope of what is learned progressively
widened from model parameters to learning rates, loss functions,
and neural architectures. The paper analyzes the progressive
dissolution of boundaries between meta-learning, transfer
learning, and multi-task learning, and examines how in-context
learning within foundation models represents a conceptual
reconvergence of classical meta-learning principles at
unprecedented scale. Cross-domain implications are explored
across knowledge-based systems, predictive modeling,
personalized assessment, and user-centered adaptive systems.
The review identifies persistent open challenges — including
scalability constraints, task distribution assumptions, theoretical
gaps, and ethical considerations — that arise directly from the
evolutionary trajectory documented herein.

Keywords—Meta-Learning, Few-Shot Learning, Taxonomy,
Foundation Models, Bilevel Optimization, Transfer Learning,
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I. INTRODUCTION

The trajectory of artificial intelligence research reveals a
recurring tension between generality and specialization. Early
Al systems pursued generality through hand-crafted knowledge
representations [1], while machine learning shifted intelligence
from explicit rules to statistical regularities extracted from data
[2]. Deep learning further amplified this paradigm through
hierarchical representations [3]. Yet each advance reinforced a
fundamental limitation: the assumption that learning occurs in
isolation, from scratch, for each new task. Meta-learning—the
systematic study of how learning systems can acquire the
capacity to learn more efficiently across tasks—represents a
principled attempt to transcend this limitation.

This paper provides an evolutionary analysis of meta-
learning within the broader Al landscape: tracing its conceptual
genealogy, examining its theoretical and algorithmic
maturation, mapping its taxonomic boundaries, and articulating
its cross-domain implications. Unlike technical catalogs that
inventory algorithms, this review adopts a narrative-analytical
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approach seeking to understand why meta-learning emerged,
how its core ideas have evolved, and what this evolution
implies for adaptive intelligence.

A. Conceptual Genealogy and Motivation

Russell and Norvig [1] established the canonical framework
in which Al encompasses computational systems designed to
perceive, reason, and act. Within this framework, machine
learning constitutes a subfield concerned with algorithms that
improve through data exposure, and deep learning represents a
methodological specialization employing multi-layered neural
networks [2]. Chua et al. [2] demonstrated that conflation of
Al, ML, DL, and data mining creates methodological
inconsistencies, and their systematic taxonomy clarified that AI
functions as the encompassing domain, ML as its learning-
capable subset, and DL as a representation-specialized stratum.
This hierarchical clarification is essential for meta-learning,
which operates at a fundamentally different level of
abstraction: rather than learning input-to-output mappings
within a fixed task, it learns to optimize the learning process
itself across a distribution of tasks.

The motivation for meta-learning emerges from the
empirical observation that no single learning algorithm
dominates across all tasks. Abdullah et al. [3] demonstrated
that neither standalone nor hybrid ML techniques can satisfy
all evaluated metrics simultaneously, echoing the classical No
Free Lunch theorems. If no universal algorithm exists, then the
capacity to select, configure, or construct appropriate
algorithms for novel tasks becomes a form of intelligence. In
deployment scenarios—medical diagnostics with limited
records, robotics in unpredictable environments, NLP for low-
resource languages—the assumption that sufficient labeled data
exists for training each new model is frequently violated [4],
[5]. Meta-learning addresses this by optimizing a learning
procedure across a distribution of tasks, each potentially
characterized by minimal data.

B. Scope and Differentiation

The meta-learning literature has been served by significant
surveys, each adopting distinct analytical lenses. Vettoruzzo et
al. [4] provided the most comprehensive recent technical
review in [EEE TPAMI, covering state-of-the-art approaches
and relationships with adjacent fields. Bahranifard and Ghaffari
[5] offered a complementary paradigm survey organizing the
field around four core paradigms. Despite their contributions,
these surveys treat meta-learning primarily as a technical
domain. The present review addresses this gap through three
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differentiating commitments summarized in Table 1: (a)
algorithmic
inventory, (b) integrating cross-domain implications as a co-
equal analytical component, and (c) establishing causal

foregrounding

conceptual

evolution

over

linkages between evolutionary analysis and open problems.

TABLE L. DIFFERENTIATION OF THE PRESENT REVIEW FROM EXISTING
SURVEYS
Analytical Vettoruzzo et al.| Bahranifard & | Present Review
Dimension 4] Ghaffari [5]

Primary Focus ~ [Technical Paradigm Conceptual
methods & taxonomy & evolution &
benchmarks applications implications

|Analytical Lens  [Algorithmic Paradigm Evolutionary
inventory classification narrative

Cross-Domain  [Limited to ML |Selected Thematic

Coverage domains application areas [implications

across domains

Open Problems

Listed as future

Identified as

Causally linked to

Framing directions challenges evolutionary
shifts

Foundation Model[Mentioned briefly |[Emerging Dedicated section

|Analysis direction (Sec. 6)
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B. Representation Learning and Generalization Bounds

A central theoretical insight is that meta-knowledge ® can
be understood as a shared representation—a mapping from raw
inputs to an intermediate feature space capturing structure
common across tasks. Bouchattaoui [7] decomposed the
hypothesis space H = G o F, where F constitutes the shared
representation space and G the task-specific head space. The
meta-learning objective reduces to finding the representation
that minimizes empirical loss averaged across tasks. The
theoretical power lies in generalization guarantees: Theorem
3.1 bounds per-task examples m required for good within-task
generalization, and Theorem 3.2 extends this to bound both
tasks n and examples m for across-task generalization.

The key structural insight is that the shared representation
compresses the learning problem's complexity: instead of
requiring each task to independently learn features, the
representation learner amortizes this cost across tasks. Per-task
sample complexity depends only on G's capacity, while the
representation cost is distributed across n tasks. This is the
formal basis for meta-learning's few-shot capability (Table 2).

This paper adopts a narrative review methodology, selected
over systematic review protocols for reasons intrinsic to its
analytical objectives. The reference corpus comprises 44
sources spanning foundational Al texts [1] to cutting-edge
contributions published in 2025 [2], [3], organized thematically
rather than by domain.

II. THEORETICAL FOUNDATIONS

A. The Bilevel Optimization Formulation

The formal distinction between meta-learning and
conventional machine learning is expressed through their
respective optimization structures. In standard supervised
learning, parameters 8 minimize a loss L(6, D) on a single task.
Meta-learning introduces a second level: rather than treating
the learning configuration as given, it treats it as learnable—
what Bouchattaoui [7] terms the "meta-knowledge" ®. At the
inner level, a base learner optimizes task-specific parameters
given o and a task's training data. At the outer level, the meta-
learner optimizes ® across a distribution of tasks to minimize
expected loss on held-out data:

' = argmin T Loera (6; (@), 0, DELD) (1)

subject to.
6; (@) = argmin Lig, (6, , DEI"(D)) 2
This Dbilevel structure encodes the fundamental

epistemological shift defining meta-learning: in conventional
learning, the practitioner occupies the outer loop—manually
selecting architectures, learning rates—while the algorithm
occupies only the inner loop. Meta-learning automates the
outer loop. The mathematical prerequisites draw upon
optimization theory foundations: Rameshkumar [6] articulated
the underpinnings of gradient-based optimization from basic
gradient descent through adaptive methods such as Adam,
establishing convergence properties dependent on loss surface
geometry. Mohammadi et al. [8] observed that meta-learning
differs from classical ML "with respect to the level of
adaptation," distinguishing between the fixed bias of base
learning and the learnable bias of meta-learning.
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TABLE II.

COMPARISON OF GENERALIZATION FRAMEWORKS

Dimension

Standard Learning

Meta-Learning

Data Structure

Single dataset D from
one task T

Meta-sample: n tasks x
m examples per task

parameters 0

Optimization Single-level: min6 L(0, [Bilevel: outer (w) and
D) inner (0)
'What Is Learned Task-specific Shared representation f

+ task-specific heads g i

Generalization Bound

Depends on capacity of
H and \|D\|

Depends on capacity of
G and F, plus n and m

[7]

Sample Efficiency

Requires large \[D\| per

Small m per task;

task
Fully applicable

amortized across n tasks
Mitigated by non-
uniform task distribution

[7]
C. Task Distributions and Episodic Training

INo Free Lunch

Both the bilevel formulation and representation learning
framework presuppose a concept absent from classical ML: a
distribution over tasks. Bouchattaoui [7] formalized this as an
environment E defined over task distributions, from which
individual tasks are sampled. Performance is measured by the
R(AE) = Ep.g [Es-pomlR(A(S), D],
evaluating the expected risk when confronted with a new task.
A critical observation is that the No Free Lunch theorem does
not constrain meta-learning in the same way—because tasks
are sampled from a non-uniform distribution E, there exists
exploitable structure that a meta-learner can leverage [7].

transfer risk:

The episodic training paradigm operationalizes these
constructs: each episode samples a task, splits it into support
and query sets, and optimizes meta-parameters to minimize
query loss after adaptation on the support set. This directly
implements bilevel optimization within the stochastic task-
sampling framework. The episodic structure explicitly
optimizes for rapid adaptation—evaluating performance after
adaptation, not merely on training data—enabling few-shot
generalization [4], [8].
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D. Evolution of the Formal Framework

The theoretical foundations emerged progressively through
four phases (Table 3): (I) conceptual foundations articulating
"learning to learn" as informal principle [8]; (II) bilevel
optimization  formalization  establishing  mathematical
objectives [7]; (III) representation learning theory with
generalization bounds via hypothesis space decomposition [7];
and (IV) task-distribution formalism with environmental
measures and transfer risk [7]. Each phase enabled new
algorithmic classes: bilevel formulation motivated MAML;
representation theory motivated metric-based methods; task-
distribution formalism provided the episodic training paradigm.

TABLE III. EVOLUTION OF META-LEARNING'S THEORETICAL
FRAMEWORK

Phase Theoretical |Key Formalism Algorithmic
Contribution Enablement

I8 "Learning to |Descriptive vocabulary; no [Heuristic algorithm|

Conceptual |[learn" as unified objective configuration
informal

rinciple [8]
1I: Bilevel [Meta-learning|minm Y #Aneta(6*(o)) s.t. |Gradient-based

Opt. as nested
optimization

[7]

0% = argmin #ask meta-learning

(MAML)

111: Hypothesis  [Theorems on m (per-task) [Metric-based and
Representati |[decompositio |and n (tasks) bounds embedding
on nH=GoF methods
[7]
IV: Task- |Environmenta |R(A,E) = Episodic training;

Distribution |l measure E; |[E_{D~E}[E_{S~D@m}[R |task-sampling
transfer risk  |(A(S),D)]]
[7]

III. PARADIGMS AND ALGORITHMIC EVOLUTION

A. Metric-Based Methods

Metric-based meta-learning operationalizes the
representation learning framework by learning an embedding
function under which semantic similarity corresponds to
geometric proximity, reducing classification to nearest-
neighbor retrieval. He et al. [10] traced the linecage from
Siamese networks through Matching Networks (introducing
episodic training to metric learning), Prototypical Networks
(computing class prototypes as mean embeddings), and
Relation Networks (replacing fixed distance metrics with
learned similarity functions). Gharoun et al. [13] clarified that
the paradigm's principal advantage lies in computational
efficiency—adaptation requires no gradient computation—but
at the cost of constraining task-specific adaptation to fixed
distance functions. He et al. [10] reported competitive
performance on standard benchmarks (MinilmageNet,
TieredImageNet), particularly in very few-shot settings, while
revealing struggles with tasks requiring complex decision
boundaries.

B. Optimization-Based Methods and MAML

Model-Agnostic Meta-Learning (MAML), introduced by
Finn et al. [11], trains initial parameters 6 such that few
gradient steps on a new task's support data yield parameters 0’
that generalize well on query data. The meta-objective
computes 0 — 0 — BV, ZLT_i(fe,_i), where
@; =68 — aVy Ly ;(fg) Finn et al. [11] demonstrated
model-agnosticism and problem-agnosticism—applicable to
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classification, regression, and reinforcement learning. Finn and
Levine [12] subsequently proved that for sufficiently deep
networks, MAML combined with gradient descent has the
same representational power as any arbitrary learning
algorithm, resolving whether MAML's simplicity came at a
representational cost. Alom [9] noted that MAML catalyzed
extensions including first-order approximations (FOMAML,
Reptile) and variants that meta-learn inner-loop learning rates,
adaptation steps, or loss functions.

C. Model-Based Methods

Model-based methods learn an entire learning algorithm
implemented as a neural network, typically a recurrent or
memory-augmented architecture that ingests the support set
and produces predictions in a single forward pass. He et al. [10]
identified their defining characteristic as external or internal
memory for accumulating task-specific knowledge. Finn and
Levine's [12] universality analysis established that recurrent
meta-learners are universal learning procedure approximators,
but that MAML achieves the same universality. The critical
difference lies not in expressive capacity but in inductive bias
and statistical efficiency: model-based methods make no
assumption about learning algorithm structure, offering
flexibility at the cost of requiring more meta-training data [9],
[13].

D. Widening Scope: From Parameters to Architectures

The preceding paradigms share a significant constraint: the
neural architecture is fixed during meta-learning. Elsken et al.
[14] introduced MetaNAS, integrating gradient-based NAS
with MAML—both methods optimize nested objectives using
gradient descent and can be combined into a single bilevel
procedure that jointly meta-learns weights and architecture.
Zhao et al. [15] extended this with H-Meta-NAS, addressing
hardware heterogeneity by integrating MAML into a hardware-
aware NAS flow, reducing search complexity from O(T x H x
C) to O(1). This trajectory reflects meta-learning's maturation
from a technique for few-shot classification into a
comprehensive framework for adaptive system design.

E. Comparative Analysis

The paradigms represent fundamentally different answers
to what meta-knowledge should consist of. The evolutionary
trajectory reveals a consistent pattern: each successive
paradigm broadens the scope of what is meta-learned (Table 4).
This expansion has not rendered earlier paradigms obsolete—
metric-based methods remain preferred in latency-critical
applications, and MAML's simplicity continues to make it a
dominant baseline.

TABLE IV. COMPARATIVE ANALYSIS OF META-LEARNING PARADIGMS
AND THEIR THEORETICAL FOUNDATIONS
Paradigm Meta- Inner- [Expressiveness| Key Ref.

Knowledge| Loop Innovation

Metric- Embedding [Non- Limited by|Learned [10],
Based space parametric fixed metric ~ [similarity ~ |[13]
distance with  non-
[parametric
classification
Optimization|Initialization|Gradient |Universal Model- [11],
(MAML) |0 descent  |(proven [12]) |agnostic [12]
initialization
for rapid
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adaptation
Model- Learned Forward |Universal (by|External [10],
Based learning pass construction) |memory for|[13]

algorithm task

knowledge

accumulation
Architecture-|Architecture|Gradient |Universal +Joint meta-|[14],
Level + weights |on both [structure learning via|[15]

DARTS  +

hardware

awareness

Computational Structure
(Architecture-Level)

Learning Algorithm
(Model-Based)

Initialization
(Optimization-Based)

Embedding Space
(Metric-Based)

Fig. 1. Hierarchical scope of meta-learning paradigms. Concentric regions
represent progressively broader scopes: embedding space (metric) —
initialization (optimization) — learning algorithm (model-based) —
computational structure (architecture-level).

IV. TAXONOMIC EVOLUTION AND PARADIGM
BOUNDARIES

A. Meta-Learning vs. Transfer Learning vs. Multi-Task
Learning

Upadhyay et al. [16] provided the most systematic
comparative analysis of these three paradigms. All involve
tasks defined over domains D = {X,p(x,y)} with loss
functions, but differ in how knowledge-sharing is structured:
transfer learning operates sequentially (source trained first,
knowledge transferred to target); multi-task learning operates
simultaneously (joint training with shared representations);
meta-learning operates episodically (bilevel optimization
extracting meta-knowledge ¢ enabling rapid adaptation to
unseen tasks). The formal distinction becomes blurred in
practice because multi-task and meta-training objectives are
structurally similar—the distinction lies in the presence of the
outer-loop meta-objective. Upadhyay et al. [16] revealed that
the taxonomy is inherently multi-axis, with each paradigm
occupying a distinct region in a space defined by training
structure, knowledge type, and optimization level. Bahranifard
and Ghaffari [5] independently corroborated this multi-axis
view.

Multimodal, Continual, and Self-Supervised Extensions

Ma et al. [17] established multimodal meta-learning as a
distinct research area, identifying two fundamental problems:
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enrichment of task inputs through complementary multimodal
information, and generalization across heterogeneous task
distributions with different modality combinations. Their
taxonomy organized algorithms by meta-knowledge type:
learning the optimization (multimodal bilevel parameters),
learning the embedding (multimodal prototypes and attention
kernels), and learning the generation (cross-modal data
augmentation). Bahranifard and Ghaffari [5] identified
continual meta-learning (integrating rapid adaptation with
catastrophic forgetting mitigation for non-stationary task
distributions), self-supervised meta-learning (constructing
pseudo-tasks from unlabeled data using contrastive learning or
pretext tasks), and causal meta-learning (learning interventional
meta-knowledge for robust out-of-distribution generalization)
as emerging extensions. These expand meta-learning along
three orthogonal dimensions: temporal dynamics, supervision
requirements, and reasoning structure [5].

B. Cross-Domain Taxonomic Positioning

Cross-domain taxonomies reveal how meta-learning is
perceived outside its native context. Vissers-Similon et al. [22]
evaluated Al techniques for early architectural design across
seven categories; notably, meta-learning does not appear as an
independent category—its adaptive capabilities are distributed
across Classic ML and Transformer categories. Castro Pena et
al. [23] corroborated this in their review of Al for conceptual
architectural design, where taxonomic organization follows
application function rather than algorithmic lineage. Li et al.
[24] demonstrated that design applications require
combinations of generative, discriminative, and adaptive
capabilities—a functional decomposition that crosscuts
algorithmic taxonomy. This evidence reveals meta-learning's
taxonomic transformation: from a specific algorithmic family
to a general-purpose paradigm to a fundamental computational
capability transcending any single category (Table 5).

TABLE V. CROSS-DOMAIN TAXONOMIC POSITIONING OF META-
LEARNING
Study Domain Taxonomic |Meta-Learning's
Approach Role
Vissers-Similon et|/Architectural Seven Alllmplicitly
al. [22] design categories across(distributed;  not
four potentiallindependent
levels category
Castro Pena et al.Conceptual design|Application- Subsumed under
[23] function-centered [adaptive Al
taxonomy capabilities
Li et al. [24] Al for design[Functional: Positioned as the
efficiency generative, adaptive
discriminative, |capability
adaptive
[Upadhyay et al.ML (general) Multi-axis Distinct
[16] paradigm paradigm;
comparison converging
toward hybrids

V. CONCEPTUAL SHIFTS AND PARADIGM MATURATION

A. Evolutionary Phases and Technique-to-Paradigm
Transition

Meta-learning's evolution reveals four distinct phases. The
foundational period (pre-2017) articulated "learning to learn"
as programmatic rather than algorithmically precise [8],
recognizing that single-task learning's limitations were
structural [4]. The algorithmic crystallization (2017-2020),
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catalyzed by MAML [11], generated the paradigmatic diversity
documented in Section 3 and enabled the field to identify its
structural dimensions. The taxonomic expansion (2020-2023)
witnessed continual, self-supervised, causal, and multimodal
extensions [5] alongside progressive convergence with transfer
and multi-task learning [16]. The capability transformation
(2023+) sees meta-learning transition from a paradigm defined
by specific mechanisms to a fundamental computational
capability—as evidenced by cross-domain taxonomies [22],
[23], [24].

This trajectory constitutes a genuine technique-to-paradigm
transition, evidenced by three structural markers: (a)
convergence on shared theoretical vocabulary (bilevel
optimization, task distributions) rather than ad hoc formalisms
[4]; (b) development of systematic internal taxonomy with
recognized trade-offs [5]; and (c) capacity to subsume adjacent
fields—the bilevel structure generalizes multi-task learning and
recovers transfer learning as special cases [16]. A technique
has variants; a paradigm has schools of thought (Table 6).

B. Inductive Bias: From Hand-Crafted to Learned

The foundational conceptual shift unifying meta-learning's
entire trajectory is the transition from hand-crafted to learned
inductive biases. In classical ML, inductive bias is determined
a priori: hypothesis class, loss function, regularization,
optimization procedure [8]. Meta-learning's insight is that these
choices can be parameterized and optimized through
experience across tasks. Each paradigm implements this
differently: metric-based methods learn the embedding space
(similarity bias), optimization-based learn the initialization
(starting-point bias), model-based learn the entire algorithm
(procedural bias), and architecture-level learn computational
structure (structural bias). Vettoruzzo et al. [4] documented a
characteristic pattern: each generation expands the set of
learnable components while preserving some fixed ones, and
the next generation then makes those fixed components
learnable. Finn et al.'s [11] universality theorem establishes that
this shift does not sacrifice representational power—it is a strict
generalization.

TABLE VI. PARADIGM MATURATION AND PROGRESSIVE EXPANSION OF
LEARNABLE INDUCTIVE BIASES
Stage Learnable Fixed Evidence
Component Components
Classical ML Parameters Architecture, init,[Standard

(weights) only learning rate, loss,[supervised

hypothesis class _[learning [8]
Metric-based Embedding space|Architecture, Prototypical /]
Meta-Learning  |(similarity metric) [adaptation Matching

procedure,  task[Networks [4]
structure

MAML Initialization 0 for|Architecture, Finn et al. [11];

(Optimization-  |gradient descent [|adaptation steps,|Universality [12]

based) LR schedule

Model-based Entire  learning|Meta-architecture,[MANNSs,

Meta-Learning  [algorithm memory  accessfrecurrent  meta-

atterns learners [4], [5]

Architecture-level [Structure +NAS searchMetaNAS  [14],
initialization +Hspace, hardware(H-Meta-NAS [15]
weights constraints

Frontier Task distributions,[Core learning-to-(Continual,  self-

Extensions supervision, learn objective  [supervised, causal
causality ML [5]

Paradigm Status:(Shared formalism,[N/A [41, [5], [11], [16]

Technique —linternal
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Paradigm taxonomy,
subsumptive
capacity
Crafted Learned Learning to Frontier

—_—

Meta-Learning Meta-Learning Modify Learning Meta-Learning

Learning systems select Entire leaming process

Humans program every g
is learnable

| Higher-order behaviors
algorithm among pre-defined algoritms

become learnable

* Loss Functions ¢ In-Context L

* Hand-crafted Features,
Hyperparameters,
Architectures

ning,
« Cross-Domain Adaptation,

* Hyperparameters,

Model Architectures * Optimization Strategies

« Neural Architectures * Task Distribution Adaptation

Fig.2. Four evolutionary phases of meta-learning and the progressive
liberation of inductive biases from hand-crafted to learned. Each
generation expands what is learnable; the trajectory continues through
frontier extensions.

VI. META-LEARNING IN THE FOUNDATION
MODEL ERA

A. In-Context Learning as Implicit Meta-Learning

The rise of foundation models intersects with meta-
learning's evolution at a critical juncture. Kiling and
Kegecioglu [18] traced generative Al's development from
Shannon's communication theory through GANs (2014) to the
Transformer architecture (2017)—the same year MAML
catalyzed meta-learning's algorithmic crystallization. Both
developments represented moves from domain-specific to
general-purpose frameworks. The Transformer's attention
mechanism enabled training on vastly larger datasets,
producing models capable of learning transferable
representations.

The most significant intersection lies in in-context learning
(ICL)—the capacity of large language models to adapt
behavior to new tasks based on demonstration examples within
the input prompt, without parameter updates. In the standard
meta-learning  framework, a  meta-learner  optimizes
initialization through an outer loop such that few gradient steps
yield good performance. In ICL, a pretrained model achieves
an analogous outcome through a fundamentally different
mechanism: the forward pass processes demonstrations
(analogous to the support set) and generates predictions
(analogous to the query set), with adaptation occurring within
activation patterns rather than through parameter optimization.
This functional equivalence suggests that meta-learning's core
functional capability—few-shot task adaptation—has become
an emergent property of systems trained at sufficient scale on
sufficiently diverse data [18], [19].

The distinction between explicit and implicit meta-learning
carries profound implications. Explicit meta-learning treats the
learning-to-learn objective as a distinct optimization problem
requiring specialized procedures. Implicit meta-learning
achieves functionally equivalent outcomes as an emergent
property of large-scale pretraining. This suggests the learned
inductive bias framework may be more general than its original
bilevel optimization instantiation, and challenges taxonomic
boundaries by suggesting meta-learning's identity may reside in
functional capability rather than specific optimization structure
(Table 7).

TABLE VII.  COMPARISON OF EXPLICIT AND IMPLICIT META-LEARNING
FRAMEWORKS
Dimension Explicit Meta- Implicit Meta-
Learning Learning (ICL)
Page 5

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)



Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

|Adaptation Mechanism |Gradient-based Attention-mediated
parameter updates vialcontext processing; no
bilevel optimization arameter updates
Episodic training over{Autoregressive

task distribution pretraining on diverse
corpora; task structure

Training Paradigm

implicit
Task Specification Formal: T = (D_train,[Natural language
D test, L) with classldemonstrations; task]
structure boundaries implicit
Inductive Bias Source |Learned Learned attention|

initialization/embedding [patterns from massive|

optimized over tasks pretraining

Data Requirements Curated episodicMassive  unstructured
datasets ~ with  task|corpora; few-shot at
boundaries inference only

Personalization in the Foundation Model Era

finds concrete expression in
personalization—adapting  general-purpose =~ models  to
individual users with minimal data. Zhu et al. [21]
demonstrated this rigorously for personalized image aesthetics
assessment (PIAA), reconceptualizing each user's aesthetic
preferences as a meta-learning task. Their BLG-PIAA
approach directly instantiates bilevel optimization: the meta-
training phase learns an aesthetic meta-learner through bilevel
gradient updates, extracting shared prior knowledge about how
people judge aesthetics—not what any individual judges, but
the shared capacity for aesthetic judgment. Newton [25]
documented that generative models in specialized domains face
a persistent data curation bottleneck that meta-learning's few-
shot capabilities directly address. Soares Koshiyama et al. [19]
anticipated multi-capability foundation model systems
combining generative, sequential, and adaptive components for
capital markets. This cross-domain consistency suggests
personalization via meta-learning represents a fundamental
operational mode for the foundation model era.

The convergence

Inductive Bias Liberation

>

Phase | Phase Il Phase lll Phase IV

Hand-Crafted Learned Initializati Algorithm-Level Ad; Frontier
& Representations

Inductive Bias

ture-level meta-learning

in learning

= Foundation model integration
. Co

* Model-based meta-learning

il & multimodal

Expansion of Learnable Structure

Fig. 3. Parallel and converging trajectories. Upper: generative Al milestones
[18]. Lower: meta-learning milestones. Convergence at 2017
(Transformers + MAML) and the foundation model era (ICL
operationalizes meta-learning).

VII. CROSS-DOMAIN IMPLICATIONS

This section demonstrates how meta-learning's core
principles manifest in applied contexts extending beyond
canonical few-shot benchmarks. Rather than organizing by
domain, the analysis follows four thematic trajectories
revealing progressive deepening of meta-learning's relevance.

A. From Knowledge-Based to Learning-Based Systems

The trajectory from rule-based Al to data-driven learning
constitutes the foundational arc upon which meta-learning's
cross-domain implications are built. El-Attar [26] developed a
computational framework encoding architectural design
expertise as explicit rules and case-based prototypes,
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epitomizing the knowledge-based paradigm's bounded
generalization. Mahmoodi [27] proposed cognitive meta-
strategies for design education that anticipated meta-learning's
formal objective of task-general inductive biases. Eastman [28]
automated evaluation of preliminary courthouse designs using
BIM, prefiguring the task-distribution framework where a
common evaluation mechanism operates across diverse
instances. Sonmez [29] traced the evolution from hand-
operated Shape Grammars through Case-Based Design to ML
approaches, noting that few-shot learning from precedent
examples is precisely the operational mode meta-learning
formalizes. Bhatt et al. [30] demonstrated predictive, evidence-
based architecture design integrating spatial reasoning with
empirical behavioral data, exemplifying the multi-modal cross-
task transfer that meta-learning enables. This trajectory reveals
progressive expansion of computational autonomy—from
executing rules to learning from data to learning how to
learn—driven precisely by the limitations meta-learning was
designed to overcome.

B. Predictive and Performance-Based Systems

In domains characterized by data scarcity and cross-context
variation, meta-learning's few-shot capabilities become
operationally significant. Alotaibi [31] integrated multiple ML
algorithms with explainable AI for residential energy
prediction; the multi-model evaluation framework constitutes
an informal approximation of meta-learning's model selection
objective. Elbeltagi et al. [32] exposed the interoperability gap
between parametric design tools and simulation engines—a
bottleneck meta-learning's transferable prediction functions
directly address. Runge and Zmeureanu [33] documented
persistent challenges in model generalization across building
types, mapping onto meta-learning's distinction between
within-task and cross-task transfer. Panchalingam and Chan
[34] found building Al heavily skewed toward domain-specific
models with little cross-context transfer, underscoring meta-
learning's unrealized potential. Krishnan et al. [35] introduced
ArchGym, finding that with  sufficiently  tuned
hyperparameters, no single ML algorithm consistently
dominated—the "hyperparameter lottery" directly motivating
meta-learning's task-adaptive strategy.

C. Personalized Assessment and Aesthetic Judgment

Personalized aesthetics is a domain where meta-learning is
structurally necessary: each user constitutes a distinct task with
limited data, while shared perceptual structure provides cross-
task regularity. Zhu et al. [21] established the bilevel
framework (Section 6.2). Zhu et al. [36] extended this to multi-
attribute interactive reasoning, modeling interactions between
objective image attributes and subjective user attributes. Yang
et al. [37] provided the PARA dataset (31,220 images, 438
subjects, 13 dimensions), demonstrating that personalized
preferences exhibit structured patterns correlated with
measurable user characteristics—enabling meta-learning to
leverage wuser metadata for more informative task
representations. Zhang and Ban [38] represented the pre-meta-
learning baseline (GIAA)—population-level prediction without
personalization. Hartanto et al. [39] validated using EEG and
eye-tracking that aesthetic responses have consistent
physiological correlates, grounding meta-learning's assumption
that individual tasks share underlying structure.
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D. User-Centered Adaptive Systems

The most forward-looking implications emerge where
meta-learning intersects with user-centered design leveraging
physiological and behavioral data. Abdelmohsen et al. [40]
introduced an affective computing framework generating
emotionally responsive environments through multi-modal
sensing—each user's emotional profile constitutes a
personalization task operationalizing meta-learning's few-shot
adaptation in real-time. Ma et al. [41] proposed IVR-based
discrete choice modeling predicting design preferences across
162 alternatives; meta-learning could learn a shared preference
model rapidly adaptable to new users. Tu and Nagakura [42]
demonstrated measurable correlations between multi-modal
physiological data and spatial parameters, providing the
sensing infrastructure meta-learning personalization requires.
Cho et al. [43] developed CNN-LSTM models for EEG-based
architectural preference prediction; meta-learning could resolve
their precision-recall tradeoff through task-adaptive ERP
feature weighting. Zhang et al. [44] found expertise level
moderates emotional perception of Al-generated architecture,
constituting a task-defining variable in the meta-learning sense
(Table 8).

TABLE VIII.  CROSS-DOMAIN EVIDENCE FOR META-LEARNING
IMPLICATIONS
Trajectory Representative | Key Finding | Meta-Learning
Studies Connection
Knowledge —El-Attar [26];|Progressive Few-shot learning
Learning Sonmez [29];|computational from precedents;
Bhatt et al. [30] |autonomy  from|cross-task transfer
rules to evidence-|via learned|
based prediction _|representations
Predictive Alotaibi [31];[No single[Task-adaptive
Systems Runge &lalgorithm strategy;
Zmeureanu [33];|dominates; transferable
Krishnan et al.|generalization iprediction
[35] across  contexts|functions;
limited hyperparameter
lottery
Personalized Zhu et al.|Individual Bilevel user-as-
|Assessment [21],[36]; Yang etjaesthetics task formulation;
al. [37]; Hartanto|structured by|structured task]
et al. [39] measurable distribution  via|
attributes; user metadata
physiological
correlates
User-Centered Abdelmohsen  et{Multi-modal Real-time  few-
Adaptive al. [40]; Tu &|physiological shot emotion
Nagakura  [42];[responses adaptation; task-|
Cho et al. [43] correlate withjadaptive  neural
design parameters [feature weighting

Knowledge-Based Learning-Based

Systems ‘ Systems

Rule-Based Expert Systems

‘ Meta-Learning Systems

Self-Adaptive Al

Deep Learning Models

Paradigm Limitations >

Fig. 4. Three-stage trajectory in applied Al: knowledge-based systems [26—
28] — learning-based systems [29-30] — meta-learning systems, driven
by successive paradigm limitations.

VIII. OPEN PROBLEMS ARISING FROM THE
EVOLUTION

The evolutionary analysis reveals that meta-learning's open
problems are logical consequences of its developmental
trajectory, not arbitrary gaps. Each conceptual advance
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simultaneously opened new capabilities and exposed new
limitations.

Scalability is a direct consequence of the field's widening
scope. The bilevel optimization structure imposes costs that
scale multiplicatively with inner-loop steps, model size, and
task count [4]. First-order approximations sacrifice precise
meta-gradient information, creating a fundamental trade-off
[5]. The architecture-level integration compounds this:
MetaNAS [14] requires trilevel optimization, and H-Meta-NAS
[15] demonstrated that naive multi-task multi-hardware
deployment creates O(T x H x C) complexity. However,
Kuszczak et al. [20] showed meta-learned initializations
reduced optimization iterations by 33.6% in neural topology
optimization, with effective cross-resolution transfer,
suggesting domain-informed strategies can manage the
complexity-performance trade-off.

Task distribution assumptions were exposed by cross-
domain transfer. Standard methods learn a single globally
shared meta-parameter set, but performance degrades as task
dissimilarity increases [4]. Meta-learning's generalization
guarantees depend on test tasks being drawn from the same
distribution as training tasks—systematically violated in cross-
domain scenarios (Section 7). In building energy prediction,
geographic and climatic factors create distribution shifts; in
personalized aesthetics, user populations vary across cultures;
in physiological systems, measurement artifacts create
unpredictable shifts. The fundamental question is what
constitutes a "task" when the task space itself is ill-defined [4],

[5].

Theoretical gaps trace to boundary dissolution. The
intersections between meta-learning and adjacent paradigms—
mapped by Vettoruzzo et al. [4] across multi-task learning,
transfer learning, domain adaptation, self-supervised learning,
federated learning, and continual learning—create regions
where existing formal guarantees do not apply. Causal meta-
learning exposes gaps between statistical learning and
structural causal models [5]. The NAS-meta-learning
integration [14] lacks convergence analysis for the joint
architecture-weight space. These gaps represent a widening
disconnect between empirical capabilities and theoretical
understanding.

Foundation model integration generates a distinct class of
problems. The conceptual recognition that ICL constitutes
implicit meta-learning raises unresolved questions: under what
conditions does explicit bilevel optimization provide benefits
beyond ICL? How can meta-learning's data-efficiency
principles reduce foundation model training requirements? The
bidirectional  integration—where generative capabilities
enhance meta-learning through synthetic task generation—
creates feedback loops whose theoretical properties are
unexplored [4], [5].

Ethical implications arise from scope expansion into
human-centered domains. Meta-learning's few-shot
personalization creates a structural tension between utility and
privacy: the paradigm builds individualized models from
minimal user-specific data, potentially making users more
identifiable than in aggregate approaches. The EEG-based
systems of Cho et al. [43] and physiological sensing of Tu and
Nagakura [42] collect intimate neurophysiological data that,
processed through few-shot personalization, could enable
granular profiling. Abdelmohsen et al.'s [40] environmentally
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responsive framework raises consent and autonomy questions.
Addressing these challenges requires both technical solutions
(differential privacy, consent-aware protocols) and normative
frameworks for determining when few-shot user modeling is
appropriate (Table 9).
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learning to learn is a fundamental computational principle

rather than merely an algorithmic technique. The
complementarity  between foundation models' broad
representational capacity and meta-learning's structured

adaptation emerges as a defining theme. Cross-domain
validation  (Section 7) demonstrated meta-learning's
implications across knowledge-based systems, predictive

TABLE IX. OPEN PROBLEMS: EVOLUTIONARY ORIGINS AND RESEARCH . . .
PRIORITIES modeling, personalized assessment, and user-centered adaptive
_ — design—confirming its status as a general paradigm whose
Pgl;)?:m Evo(l)';ti'g“i::ary Surzentstatus RS ot principles possess a generality transcending few-shot
Scalability ~ [Widening First-order Domain-informed classification benchmarks.
scope (Sec. 3)approximations; linitialization; modular The five open problems identified (Section 8)—scalability,
cross-domain [implicit meta-learning task  distributi th tical foundati del
transfer  (Sec.|differentiation |[41,[5],[141,[15],[20] tas hstribution, — theorefical  gaps, Ioundation —mode
7 (SAMA) integration, and ethical implications—are not arbitrary gaps but
Task Taxonomic  |Multi-modal  [Task space structural consequences of the field's own developmental
Distribution |expansion distribution characterization; task-level trajectory, Each solution creates conditions for the next set of
Eisec' 4); CTOSS'“I“’thOdZ; regularization [4],[5] problems, a recursive dynamic characteristic of paradigms with
domain clustered genuine intellectual depth. Ultimately, meta-learning's
implications |initialization A .. . .
(Sec. 7) significance lies in its demonstration that the capacity to learn
Theoretical  |[Boundary Paradigm- Unified  theory  for how to learn constitutes a qualitatively distinct level of
Gaps dissolution  [specific boundary paradigms; adaptive intelligence—one bridging narrow task-specific
(Sec. 4);jguarantees;  nojarchitecture ML bounds optimization and the flexible, generalizable intelligence that
paradigm shiftunified [41.[51.[14] remains the central aspiration of Al research (Table 10).
(Sec. 5) framework
Foundation |Generative AI[ICL recognizedHybrid ICL-bilevel
Model convergence [as implicit ML;[frameworks; continual TABLE X. CONSOLIDATED EVOLUTIONARY SYNTHESIS
Integration  |(Sec. 6) bidirectional meta-learning [4],[5],[20]
integration Phase Key Conceptual Paradigmatic
nascent Developments Contribution Significance
Ethical Human- Federated meta-|Differential privacy; Theoretical Bilevel Formal separationMathematical
Implications |centered learning; no|consent-aware  adaptation Foundations (Sec.joptimization; of learning levels [architecture  for
applications  [normative protocols [4],[5] 2) episodic training all subsequent|
(Sec. 7) frameworks developments
|Algorithmic Metric —|Progressive scope(What is learned
IX. CONCLUSION Paradigms  (Sec.|Optimization — —|widening can itself  be
. . . 3) Model-based; NAS learned
~ This paper has traced the evolution of meta-learning from  |Taxonomic Boundary From _ discrcicRevealed
its formal inception as a bilevel optimization strategy to its Evolution  (Sec.|dissolution  with|categories to|structural
current position as a foundational paradigm within artificial 4) adjacent paradigms|continuous commonalities
intelligence. The evolutionary narrative reveals a field whose : : spectrum _ across paradigms
development follows a discernible logic: each conceptual Conceptual Shifts{Technique —|From isolated|General principle
d imult I Ived limitati d ted (Sec. 5) Paradigm; strategy tolof adaptive
advance simultaneously resolved limitations and generated new i nductive biaslcoherent intelligence

challenges, producing the recursive pattern of capability
expansion and problem emergence that characterizes genuinely
transformative paradigms.

The review established that meta-learning's theoretical
architecture rests upon bilevel optimization, representation
learning with generalization bounds, and the task-distribution
formalism (Section 2). Three paradigmatic families—metric-
based, optimization-based, and model-based—represent
fundamentally different answers to what constitutes
transferable meta-knowledge, while the integration of NAS
expanded the scope from parameters to computational structure
itself (Section 3). The taxonomic analysis (Section 4) revealed
progressive dissolution of boundaries between meta-learning
and adjacent paradigms, reflecting a transition from technique
to paradigm evidenced by shared formalism, systematic
taxonomy, and subsumptive capacity (Section 5). The
foundational shift from hand-crafted to learned inductive biases
unifies the entire trajectory—a strict generalization that does
not sacrifice representational power.

The foundation model era (Section 6) revealed that in-
context learning constitutes an implicit instantiation of meta-
learning principles at unprecedented scale, validating that
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reconceptualizationjparadigm

Foundation ICL as implicitfReconvergence of|Principles operate

Model Era (Sec.meta-learning; classical beyond  original

6) personalization principles bilevel framework

Cross-Domain  [Knowledge Domain-specific |Validated

(Sec. 7) systems; instantiation  of|generality across|
prediction; abstractions application
aesthetics;  user- ontologies
centered

Open  Problems(Scalability; Causal  linkage[Research agenda

(Sec. 8) distributions; between advances|generated by
theory; integration;jand challenges  |developmental
ethics

trajectory

;
l Foundations H Algorithms H Taxonomy JL»l Foundation Models »1 Cross-Domain ‘

Bilevel optimization, Metric-based, Paradigm categorization,  Large-scale, in-context learning,
episodic training optimization-based, meta-tasks transfer learning
l mndel—hn[wd methods ‘ |

Personalized assessment,
user-centered adaptation

v
v v

‘ Open Problems ‘
|« Scalability constraints' |
|+ Practical and theoretical gaps
« Distribution shifts and assumptions |
» Ethical considerations

Fig. 5. Consolidated trajectory through seven phases: foundations —
algorithms — taxonomy — concepts — foundation models — cross-
domain — open problems. Arrows indicate causal relationships between
phases and generated problems.
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