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Abstract: This paper is related to obtain an analytical solution for 

counter flow forced convection in a parallel plate channel 

occupied by a layered saturated porous medium under the effect 

of viscous dissipation. In this problem asymmetrical constant heat 

flux boundary conditions are considered. Brinkman model is 

applied for the porous medium. It is found that there is no effect 

of viscous dissipation in Darcy limits. The effects of viscous 

dissipation for clear fluid limits are discussed. The effect of 

viscous dissipation is to increase the Nusselt number both in 

parallel and counter flow cases.  
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I. INTRODUCTION 

    Many scientists view life from either the macroscopic 

(systems) or the microscopic (cellular) level, but in reality one 

must be aware that life processes exist continuously 

throughout the spectrum. The measurement and control of 

temperature in living tissues is of great value in both the 

assessment of normal physiological function and the treatment 

of pathological states [1]. With the advancements in biology, 

health and medicine becoming interdisciplinary, physical and 

mathematical concepts are being increasingly invoked to 

model biological processes. Porous medium modeling of bio-

fluid and heat flow is an interesting and useful approach to 

simplify and understand the biological phenomena. 

 A generic region of biological tissue irrigated by blood 

flow can readily be perceived to fit our definition of a porous 

medium comprising a stationary solid (tissue) matrix saturated 

by fluid (blood) flow, with identifiable interfaces [2]. The heat 

transport in such biological tissue region can be modeled as 

convection in porous media with internal heat generation, 

Zhang [3]. From this perspective, it is apparent that the 

investigation of heat transfer processes in such a tissue-blood 

region would require an energy conservation statement similar 

to the porous medium energy conservation equation. 

   Effects of heterogeneity in forced convection in a porous 

medium are studied by Nield and Kuznetsov [4] in a parallel 

plate channel or a circular duct. The effects of variation of 

permeability and thermal conductivity, on fully developed 

forced convection in a parallel plate channel or a circular duct 

filled with a saturated porous medium, is investigated 

analytically on the basis of the Darcy and Dupuit-Forchheimer 

model. 

    Modeling bioheat transfer with counter flow using porous 

medium has gained interest in recent years. Flow and heat 

transfer in biological tissues are analyzed by Khaled and Vafai 

[5]. They have studied the transport in porous media using 

mass diffusion and different convective flow models such as 

Darcy and Brinkman models, along with energy transport in 

tissues. They have reviewed the possibility of reducing the 

flow instabilities using porous media. The role of porous 

media in biomedical engineering related to magnetic 

resonance imaging (MRI) and drug delivery are reviewed by K 

Khanafer and Vafai[6]. The role of transport theory in porous 

media helps in advancing the progress of biomedical 

applications. The study paves the road for the researchers in 

the area of MRI and drug delivery to develop comprehensive 

models based on porous media theory. 

     Macroscopic governing equations for bioheat transfer 

phenomena are studied by Nakayama, Kuwahara and Lui [7]. 

The volume averaging theory of porous media has been 

applied to obtain a general set of macroscopic governing 

equations for countercurrent bioheat transfer between terminal 

arteries and veins in the circulatory system. Capillaries 

providing a continuous connection between the countercurrent 

terminal arteries and veins are modeled introducing the 

perfusion bleed-off rate. A volume averaging theory 

established in the field of fluid saturated porous media  is used, 

a general bioheat transfer model based on the theory of porous 

media by Nakayama and Kuwahara [8] to derive a general set 

of bioheat transfer equations for blood flows and its 

surrounding biological tissues. 

     A new simplified bioheat equation for the effect of blood 

flow is studied by Wienbaum and Jiji [9]. They have derived a 

new simplified bioheat equation to describe the effect of blood 

flow on blood tissue heat transfer. In the theoretical and 

experimental studies, the authors have demonstrated that the 
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isotropic blood perfusion term in existing bioheat equation is 

negligible because of the microvascular organization.  

 Viscous dissipation is of interest for many applications. 

The viscous dissipation effect is an irreversibility that must be 

accounted for in the first law of thermodynamics formulation 

of the energy balance statement for any thermodynamic 

system that involves flow. It is understood as a local 

production of thermal energy through the mechanism of 

viscous stresses. Naturally, it is also present in convection 

flows through porous media [2]. Forced convection with 

viscous dissipation in a parallel plate channel filled by a 

saturated porous medium is investigated numerically by 

Hooman and Gurgenci [10] and have concluded that with 

isothermal walls, the Brinkman number significantly 

influences the developing Nusselt number but not the 

asymptotic one at constant wall heat flux. Both the developing 

and the asymptotic Nusselt numbers are affected by the value 

of the Brinkman number. Forced convection with viscous 

dissipation using a two-equation model in a channel filled by a 

porous medium is studied by Chen and Tso [11]. They have 

considered two-equation model that includes viscous 

dissipation in the fluid phase is solved analytically and exact 

solutions for the temperature fields are obtained.  

Nield [12] presented an analysis to understand when 

viscous dissipation would be significant in porous medium 

flows, by comparing the orders of magnitude of the dissipation 

terms with the thermal diffusion terms in the energy equation. 

In forced convection, there is a velocity scale present in the 

form of free stream velocity or the channel cross section 

averaged velocity.  The effects of viscous dissipation on 

thermal entrance heat transfer in a parallel plate channel filled 

with a saturated porous medium have been investigated 

analytically by Hooman, Mofid and Gorji-Bandpy[13], on the 

basis of a Darcy model. The local and the bulk temperature 

distribution along with the Nusselt number in the thermal 

entrance region are discussed and have observed that 

neglecting the effects of viscous dissipation would lead to the 

well-known case of internal flows, with the Nusselt number 

equal to 4.93. An analytical study related to fully-developed 

laminar forced convection in a parallel-plate channel occupied 

by a nanofluid or by a porous medium saturated by a 

nanofluid, subject to uniform-flux boundary conditions is 

studied by Nield and Kuznetsov[14]. They have adopted a 

model incorporating the effects of Brownian motion and 

thermophoresis.  They have determined that the combined 

effect of these two agencies is to reduce the Nusselt number. 

Nield and Kuznetsov [15] have obtained an analytical 

solution for forced convection in a parallel plate channel, with 

asymmetric constant heat-flux boundaries, occupied by a 

layered saturated porous medium modeled by the Brinkman 

equation. Results for the Nusselt number are presented for the 

cases of the Darcy limit and the clear fluid limit. They found 

that the effect of counterflow is to reduce the value of the 

Nusselt number, to values that can be negative and to zero in 

symmetric velocity profiles.  

Nield and Kuznetsov [16] presented an analytic 

investigation of forced convection in parallel-plate channel 

partly occupied by a bidisperse porous medium and partly by 

a fluid, where the distribution being asymmetrical. The 

dependence of the Nusselt number on conductivity ratio, 

velocity ratio, volume fraction, internal heat exchange 

parameter, and the position of the porous-fluid interface have 

been investigated. It has been shown that for asymmetric 

heating, a singular behaviour of the Nusselt number is 

satisfactory. 

       In this paper we have considered the bioheat transfer 

problem to investigate the effect of viscous dissipation on 

forced convection in a channel occupied by a porous medium. 

It is evident that the main feature that distinguishes bioheat 

transfer from other forms of heat transfer is the counterflow 

which is considered in this paper along with viscous 

dissipation effect.  

 

NOMENCLATURE 

Cp  Specific heat at constant pressure of the fluid 

G  Applied pressure gradient  

H  Channel width 

k  Effective thermal conductivity 

K  Permeability 

M  Pressure-gradient modified viscosity ratio, 


 eff
 

N  Pressure-gradient modified reciprocal  

              Darcy number, 
K

H
N



2

  

Nu Nusselt number defined in Eq. (12) 

s  

1

2

M

M  or 

1

2

N

N  

D  
)(2

2





wm TTuK

CpU


 

P, Q, R, S Quantities defined in Eq. (22) 

q   Mean wall heat flux, )(
2

1
21 ww qq   

wq    Wall heat flux 

T*   Temperature 

Tm    Bulk mean temperature 

H

m dyTu
HU

T
0

***1
 

Tw Wall temperature 

wT   Mean of the two wall temperatures,   

              )(
2

1
21 ww TT   

T̂    Dimensionless temperature,  ,

*





wm

w

TT

TT




 

u   Dimensionless filtration velocity, 
2

*

HG

u
u

ref


  

u*   Filtration velocity 

û   Rescaled dimensionless velocity, 
U

u *
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  ,ˆ,ˆ 2
2

1
1

u

u
u

u

u
u   

u   Dimensionless mean velocity  

                

1

2

0

1





dyudyuu  

U  Mean velocity 

H

dyu
H

U
0

**1  

x  Dimensionless longitudinal coordinate,   
H

x*

  

x*  Longitudinal coordinate 

y  Dimensionless longitudinal coordinate,   
H

y*

  

y*  Longitudinal coordinate 

 

Greek symbols 

   Parameter defined in Eq. (15) 

   Parameter controlling applied pressure  

             gradient, 
refGG   

   Parameter ,
M

N
  

   Fluid viscosity 

eff  Effective viscosity 

   Position of the interface between the two  

             layers 

   Fluid density 

   Viscous dissipation 

Subscripts 

1         Parameters of the first layer,  

0 < y* <  H 

2         Parameters of the second layer,  

 H < y* < H 

 

II. MATHEMATICAL FORMULATION 

 

 The physical configuration is shown in fig1. It consists of a 

parallel plate channel occupied by a layered saturated porous 

medium with counter flow. For the steady state fully 

developed condition we have unidirectional flow in the x-

direction between impermeable boundaries at y*=0 and y*=H. 

we assume that the permeability K and the effective thermal 

conductivity k are functions of y* only. Then the Brinkman 

momentum equation is  

0*

2*

*2

 Gu
Kdy

ud
eff


          (1)  

  Where eff  is an effective viscosity,   is the fluid 

viscosity, K is the permeability, and G is the applied pressure 

gradient. We suppose (presume) that eff , K and G take 

different values in the two layers. We assume that 

K = K1,  eff  = 1eff , G = refG1  

for 0 < y < ξH,                       (2a) 

K = K2, eff  = 2eff , G = refG2   

for ξH < y < H,         (2b) 

We define dimensionless variables 

2

***

,,
HG

u
u

H

y
y

H

x
x

ref


    (3) 

The dimensionless forms of Eq.(1) are 

01112

1

2

1  uN
dy

ud
M            (4a) 

01222

2

2

2  uN
dy

ud
M              (4b)      

Where the pressure gradient modified viscosity ratios M1, M2 

and the pressure gradient modified reciprocal Darcy numbers 

N1, N2 are defined by 

22

2

2,

11

2

1,

2

2

2,

1

1

1
K

H
N

K

H
N

eff
M

eff
M









    

      (5) 

Eq. (4) is solved subject to the boundary conditions 

u1 = 0 at y = 0, y = ξ,   and  

u2 = 0 at y = ξ, y = 1         (6) 

The solution of Eq. (4) subject to boundary conditions (6) is  

)1(

1

1

111

1

)(

1 



eN

eee
u

yy








   (7a) 

)1(

1
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2

)()1()1(

2
2

222
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










eN

eee
u

yy

  (7b) 

Where   

2

2
2

1

1
1 ,

M

N

M

N
            

When λ1 →∞, λ2 →∞ (Darcy limit) and λ1 →0, λ2 →0 (clear 

fluid limit), the results co-inside with Nield & Kuznetsov.   

 The Dimensionless mean velocity 
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1

2
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1
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e
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For the Darcy limit (λ1 →∞, λ2 →∞)  
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






 


21

)1(

NN
u


    (9) 

For the clear fluid limit (λ1 →0, λ2 →0) 








 


2

3

1

3 )1(

6

1

MM
u


   (10) 

Now suppose that the thermal conductivity is given by 

 

HyξHforkk

ξHy0forkk

*

2

*

1




              (11) 

So that the mean value is given by 

2,1for
k

k
k
~

writewe

ξ)k(1ξkk

i
i

21





i

   

We define the Nusselt number Nu based on the channel width 

as 

)( mw TTk

qH
Nu









             (12) 

Where q   is the mean wall heat flux, shown in fig. (1) and 

)(
2

1
21 ww qqq      

The steady state thermal energy equation is  













2*

*2

*

*
*

y

T

c

k

x

T
u
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             (13) 

Where  

2

*

*





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








y

u
  

The first law of thermodynamics leads to 

constant
HUρc

q2

dx

dT

x

T

p

μ

*

m

*

*








    

In this case the dimensionless form of the thermal energy 

equation may be written as  




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 










y

dy

du

wTmTkku

pcU

k

uNu
0

2

1

)(1
~2

2

1
~

1
ˆ2

2
dy

1T̂
2

d
 

                        (14a)

1

2

2

)(2
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2

2
~

2
ˆ2
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dy

2T̂
2

d
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
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


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


y
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du

wTmTkku

pcU

k

uNu



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These equations are now solved subject to the boundary 

conditions 
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The solution is of the form 

1
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In the Darcy limit the expressions in Eq. (16a, 16b) become 

)(
22

~
)2()1(

21

~2
)1(

11

~
)(1 yyNkyyNkyNkyP    

  )]2(2
~

)1(1
~

[211
~

1 ykkuNNkyQ    

]
~

)1(
~

[
~

212111  kkuNNkR   

)1(
2

22

~
)

22
2

2
2(

12

~
))(1)(1(

11

~
)(2 yNkyyNkyyNkyP    

  ]2
~

)21(1
~

[212
~

2  kykuNNkyQ   

]
~

)1(
~

[
~

212122  kkuNNkR                     (17a, 17b, 17c, 17d, 17e, 17f) 

 

 In the clear fluid limit the expressions in Eq. (16a, 16b) become 
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Now substituting in the determining compatibility condition 
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 yields an expression for the Nusselt number. We used the Mathematica software package to obtain this expression and also to 

obtain values of Nu for various values of the input parameters. 

In the Darcy limit one has  
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In the clear fluid limit we obtain 
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Where u is given by Eq. (10) and 
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It is interesting to compare the above results with those for the situation where u2* is reversed in sign,  that is the flow in the two 

layers is in parallel instead of being in anti-parallel. Then from the Equation (8) we get   
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     In place of Eq. (25), in the clear fluid limit the Nu is  
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   Eq. (21) and Eq. (21*) can be combined to give 
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Here the upper alternative sign refers to the counterflow situation. 
 

 

III. RESULTS AND DISCUSSION 
 

The aim of the Present study is to know the effect of 

viscous dissipation in a channel occupied by the porous 

media when parallel flow is replaced by counterflow. The 

effect is evident from the observation of various terms in 

Eq. (21*) and Eq. (10*). The change in sign in the middle 

term of the denominator of Eq.(21*) from + to – has a 

minor effect. Other things being equal, the change would 

decrease the value of Nu by an amount of 15% where as 

the change would increase the value of Nu without viscous 

dissipation. The sign of the value of the denominator is 

always positive for all values of the parameters. The 

important effect is a result of changes in sign in Eq.(10) 

and the numerator of  Eq.(21).  First consider the case of 

symmetric heating (β=0). Nu cannot become negative 

because of the term 
2u in the expression for Nu. When u

tends to zero i.e., when M1 and M2 tends to 1 in Eq.(10) at 

ξ=0.5 Nu increases indefinitely where as opposite trend is 

noticed when viscous dissipation effect is not considered in 

the counterflow arrangement. Second in the case of 

asymmetric heating )0(   the value for Nu become 

negative. A negative value of Nu means that the value of

)( mw TT  , the difference between the mean wall 

temperature and the bulk temperature, has a sign opposite 

to that of  q   , the mean wall heat flux into the fluid 

domain. The negative values arise in the case of strong 

thermal asymmetry and when the product of β and u is 

positive, so that the more strongly heated boundary (and 

thus the hotter one) is adjacent to the layer in which the 

weaker flow occurs, other things being equal.    
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 Porous medium 

 

 

                   Fig. 1. Definition sketch 

 
Fig. 2(a) Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

counter flow when ξ=0.9, D= 0. 
            

 
Fig.2(b) Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

counter flow when ξ=0.9,D = 0.005122. 

                                  

 
Fig. 2(c) Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

counter flow when ξ=0.9, D = 0.051220. 

                                       

 
Fig.2(d) Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

counter flow when ξ=0.9, D = 0.5122. 
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 For the case of counter flow  Fig 2(b) shows the contour 

maps of Nu as a function of ‘s’ and β when the value of ‘D’ 

increases from 0 to 0.005122. The Nu values move towards 

the right side consequent to this, the contour of Nu value 4 is 

appearing in Fig 2(b), is not appearing in Fig 2(a). As the 

value of ‘D’ increases from 0.005122 to 0.05122, there is not 

much of a change in the contours of Nusselt number, but it 

gets curved towards left side in the bottom as seen in Fig 2(c). 

When the value of ‘D’ increases from 0.05122 to 0.5122, it 

can be observed from Fig 2(d) that the contour maps of 

Nusselt number is more curved towards left side in the bottom. 

                                    

 
Fig. 3(a)  Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

parallel flow when ξ=0.9, D = 0. 

                                        

 
Fig. 3(b)  Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

parallel flow when ξ=0.9, D = 0.0051198. 

 
Fig. 3(c)  Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

parallel flow when ξ=0.9, D = 0.051198. 

 
Fig. 3(d)  Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

parallel flow when ξ=0.9, D = 0.51198. 

 

For the case of parallel flow, Fig 3(b) shows the contour 

maps of Nu as a function of ‘s’ and β when the value of ‘D’ 

increases from 0 to 0.0051198. It can be observed from Fig 

3(a) and Fib 3(b) that the Nu values move towards the right 

side. Consequent to this, the contour of Nusselt number value 

4 is appearing which can be noted from Fig 3(b) where as in 

Fig 3(a) it is missing for the range of parameters ‘s’ and β. As 

the value of ‘D’ increases from 0.0051198 to 0.051198 there is 

not much of a change in the contour of Nusselt number, but it 

gets curved towards right side in the bottom. When the value 

of ‘D’ increases from 0.051198 to 0.51198, it can be observed 

that the contour map of zero Nusselt number appears in Fig 

3(d). The other contour of Nusselt number move towards the 

left side where as contour of Nusselt number 4 does not appear 

between 2 to 10 of ‘s’ values. Subsequently it can be observed 

that a contour map of Nu gets more curved and the contour 

maps of Nusselt number with higher values appear in the 

bottom.  
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Fig.4(a)  Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

counter flow when ξ=0.5, D = 0.021504. 

                                   

  
Fig.4(b)  Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

counter flow when ξ=0.5, D = 0.21504. 

                

 
Fig.4(c)  Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

counter flow when ξ=0.5, D = 2.1504. 

              

 
Fig.5(a) Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

parallel flow when ξ=0.5,D = 0.00032989. 
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Fig.5(b)  Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

parallel flow when ξ=0.5, D = 0.0032989. 

                                    

 
Fig.5(c)  Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

parallel flow when ξ=0.5, D = 0.032989. 

  Fig 4(a) indicates the contour of Nusselt number for 

counter flow when ξ=0.5 with D = 0.021504. It can be 

observed that contour of Nusselt numbers are much smaller 

like -10, -15,     -20, exists on the right side. It can be 

mentioned here that some of the Nusselt numbers are negative 

which are consistent with the tables 2(a) and 2(b) of Nield and 

Kuznetsov [15].  As ‘D’ increases from 0.012504 to 0.21504 

the contour of zero Nusselt number moves substantially to the 

right side which can be observed from the Fig 4(b). The 

contour of Nusselt number value zero indicates the region 

where there is no heat transfer and hence bifurcation can be 

observed. When value of ‘D’ increases from 0.21504 to 

2.1504, Nusselt number of contour values have 80, 100, 120 

and most of them appear at the bottom portion of the Fig 4(c), 

indicating higher heat transfer in this region.   

For the case of parallel flow when ξ=0.5, Fig 5(b) 

shows the contour maps of Nu as a function of β and ‘s’. When 

the value of ‘D’ increase from 0.00032989 to 0.0032989, it 

can be observed from Fig 5(a) and Fig 5(b), the Nusselt 

number value zero move towards left side. The contour of 

much smaller Nusselt number like -50, -55, -60 exists on the 

right side of the Fig 5(c), indicating less heat transfer in this 

region. 

                                     

 
Fig.6(a)  Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

counter flow when  ξ=0.1, D = 0.52646. 

                                    

 
Fig.6(b)  Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, 

for counter flow when ξ=0.1, D = 5.2646 . 
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Fig.7(a)  Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, 

for parallel flow when  ξ=0.1, D = 0.49835. 

 
Fig.7(b)  Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, 

for parallel flow when ξ=0.1, D = 4.9835. 

 

 For the case of counter flow when ξ=0.1, D = 

0.52646 Nusselt number values appears in upper portions only 

which is observed from Fig 6(a). When the value of ‘D’ 

increases from 0.52646 to 5.2646, the Nusselt number values 

also increases and appears in the upper portion which can be 

understood from Fig 6(b). 

For the case of parallel flow when ξ=0.1 Fig 7(b) 

shows the contour map of Nusselt number, when the value of 

‘D’ increases from 0.49835 to 4.9835, the Nusselt number 

value zero move towards the bottom which can be seen from 

Fig 7(a) and Fig 7(b). 

 

                 

  
Fig.8(a)   Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

counter flow, for the Darcy limit when ξ=0.5. 

                            

 
Fig.8(b)  Contour maps of the Nusselt number Nu, as a function of the 

asymmetric heating parameter β and the flow asymmetry parameter ‘s’, for 

parallel flow, for the Darcy limit when ξ=0.5. 
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TABLE 1(a) 

   Values of the Nusselt number Nu for counter flow in the Clear fluid limit (Eq. (21)),  

   where = 0.5. 

 s = 0.1 10 

 

Without 

Viscous 

dissipation 

With Viscous 

dissipation 

D =  0.021504 

Without Viscous 

dissipation 

With Viscous 

dissipation 

D =  0.021504 

β = 0 3.62 13.0645 3.62 5.79617 

1.0 5.83 15.2754 1.41 3.5853 

10 25.73 35.1733 -18.49 -16.3126 

 

TABLE 1(b) 

     Values of the Nusselt number Nu for parallel flow in the Clear fluid limit (Eq. (21*)), where = 0.5. 

 s = 0.1 1.0 10 

 
Without Viscous 

dissipation 

With Viscous 

dissipation 

D =  0.0143952 

Without 

Viscous 

dissipation 

With 

Viscous dissipation 

D =  0.00435456 

Without 

Viscous 

dissipation 

With Viscous 

dissipation 

D =  0.0143952 

β = 0 4.42 10.4579 5.38 8.37198 4.42 6.48056 

1.0 6.23 12.2652 5.38 8.37198 2.61 4.67329 

10 22.49 28.5307 5.38 8.37198 -13.66 -11.5922 

 

TABLE 2(a) 

     Values of the Nusselt number Nu for counter flow in the Clear fluid limit (Eq. (21)), where = 0.9. 

 s = 0.1 1.0 10 

 
Without Viscous 

dissipation 

With Viscous 

dissipation 

D =  0.0526461 

Without Viscous 

dissipation 

With Viscous 

dissipation 

D =  0.0005135 

Without Viscous 

dissipation 

With Viscous 

dissipation 

D =  0.0005123 

β = 0 3.70785 13.404 3.78541 4.06469 3.79317 4.06393 

1.0 3.28549 12.9816 3.40167 3.68095 3.41334 3.6841 

10 -0.515695 9.18045 -0.0519974 0.227286 -0.00520397 0.265556 

 

TABLE 2(b) 

     Values of the Nusselt number Nu for parallel flow in the Clear fluid limit (Eq. (21*)), where = 0.9. 

 s = 0.1 1.0 10 

 

Without 

Viscous 

dissipation 

With Viscous 

dissipation 

D =  0.0498351 

Without 

Viscous 

dissipation 

With Viscous 

dissipation 

D = 0.000511 

Without Viscous 

dissipation 

With Viscous 

dissipation 

D = 0.000512 

β = 0 3.88047 13.0021 3.80267 4.08313 3.7949 4.06578 

1.0 3.54494 12.6666 3.42761 3.70807 3.41593 3.68681 

10 0.525098 9.64675 0.0520914 0.332551 0.00520491 0.276088 
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TABLE 3(a) 

       Values of the Nusselt number Nu for counter flow in the Clear fluid limit (Eq.(21)), where = 0.1. 

 s = 0.1 1.0 10 

 

Without 

Viscous 

dissipation 

With Viscous 

dissipation 

D =  0.0005123 

Without 

Viscous 

dissipation 

With Viscous 

dissipation 

D = 0.0005135 

Without 

Viscous 

dissipation 

With Viscous 

dissipation 

D =  0.0526461 

β = 0 3.79317 6.2562 3.78541 6.24477 3.70785 7.65555 

1.0 4.17301 6.63604 4.16915 6.62851 4.1302 8.0779 

10 7.59155 10.0546 7.62281 10.0822 7.93139 11.8791 

 

TABLE 3(b) 

        Values of the Nusselt number Nu for parallel flow in the Clear fluid limit (Eq.(21*)), where = 0.1. 

 s = 0.1 1.0 10 

 

Without 

Viscous 

dissipation 

With Viscous 

dissipation 

D =  0.000512 

Without 

Viscous 

dissipation 

With Viscous 

dissipation 

D =  0.00051076 

Without 

Viscous 

dissipation 

With Viscous 

dissipation 

D =  0.0498351 

β = 0 3.7949 6.25902 3.80267 6.27297 3.88047 7.84183 

1.0 4.17387 6.63799 4.17773 6.64803 4.21601 8.17737 

10 7.5846 10.0487 7.55325 10.0235 7.23585 11.1972 

 

TABLE 4(a) 

Values of the Nusselt number Nu for counter flow in the Darcy limit (Eq. 

(20)), where = 0.5. 

 s = 0.1 1.0 10.0 

β = 0 4.3685 0 4.36854 

2 9.70787 0 -0.970787 

4 15.0472 0 -6.31011 

6 20.3865 0 -11.6494 

8 25.7258 0 -16.9888 

10 31.0652 0 -22.3281 

TABLE 4(b) 

Values of the Nusselt number Nu for parallel flow in the Darcy limit (Eq. 

(20)), where = 0.5. 

 s = 0.1 1.0 10.0 

β = 0 5.13982 6 5.13982 

2 9.34513 6 0.934513 

4 13.5504 6 -3.2708 

6 17.7558 6 -7.47611 

8 21.9611 6 -11.6814 

10 26.1664 6 -15.8867 

 

 

 

 

 

 

 

 

 

 

TABLE 5(a) 

Values of the Nusselt number Nu for counter flow in the Darcy limit (Eq. 

(20)), where = 0.9. 

 s = 0.1 1.0 10.0 

β = 0 0.0721414 4.25343 5.04053 

2 1.50054 2.33939 3.91915 

4 2.92894 0.425343 2.79778 

6 4.35734 -1.4887 1.6764 

8 5.78574 -3.40275 0.555025 

10 7.21414 -5.31679 -0.566352 

TABLE 5(b) 

Values of the Nusselt number Nu for parallel flow in the 

Darcy limit (Eq. (20)), where = 0.9. 

 s = 0.1 1.0 10.0 

β = 0 12.0086 6 5.21585 

2 22.2476 6 4.28731 

4 32.4866 6 3.35878 

6 42.7255 6 2.43024 

8 52.9645 6 1.50171 

10 63.2034 6 0.57317 
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TABLE 6(a) 

Values of the Nusselt number Nu for counter flow in the Darcy limit (Eq. 

(20)), where = 0.1. 

 s = 0.1 1.0 10.0 

β = 0 5.04053 4.25 0.0721414 

2 6.16191 6.16748 -1.35626 

4 7.28328 8.08152 -2.78466 

6 8.40466 9.99557 -4.21306 

8 9.52604 11.9096 -5.64146 

10 10.6474 13.8237 -7.06986 

 

TABLE 6(b) 

Values of the Nusselt number Nu for parallel flow in the Darcy limit (Eq. 

(20)), where = 0.1. 

 s = 0.1 1.0 10.0 

β = 0 5.21585 6 12.0086 

2 6.14438 6 1.7697 

4 7.07292 6 -8.46926 

6 8.00145 6 -18.7082 

8 8.92999 6 -28.9472 

10 9.85852 6 -39.1862 

 

               As the general solution contains a large number of 

parameters the discussions are limited to important 

parameters only. Here we report results only for clear fluid 

limits. In the case of Darcy limit (i.e. λ1 →∞ , λ2 →∞) the 

dissipation term does not exists in Eq.(14a, 14b), which 

states that there is no effect of viscous dissipation in Darcy 

limits and we get the results which are similar to that of 

non viscous dissipation which are plotted in Fig. 8(a), 8(b). 

In the Darcy limit the effect of increasing β is to decrease 

Nusselt number. The corresponding Nusselt number values 

are presented in the tables 4(a) and 4(b) for ξ = 0.5. For ξ = 

0.9, 0.1 the results are presented in the tables 5(a), 5(b) and 

6(a), 6(b) for both counter flow and parallel flow 

respectively. 

      In this study the results are presented for the case of 

homogeneity of thermal conductivity with viscous 

dissipation. Therefore we have taken 1
~~

21  kk
. The 

general effect of the thermal heterogeneity with viscous 

dissipation can be deduced by inspection from the 

expression in Eq. (21). In this expression, the denominator 

is a relatively weak function of 12

~~
kk the value is 

increased by a relatively small percentage as 12

~~
kk  and 

moves away from unity in either direction.  

  At ξ = 0.5, s = 0.1 it is observed from the table 

1(a) that for the counterflow in the clear fluid case,  Nusselt 

number value increased by 360.9%, under the influence of 

viscous dissipation effect for the values of β = 0, 1.0 and 

10. As ‘β’ increases from 0 to 1.0 Nusselt number 

increased by 1.17% and when ‘β’ increases from 1.0 to 10 

Nusselt number increased by 2.3%. As s tends to 1 Nusselt 

number becomes very large irrespective of changes in ‘β’. 

When‘s’ increases from 1 to 10 and at s = 10 Nusselt 

number decreases as β increases. 

      In the case of thermal homogeneity (with viscous 

dissipation) and for layers of thickness ξ = 0.9, we obtained 

the Nusselt number values and are presented in tables 2(a) 

and 2(b).  There is marginal difference between the values 

of Nu for the different values of ‘β’ and‘s’ for the counter 

flow and parallel flow in the clear fluid limits. The effect of 

increasing β is to decrease Nu for the values of s = 0.1, 1.0 

and 10 i.e., M2 < M1, M2 = M1 and M2 > M1.  

 

IV. CONCLUSION 
 

      The effect of viscous dissipation for forced convection 

with counter flow arrangement in a parallel plate channel 

with asymmetric constant heat flux boundary conditions 

have been solved analytically. For the case of Darcy flow 

the viscous dissipation effect is not present. However, for a 

clear fluid, effect of viscous dissipation exists, and it has 

been clearly indicated. The effect of viscous dissipation 

alters the Nusselt number both for parallel and counter flow 

in clear fluid limits. In the counter flow limits Nusselt 

number increases as β increases for ξ = 0.1 and 0.5 where 

as Nusselt number decreases for ξ = 0.9.  It is expected that 

the general trends illustrated by the present model will hold 

good to specific biological situations.  
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