International Journal of Engineering Research & Technology (IJERT)

The Delay and Area Analysis of Different Single
Precision Floating Point Arithmetic Operations

Navaneeth Prabhanandan

PG Student [VLSI Design], Dept. Of ECE
Amrita Vishwa Vidyapeetham University, Kerala, India
navaneethp89@gmail.com

Abstract— In this paper the performance of different
single precision floating point arithmetic operations has been
evaluated. The comparison have been made between Brent
Kung, Kogge Stone and Ladner Fischer Decimal Floating
point Arithmetic Operations, focusing on minimizing delay
and area. In addition the proposed design is compliant with the
IEEE 754-2008 floating point format. The Verilog Codes have
been simulated in Modelsim and synthesized in Xilinx ISE
software. The Simulations of proposed design show that the
Decimal Floating point Arithmetic operation using kogge
stone gives much faster response compared to Brent Kung and
Ladner Fischer

Keywords—Decimal floating point; arithmetic; IEEE
754-2008 ; verilog ; synthesis ; xilinx ; single precision

I. INTRODUCTION

The IEEE 754-2008 is the revised version of IEEE 754-
1985. This standard specifies formats and methods for floating
-point arithmetic in computer system- standard and extended
functions with single, double, extended and extendable
precisions-- and recommends formats for data interchange.

Financial and business applications use decimal
based arithmetic to perform arithmetic operations. These
applications require accuracy. The IBM 2z900 introduced
hardware for decimal arithmetic.IBM in general, have been
making quite strong claims for the advantages of hardware
support for decimal arithmetic: Initial benchmarks indicate
that some applications spend 50% to 90% of their time in
decimal processing, because software decimal arithmetic
suffers a 100 to 1000 performance penalty over hardware. The
need for decimal floating-point adder in hardware is urgent

[7].

Besides the accuracy and the speed up factors, saving
power is very important. A research paper estimates that
power savings for the whole application due to the use of a
dedicated hardware instead of a software layer are of the same
order of magnitude as the time savings. It also indicates that
the process normalized Energy Delay Product (EDP) metric,
clearly shows that a hardware implementation for DFP units
gives two to three orders of magnitude improvement in EDP
as a conservative estimate if compared with software
implementations.[13]

Senthil Murugan

Assistant Professor, Dept. Of ECE
Amrita Vishwa Vidyapeetham University, Kerala, India
senthilmurugan@am.amrita.edu

The decimal arithmetic seems to take the same road map
of binary. After the domination of binary ALUs in processors,
a common trend now is to include either separated Decimal
(including DFP) ALUs besides their binary equivalents or to
use combined binary and decimal ALUs.[14][15]

II. IEEE 754-2008 REPRESENTATION OF DECIMAL
FLOATING POINT NUMBER [2]

There are many parameters that define a Floating-
Point representation system. This resulted in a variety of
Floating-Point processors with different representations,
producing different results to the execution of the same
program. In some cases, because of anomalies, the results
might be very different. To avoid this the IEEE Floating -point
Standard 754 was developed.

Representation and Formats

The representation of the floating-point number x
consists of two components, the significand M, (also called
mantissa) and the exponent E,, such that

x=M, xb*

where b is a constant called the base. The sign of the number
is determined by the sign of the significand. The exponent is a
signed integer.
The signed significand can be represented using any
representation system, such as sign-and-magnitude or two's
complement. Today the most used representation is sign-and-
magnitude. In such case, a floating-point number x is
represented by a triple (S, , My, E,), that is

x=(-1)° M, xb*
The two parts of the representation are as follows :

First, the significand is in sign and magnitude
representation. Consequently it is represented by two
components:

e Sign S. One bit. S=1 if negative.

e Magnitude (also called significand).
Represented in radix 2 with one integer bit. That is ,
the normalized significant is represented by

1.F

Where F of f bits (depending on the format) is
called the fraction and the most-significand 1 is the

YOUNUS COLLEGE OF ENGINEERING AND TECHNOLOGY, KOLLAM - NCETET 14 142

hidden bit. The range of the(normalized) significand
is

1< 1.F§2-2’f

Second, the exponent is base 2 and in biased

representation. The number of bits of the exponent field is e,
depending on the format .The representation is biased with

bias B=2%"1-1.

The three components are packed into one word, in

which the order of the field is S, E, F. This order makes
comparison simpler.

The value zero, denormals, and the special values NAN
and infinites are represented as follows:

e The representation of floating point zero is
E=0 and F=0 .The sign S differentiates between
positive and negative zero. Because of this
representation and the hidden bit, the value 1.0 * 2
is not represented.

° The representation E=0 and F+# 0 is used for
denormals ; in this case the floating -point value is

S5-B1)
represented as v=(-1) 2°7(0.F)
e The maximum exponent representation

(E=2° -1=2B +1) is used to represent not a
number (NAN) for F# Oand plus and minus infinity
for F=0

The system has two formats: basic and extended.
The basic format allows representation in single and
double precision. In each case we give the three
components with the number of bits in parentheses.
We call v the value represented.

TABLE I: IEEE 754 single precision format [1]
| S | 8 bit Exponent- E | 23 bit Fraction -F |

1. Basic single (32 bits) and double (64 bits)

a)
b)
¢)

d)

Single : S (1) ,E(8) , F(23)

s
If 1 < E <254 then v=(-1) 2®Y(1.F) (normalized fp
number).
If E =255 and F# 0,then NAN (not a number).
s
If E =255 and F= 0, then v=(-1) o0 (plus and minus
infinity).
s
If E =0 and F#£0, then v==(-1) 2"'*%(0.F) (denormal,
gradual underflow).
S
If E=0 and F=0, then v==(-1) 0 (positive and
negative zero)
Double : S(1),E(11),F(52)
- similar representation to single, replacing 255 by
2047 ,and so on.

2. Extended : single (at least 43 bits = S(1),E(11),F(31)) and
double (at least 79 bits = S(1),E(15),F63)).

YOUNUS COLLEGE OF ENGINEERING AND TECHNOLOGY, KOLLAM - NCETET 14

International Journal of Engineering Research & Technology (IJERT)
TABLE II: Single and Double precision format summary [1]

Precision) Exponent Exponent Format
Fomat) Eme Eein pig width width
Single 24 +127 -126 127 8 32
Double 53 +1023 1022 1023 11 64
Rounding

Rounding modes are:

Default : Rounding to nearest, to even when tie

e Directed : Round towards plus infinity; Round
towards minus infinity; and Round toward 0
(truncate)

Operations

Operations include:

Numerical : Add , Sub ,Mult

Conversions : Floating to integer ; Binary to decimal
(integer) ; Binary to decimal (floating)

Miscellaneous : Change formats; Compare and set
condition code

Excepetions

The IEEE standard defines the following five exceptions. By
default these exceptions set a flag and the computation
continues. The implementation can include a trap handler for
each exception that, when enabled, is called when exception

occeurs.

e Overflow (when rounded value is too large to be
represented). Result is set to + infinity.

e Underflow (when rounded value is too small to be
represented).

e Division by zero.

e In exact result (result is not an exact floating point
number), Infinite precision result different from
floating - point t number.

e Invalid .This flag is set when NAN result is
produced.

TABLE III: Exceptions for Operations in DFP [1]
Sign Exponent Fraction Value Description

S OxFF 0%00000000 o Infinity

S OxFF F#0 NaN Not a Number

S 0x00 000000000 0 Zero

1) x2 (E126)

S 0x00 F?EO ()><(0.F) Denormalized Number

0%00< E< (-1 x2 E120

S 0xFF F x(1.F) Normalized Number

143

III. FLOATING-POINT ADDITION

In this Project addition/subtractions are the more
complicated operations. Basically the addition is based on the
carry look ahead adder. There are four important steps to do
the floating -point addition.

1. Adjust and Alignment

Here the comparison is occurring. The exponent bits of
two operands are compared to find the highest operand. Let
a_original be the 8 bits exponent of the first operand and
b_original be the second operand, comparing these two
operands and assigning the highest one as the a_original, first
operand. After this, breaking the original operand to exponent
and fraction. Then inserting the hidden bits to the fractional
part .Now aligning the exponent part of the operands and
making the sizes of fractional part same by finding the
difference between the exponent parts. Here we are taking the
aexp as the exponent part of the first operand and bexp is the
exponent part of the second operand. afraction is the fractional
part of the first operand and bfraction is the fractional part of
the second operand.

Operation CA, "
P | T RSA
. Operand [LSA S
Op A Turwad oA | alignment & :s b
| Format =R X Culeutuion. [, anet |TPe) PreComs
OnB Conversion FTER and Swapping = Shifters P e
& Uit = vic | ER,
TE, =
Rounding
Maode
=
SE
Sign Unit] A
Owerflow overflow
¢ Unit
. ackw Result 7
A TCR| Pou- | shinand | pp] “M_““I'“ ,,,,, eyl
i, | appEr | F, Eorrection Cul— Round R
¥ Umi unit z 4
_‘.I

Fig I: Proposed Decimal Floating -Point Adder [6]

2. Add fractions

Binary addition is most primitive and commonly used
applications in computer arithmetic. A large variety of adder
circuits are available, such as Ripple carry adder, Carry look
ahead adder. The speed of a carry look ahead adder improves
by reducing the amount of time required to determine carry
bits. A Ripple Carry Adder is a very area-efficient adder
design. Unfortunately it is also slow. So for obtaining higher
operating speed we are using Parallel prefix Adder tree
structures such as kogge stone, Ladner Fischer and Brent
Kung adders. The basic digital blocks of all the three adders
are the same.

A. Carry Look Ahead Adder.

Given two Single precision operands A and B.
Pre-processing: This step involves computation of Propagate
and Generate bits corresponding to each pair of bits in A and
B. Define the functions P; (Propagate) and G; (Generate) at
each bit position

Pi = Ai Xor Bi

Gi: Ai and Bi

International Journal of Engineering Research & Technology (IJERT)

Carry Look Ahead network : This block differentiate the adder
circuits. The long distance propagation of carries embody this
intermediate stage. This will differentiate the adder and its
performance. There are lots of ways to develop these
intermediate stages.

Pi;j = Pix+1 and Py

Gi;j= Gix+1 01 (Pigrg and Gy)

Post- processing: This is the final step and is common to all

adders of this family.(carry look ahead) It involves
computation of sum bits. Sum bits are computed by the logic
given below.

S;=P; xor C;

B. Different Adder Circuits.

BC Block: The black cell takes two pairs of generate and
propagate signals (gi, pi) and (gj, pj) as input and compute a
pair of generate and propagate signals as output. The
expressions for the output signals g,p generated by the black
cell are given by

g=gtp*g

P=pi*pi

GC Block: The grey cell takes two pairs of generate and
propagate signals (g; pi) and (g;, pj) as input and computes a
generate signal g as output which is shown below.

g=gitpi*g
Buffer: The Buffer takes a pair of the generate and propagate
signals as input and passes the same signals to the output .It is
shown below.

g2=8

P=Di

a) Brent — Kung Adder

The Brent — Kung tree computes prefixes for 2-bit
groups. These are used to find prefixes for 4 —bit
groups, which in turn are used to find prefixes for 8 —
bit groups and so forth. The prefixes then fan back
down to compute the carries-in to each bit. The tree
requires 2log 2 N -1 stages. The fan-out is limited to 2
at each stage .The basic blocks used in this case are
grey and black cells. [9]

(s, gs) (7, 97) (Ps, G6) (Ps, s) (P4, 94) (P3, Ga) (P2, G2) (P1, 91)

08 07 06 05 C4 03 02 C1
Fig II: Logic design of a Brent Kung adder [11]

b) Kogge —Stone Adder
The Kogge stone adder is built from generate and
propagate blocks. It calculates carries corresponding
to every bit with the help of black and grey cells.
Here the logic level is given by log,N.The fan-out is
limited to 2. [9]

YOUNUS COLLEGE OF ENGINEERING AND TECHNOLOGY, KOLLAM - NCETET 14 144

3.

(Ps, 9s) (P7, 97) (Ps,) (Ps, Is) (P4, 94) (P3, F3) (P2, 92) (P1, 91)

08 C7 06 05 04 03 C2 C1
Fig III: Logic design of a Kogge Stone Adder [11]
¢) Ladner — Fischer Adder
It is a parallel prefix adder. Ladner-Fischer has
minimum logic depth but it has large fan-out required

up to n/2.Ladner-Fischer adder has carry operator
nodes. [11].

(s, 9s) (P7, 97) (Ps; 6) (Ps, 9s) (P4, 94) (P3, 93) (P2, 2) (P1, 91)

08 07 06 05 04 03 02 01

Fig IV: Logic design of a Ladner Fischer Adder [11]

Post normalize

The processing of this step is based on the carry bit,

which obtained from the addition of fractional bits.

4.

Check for exponent overflow

In this step checking exponent bits whether it is

exceeding the maximum limit by comparing it with the
maximum size.

RESULT AND CONCLUSION

Three Different Algorithms used in IEEE 754-2008, where

compared with respect to their delay and frequency. All the
Program simulated in Modelsim and synthesized using Xilinx
ISE tool. The synthesis results for the Single precision Adders
are obtained for the Virtex 5 FPGA. Here a clock of 20ns is
used. The input and output signals, clock are assumed to be

TABLE IV: FPGA Synthesized result comparison

DFP unit with | Brent Kogge Ladner
Different Adder Kung stone Fischer
Delay(ns) 6.283 1.498 1.890

Frequency(MHZ) | 159.160 667.557 529.101

International Journal of Engineering Research & Technology (IJERT)

ideal. The design is optimized for the delay. From the
synthesized result Single precision Decimal Floating point
Adder using Kogge Stone algorithm is much faster than
others. The below table compare the delay.

ACKNOWLEDGEMENT

This work was supported by the Amrita School of
Engineering. The author is very grateful to those persons
who showed their helpful mind for this project.

REFERENCES

[1] IEEE 754-2008,IEEE Standard for Floating-Point Arithmetic,2008

[2] Milos D. Ercegovac and Tomas Lang,Text Book " Digital Arithmetic ",
pp 414-417.

[3] Purna Ramesh Addanki,Venakata Nagaratna Tilak Alapati and
Mallikarjuna Prasad Avana,"An FPGA Based High Speed IEEE-754
Double Precision Floating Point Adder/Subtractor and Nultiplier Using
Verilog", in International Journal of Advance Science and Technology
,vol 52 (2013).

[4] Severance, Charles (20 Feb 1998)."An Interview with the Old Man of
Floating-Point"
(http://www.eecs.berkeley.edu/~wkahan/ieee754status/754story.html).

[5] General Decimal Arithmetic (http:/speleotrove.com/decimal/)

[6] Liang-Kai Wang, MJ Schulte, JD Thompson, and N Jairam. "Harware
Designs for Decimal Floating-Point Addition and Related Operations".
IEEE Transactions on Computer. 2009; 58:pp 322-335.

[7] Cowlishaw, M.F.” Decimal floating-point: algorism for computers”,
Computer Arithmetic, 2003. Proceedings. 16th IEEE Symposium on jun
2003,pp 104 —111.

[8]. EM Schwarz, JS Kapernick, and MF Cowlishaw. "Decimal floating-
point suppoert on the IBM z10 processor". IBM Journal of Research and
Development.2009;53: pp 231-239.

[9]1 Deepa Yagain, Vijaya Krishna A and Akansha Baliga, " Design of High-
Speed Adders for Efficient Digital Design Blocks", Vol 2012.

[10] R. Ladner and M. Fischer,"Parallel prefix computation", Journal of
ACM.La.Jolla CA,Vol.27,pp 831-838,ct 1980

[11] Harware Algorithm for Arithmetic Modules
(www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html)

[12] P. Chaitanya kumari and R. Nagendra ," Design of 32 bit Parallel Prefix
Adders", in IOSR Journal of Electronics and Communication
Engineering, Vol 6,Issue 1,pp 01-06.

[13] H. Fahmy, R. Raafat, A. Abdel-Majeed, R. Samy, T. ElDeeb and Y.
Farouk ,”Energy and Delay Improvement via Decimal Floating Point
Units”, Computer Arithmetic, 2009. ARITH 2009. 19th IEEE
Symposium on jun 2009.pp 221-224.

[14] C. Webb, “IBM z10: The next-generation mainframe microprocessor,”
Micro, IEEE,Vol. 28, Mar-Apr 2008,pp 19-29

[15] E.Schwarz and S.Carlough,”Power6 decimal divide,” in Application-
specific ~ Systems,Architectures and Processors,2007.ASAP.IEEE
International Conference on Jul 2007.pp 128-133

YOUNUS COLLEGE OF ENGINEERING AND TECHNOLOGY, KOLLAM - NCETET 14 145

