The Cycle non Split Domination Number of Fuzzy Graphs

C. Y. Ponnappan¹
¹Department of Mathematics, Government Arts College Paramakudi, Tamilnadu, India

P. Surulinathan²
²Department of Mathematics, Lathamathavan Engineering college, Kidaripatti, Alagarkovil, Madurai-625301, Tamilnadu, India.

S. Basheer Ahamed³
³Department of Mathematics, P.S.N.A. College of Engineering and Technology, Dindigul, Tamilnadu, India.

Abstract – A dominating set D of a fuzzy graph G=(σ,µ) is a cycle non split dominating set if the induced fuzzy subgraph H=(<V-D>,σ',µ') is a cycle. The cycle non split domination number γcD(G) of G is the minimum fuzzy cardinality of a cycle non split dominating set. In this paper we study a cycle non split dominating sets of fuzzy graphs and investigate the relationship of γcD(G) with other known parameters of G.

Keywords – Fuzzy graphs, Fuzzy domination, Split fuzzy domination number, Non Split fuzzy domination number, cycle non split domination number.

Subject classification No. 05C72, 05C75

I. INTRODUCTION

Kulli V.R. et al. introduced the concept of split domination and non-split domination in graphs [3]. Rosenfield introduced the notion of fuzzy graph and several fuzzy analogs of graph theoretic concepts such as path, cycles, and connectedness [10]. A. Somasundram and S. Somasundram discussed domination in fuzzy graphs [11]. Mahyoub Q.M. and Sonar N.D. discussed the split domination number of fuzzy graphs [6]. Ponnappan C.Y and et. al. discussed the strong non split domination number of fuzzy graphs [9]. In this paper we discuss the cycle non split domination number of fuzzy graph and obtained the relationship with other known parameters of G.

II. PRELIMINARIES

Definition: 2.1 [2]
Let G=(V,E) be a graph. A subset D of V is called a dominating set in G if every vertex in V-D is adjacent to some vertex in D. The domination number of G is the minimum cardinality taken over all dominating sets in G and is denoted by γ(G).

Definition: 2.2 [3]
A dominating set D of a graph G=(V,E) is a split dominating set if the induced subgraph <V-D> is disconnected. The split domination number γs(G) of a graph G is the minimum cardinality of a split dominating set.

Definition: 2.3 [3]
A dominating set D of a graph G=(V,E) is a cycle non split dominating set if the induced subgraph <V-D> is a cycle. The cycle non split domination number γc(G) of G is the minimum fuzzy cardinality of a cycle non split dominating set. In this paper we study a cycle non split dominating sets of fuzzy graphs and investigate the relationship of γc(G) with other known parameters of G.

Definition: 2.4 [4]
A dominating set D of a graph G=(V,E) is a cycle non split dominating set if the induced subgraph <V-D> is a cycle. The cycle non split domination number γc(G) of a graph G is the minimum cardinality of a cycle non split dominating set.

Definition: 2.5 [4]
A dominating set D of a graph G=(V,E) is a path in non split dominating set if the induced subgraph <V-D> is a path. The path non split domination number γp(G) of a graph G is the minimum cardinality of a path non split dominating set.

Definition: 2.6 [10]
Let V be a finite non empty set. Let E be the collection of all two element subsets of V. A fuzzy graph G=(σ,µ) is a set with two functions σ :V→[0,1] and µ : E→[0,1] such that µ(σ(u,v))≤σ(u)σ(v) for all u,v∈V.

Definition: 2.7 [11]
Let G=(σ,µ) be a fuzzy graph on V and V⊆V. Define σ1 on V1 by σ1(u)=σ(u) for all u∈V1 and µ1 on the collection E1 of two element subsets of V1 by µ1(u,v)=µ(u,v) for all u,v∈V1. Then (σ1,µ1) is called the fuzzy subgraph of G induced by V1 and is denoted by <V1>.

Definition: 2.8 [11]
The fuzzy subgraph H=(V1,σ1,µ1) is said to be a spanning fuzzy subgraph of G=(V,σ,µ) if σ1(u)=σ(u) for all u∈V1 and µ1(u,v)≤µ(u,v) for all u,v∈V. Let G=(V,σ,µ) be a fuzzy graph and µ1 be any fuzzy subset of µ, i.e., σ1(u)≤σ(u) for all u.
Definition : 2.9 [11]
Let \(G=(\sigma,\mu) \) be a fuzzy graph on \(V \). Let \(u,v \in V \). We say that \(u \) dominates \(v \) in \(G \) if \(\mu(u,v) = \sigma(u) \wedge \sigma(v) \). A subset \(D \) of \(V \) is called a dominating set in \(G \) if for every \(v \in D \), there exists \(u \in D \) such that \(u \) dominates \(v \). The minimum fuzzy cardinality of a dominating set in \(G \) is called the domination number of \(G \) and is denoted by \(\gamma(G) \) or \(\gamma \).

Definition : 2.10 [6]
A dominating set \(D \) of a fuzzy graph \(G=(\sigma,\mu) \) is a split dominating set if the induced fuzzy subgraph \(H=(V - D, \sigma', \mu') \) is disconnected.

The split domination number \(\gamma_s(G) \) of \(G \) is the minimum fuzzy cardinality of a split dominating set.

Definition : 2.11 [6]
A dominating set \(D \) of a fuzzy graph \(G=(\sigma,\mu) \) is a non split dominating set if the induced fuzzy subgraph \(H=(V - D, \sigma', \mu') \) is connected.

The non split domination number \(\gamma_{ns}(G) \) of \(G \) is the minimum fuzzy cardinality of a non split dominating set.

Definition : 2.12
A dominating set \(D \) of a fuzzy graph \(G=(\sigma,\mu) \) is a cycle non split dominating set if the induced fuzzy subgraph \(H=(V - D, \sigma', \mu') \) is a cycle.

The cycle non split domination number \(\gamma_{cns}(G) \) is the minimum fuzzy cardinality of a cycle non split dominating set.

Definition : 2.13
A dominating set \(D \) of a fuzzy graph \(G=(\sigma,\mu) \) is a path non split dominating set if the induced fuzzy subgraph \(H=(V - D, \sigma', \mu') \) is a path.

The path non split domination number \(\gamma_{pns}(G) \) is the minimum fuzzy cardinality of a path non split dominating set.

The order \(p \) and size \(q \) of a fuzzy graph \(G=(\sigma,\mu) \) are defined to be \(p = \sum_{u \in V} \sigma(u) \) and \(q = \sum_{u \in V} \mu(u,v) \).

Definition : 2.15 [11]
An edge \(e = \{u,v\} \) of a fuzzy graph is called an effective edge if \(\mu(u,v) = \sigma(u) \wedge \sigma(v) \).

The effective degree of a vertex \(u \) is defined to be the sum of the weights of the effective edges incident at \(u \) and is denoted by \(\varepsilon E(u) \). \(\sum_{e \in E(u)} \sigma(v) \) is called the neighborhood degree of \(u \) and is denoted by \(dN(u) \). The minimum effective degree \(\delta_{E}(G) = \min \{ dE(u)|u \in V(G) \} \) and the maximum effective degree \(\Delta_{E}(G) = \max \{ dE(u)|u \in V(G) \} \).

Definition : 2.16 [11]
The complement of a fuzzy graph \(G \) denoted by \(\bar{G} \) is defined to be \(\bar{G} = (\sigma, \overline{\mu}) \) where \(\overline{\mu}(u,v) = \sigma(u) \wedge \sigma(v) - \mu(u,v) \).

Definition : 2.17 [11]
Let \(\sigma: V \rightarrow [0,1] \) be a fuzzy subset of \(V \). Then the complete fuzzy graph on \(\sigma \) is defined to be \((\sigma,\mu) \) where \(\mu(u,v) = \sigma(u) \wedge \sigma(v) \) for all \(u \in E \) and is denoted by \(K_{\sigma} \).

Definition : 2.18 [11]
A fuzzy graph \(G=(\sigma,\mu) \) is said to be bipartite if the vertex \(V \) can be partitioned into two nonempty sets \(V_1 \) and \(V_2 \) such that \(\mu(v_1,v_2)=0 \) if \(v_1 \in V_1 \) and \(v_2 \in V_2 \). Further if \(\mu(u,v)=\sigma(u) \wedge \sigma(v) \) for all \(u \in V_1 \) and \(v \in V_2 \) then \(G \) is called a complete bipartite graph and is denoted by \(K_{\sigma_1,\sigma_2} \) where \(\sigma_1 \) and \(\sigma_2 \) are, respectively, the restrictions of \(\sigma \) to \(V_1 \) and \(V_2 \).

Definition : 2.19 [11]
A dominating set \(D \) of a fuzzy graph \(G \) is said to be a minimal dominating if no proper subset \(D' \) of \(D \) is dominating set of \(G \) such that \(|D'|<|D| \).

III. MAIN RESULTS

Proposition : 1
For any complete fuzzy graph \(K_{\sigma} \) then
\[\gamma(G) = \gamma_{cns}(G) = \min \{ \sigma(u)| u \in V \} \]

Proposition : 2
For fuzzy bipartite graph \(K_{\sigma_1,\sigma_2} \),
\[\gamma_{cns}(K_{\sigma_1,\sigma_2}) = \min \{ \sigma(u) + \min \{ \sigma(v) | u \in V_1 \} \} \]

Proposition : 3
For fuzzy wheel \(\gamma_{cns}(G)=\sigma(u) \) such that \(u \) is the spoke of the wheel.

Proposition : 4
\[\gamma_{cns}(G \circ K_1) = \sum_{i} \sigma(u_i) \] and \(u_i \) is the pendant vertices of the corona and \(G \) contains at least one cycle.

Proposition : 5
The cycle non split dominating set exists for Petersen graph and Davidson graph.

Note :
The cycle non split dominating set does not exist for path, tree and fan.

Theorem : 1
For any fuzzy graph \(G=(\sigma,\mu) \), \(\gamma(G) \leq \gamma_{cns}(G) \leq \sigma \)

Proof
Let \(G=(\sigma,\mu) \) be a fuzzy graph. Let \(D \) be the minimum dominating set. \(D_{cns} \) is the fuzzy cycle non split dominating set. \(D_{cns} \) is also a dominating set but need not be a minimum fuzzy dominating set.

Therefore we get \(|D| \leq |D_{cns}| \) That is \(\gamma(G) \leq \gamma_{cns}(G) \).
Example : Fig. (i)

\[D = \{ u_1, u_3 \} \]
\[\gamma(G) = 0.6 \]
\[D_{\text{cns}} = \{ u_1, u_2 \}, \gamma_{\text{cns}}(G) = 0.7 \]

Theorem 1.1

\[\gamma(G) \leq \gamma_{\text{pns}}(G) < p. \]

Proof

Let \(G = (\sigma, \mu) \) be a fuzzy graph. \(D \) be the minimum fuzzy dominating set. Let \(D_s \) and \(D_{\text{cns}} \) be the minimum fuzzy split dominating set and minimum fuzzy cycle non-split dominating set of \(G \) respectively. The cardinality of fuzzy dominating set need not exceed either one of the minimum of cardinality of fuzzy split dominating set or fuzzy cycle non split dominating set.

Therefore \(|D| \leq \min \{|D_s|, |D_{\text{cns}}|\} \)

Hence \(\gamma(G) \leq \min \{\gamma_s(G), \gamma_{\text{cns}}(G)\} \)

Example : Fig. (ii)

\[u_1(0.5), u_2(0.4), u_3(0.3), u_4(0.6), u_5(0.3), u_6(0.2) \]

\[D = \{ u_1, u_3 \} \]
\[\gamma(G) = 0.6 \]
\[\gamma_s(G) = 0.3, \gamma_{\text{cns}}(G) = 1.3 \]

Theorem 2.1 \(\gamma(G) \leq \min \{\gamma_s(G), \gamma_{\text{pns}}(G)\} \)

Proof

Let \(G = (\sigma, \mu) \) be a fuzzy graph and \(H = (\sigma', \mu') \) be the fuzzy spanning sub graph of \(G \). \(D_{\text{cns}}(G) \) be the fuzzy minimum cycle non-split dominating set of \(G \). \(D_{\text{cns}}(H) \) is fuzzy cycle non-split dominating set of \(H \) but not minimum.

Therefore \(\gamma_{\text{cns}}(H) \geq \gamma_{\text{cns}}(G) \).

Example:

Spanning fuzzy sub graph \(H \) of \(G \) (Fig (ii))

\[u_1(0.5), u_2(0.4), u_3(0.3), u_4(0.6), u_5(0.3), u_6(0.2) \]

\[D_{\text{cns}}(G) = 0.7, \gamma_{\text{cns}}(H) = 1.0 \]

Theorem 3.1 \(\gamma_{\text{pns}}(H) \geq \gamma_{\text{pns}}(G) \).

Proof

Let \(G = (\sigma, \mu) \) be a complete fuzzy graph then

\(\gamma_{\text{cns}}(G) = \min \{\sigma(u)\} \), where \(u \) is the vertex having minimum cardinality.

Let \(G_i \) is subgraph of \(G \) induced by \(\langle V \rangle \) where \(u \) is the vertex of minimum cardinality, \(G_i \) has a vertex set \(V_i = \{V - u\} \)

\(\gamma_{\text{cns}}(G) \leq \gamma_{\text{cns}}(G_1) \leq \gamma_{\text{cns}}(G_2) \leq \ldots \leq \gamma_{\text{cns}}(G_n) \) provided the fuzzy graph \(G_n \) is a elementary cycle with three vertices.

Example : Fig. (iii)

\[u_1(0.1), u_2(0.2), u_3(0.3), u_4(0.4), u_5(0.1), u_6(0.2) \]

\[\gamma(G) = \gamma_{\text{cns}}(G) = 0.1 \]

\(G \) is a fuzzy graph induced by \(\langle V \rangle \)

\(\gamma_{\text{cns}}(G_1) = \sigma(u_2) = 0.2 \)

\(\gamma_{\text{cns}}(G) \leq \gamma_{\text{cns}}(G_1) \).

Theorem 5

For any fuzzy graph without isolated vertices

\(\gamma_{\text{cns}}(G) \leq p/2. \)
Theorem 8.1. : γ_{cns} set satisfies ore’s theorem.

Theorem 9 : For the domination number γ_{cns}, the following theorem gives a Nordhaus–Gaddum type result.

For any fuzzy graph G, $\gamma_{\text{cns}}(G) + \gamma_{\text{cns}}(\overline{G}) \leq 2p$.

Proof : Let G be a connected fuzzy graph it may or may not contains a cycle.

Suppose G contains a cycle then by theorem $\gamma_{\text{cns}}(G) \leq p$.

Also \overline{G} may or may not contains a cycle. We have $\gamma_{\text{cns}}(\overline{G}) \leq p$ or $\gamma_{\text{cns}}(\overline{G}) = 0$

Vice versa. Hence the inequality is trivial.

Theorem 9.1 : $\gamma_{\text{cns}}(G) + \gamma_{\text{cns}}(\overline{G}) \leq 2p$.

ACKNOWLEDGEMENT

Thanks are due to the referees for their valuable comments and suggestions.

REFERENCES