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Abstract - A dominating set D € V(G)of graph G=(V,E) is a clique neighbourhood dominating set (cIn-set) of G, if D is a clique
dominating set of G and dominating set of N(G). The clique neighbourhood domination number is the minimum cardinality taken over
all clique neighbourhood dominating sets of G and is denoted by y.,,(G). In this paper, Y., (G) are obtained for some standard
graphs.
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1. INTRODUCTION

In this paper, G=(V,E) is a finite, undirected, simple, connected graph. In general the graph has p vertices and q edges.
Terms not defined here are used in the sense of Harary[1]. The complement G of G is the graph with vertex set V in which two
vertices are adjacent iff they are not adjacent in G. Degree of a vertex v is denoted by d(v). The maximum(minimum) degree of
a graph G is denoted by A(G)(6(G)). A vertex v is said to be isolated vertex if d(v)=0.

Aset D € V(G) of agraph G=(V,E) is a dominating set of G, if every vertex in V\D is adjacent to some vertex in D.
The domination number y(G) of G is the minimum cardinality of a dominating set of G. This concept was introduced by Ore in
[6].

The concept of clique domination number was introduced by Cozzers and Kelleher in [2], in which a set D € V(G) is
said to a dominating clique, if the induced subgraph <D> is a complete graph. The clique domination number y.;(G) of G is the
minimum cardinality of a dominating clique.

In [3],S.V. Siva Rama Raju, I.H. Nagaraja Rao introduced the concept of global neighbourhood domination number as
follows: A set D € V(G) is called a global neighbourhood dominating set(gnd-set), if G is a dominating set for both G and
N(G), where N(G) is the neighbourhood graph of G. The global neighbourhood domination number y 4, (G) is the minimum
cardinality of a global neighbourhood dominating set of G.

In this paper, we introduced the clique neighbourhood domination by combining the concept of clique domination and global
neighbourhood domination for a connected graph. The characteristics was studided and the exact value of the parameter was
found for some standard graphs.

2. MAIN RESULTS
Definition 2.1

A dominating set D < V(G)of graph G=(V,E) is a clique neighbourhood dominating set (cIn-set) of G, if D is a clique
dominating set of G and dominating set of N(G). The clique neighbourhood domination number is the minimum cardinality
taken over all clique neighbourhood dominating sets of G and is denoted by v, (G).

Example :2.2
Vi V4 Vi V4
Gi: N(Gy):
V2 V3 V2 V3
Figure 2.1 Figure 2.2
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For the graph Gi, figure 2.1&2.2, the vertex set D={v,} is the y., - set and hence y.,(G,;) = 1. And also the clique
domination, global dominationis 1. ¥ (G;) = ycn(G1) = v4(G,) =1
Theorem: 2.3

=2

For the complete graph K,y . (Ky,) = {21?1 3

v

Proof:
Let G be a complete graph K,, with atleast 1 vertex.
Case (i): n=2
Since the vertex set V(G) itself is a, y.,-set of G and hence v, (G) = |V (G)| which proves the result
Case(ii):n =3
Let u € V(G) be the maximum degree in G then the set S = {u} forms a clique neighbourhood set of G.
Hence y.,(G) < |S| =1 (1)
Let S be the y,-set of G. The domination set in N(G) must contain atleast one vertex in N(G). Hence the y;,,-set has
atleast one vertex.
Yan(G) = |S| =1 .2
The result follows from (1) and (2) [

Example

In the below example Ks, A vertex set D = {v1} is a minimum clique neighborhood dominating set. Therefore y.,(Ks) = 1.

V1 Va2 Vi V2
Vs 2 Vs /2
V4 Vg
Ks N(Ks)
Theorem: 2.4

For the complete bipartite graph Ko, ., Vein (Kmn) = 2 for m, n>2
Proof:

Let G be a complete bipartite graph with atleast 3 vertices and let the vertex set of G is V(G) =
{ug, uy, o, Uy V1, V) or, U -

Let u; € V(G) has the maximum degree in G and v; be any vertex adjacent to u; in G then the set S = {u;, v;} forms a
clique neighbourhood set of G.

Hence ¥, (G) < [S| =2 ..(1)

Let S be the y,,-set of G. Since N(G) contains two complete components, then for the domination of N(G), S must
contain atleast one vertex from each component. Hence S has atleast two vertices.

Therefore y.,(G) =1S|=2 ...(Q2)

The result follows from (1) and (2).
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]
Example Up
Vi uz
V3 uz
\% V2 V3 V2 Vi
K, N(K,3)

In the above example Ka3 A vertex set D = {us, vi} is a minimum clique neighborhood dominating set. Therefore ycm(K2,3) =
2
Theorem: 2.5
For star graph Kin, Yo (Ky,) = 2 for n>2.
Proof:
Let G be a star graph K ,, with atleast 3 vertices and V(G) = {u, vy, v,, ..., v, }.be the vertex set of G.
Let u € V(G) has the maximum degree in G, and v; be any vertex adjacent to u in G then the set S = {u, v;} forms a
cligue neighbourhood set of G.
Hence y.,,(G) < |S| =2 ..(D)
Let S be the y,-set of G. The dominating set in N(G) must contain atleast one isolated vertex and one maximum

degree vertex in N(G). Hence the clique neighbourhood set must contain atleast 2 vertices.

Therefore y.,,(G) =S| = 2 ...(2)
The result follows from (1) and (2). [
Example
Vi Uy e Vi
Vs U1 V2 Vs ')
Vg V3 Vg V3
K1,5 N(Kl,S)

In the above example Ky 5,

A vertex set D = {us,v1} is a minimum clique neighborhood dominating set, therefore Yczn(K1,s) =2

Theorem: 2.6
For the Wheel W,,, v (W,) = 1,n =2,

Proof:
Let G be a wheel graph W}, with atleast 3 vertices and V(G) = {u, vy, v,, ..., v, } be the vertex set of G.
Let u € V(G) has the maximum degree in G, then the set S = {u} forms a clique neighbourhood set of G.
Hence y.,,(G) < |S| =1 (1)
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Let S be the y,,-set of G. The dominating set in N(G) must contain atleast one vertex in N(G) and hence the clique

neighbourhood set has atleast 1 vertex.

Hence y.,(G) = |S| =1 ...(2)
The result follows from (1) and (2) |
Example u
V1 Va2 V1 V2

Vs Vs / \

V4 Vg

W5 N(WS)

In the above example W5,

A vertex set D = {u} is a minimum clique neighborhood dominating set. Therefore y.,,(Ws) = 1

Theorem: 2.7
For the fan E,, y.n (E,) = 1, for n=2.
Proof:

Let G be a fan graph E,with atleast 3 vertices and V(G) = {u, vy, v, ..., v, } be the vertex set of G.

Let u € V(G) has the maximum degree in G then the set S = {u} forms a clique neighbourhood set of G.
Hence y.n(G) < [S| =1 (1) Let S be the
Yem-Set of G. The dominating set in N(G) must contain atleast one vertex in N(G) and hence the clique neighbourhood set has
atleast 1 vertex.

Therefore y.,,(G) = |S| =1 ...(2)
The result follows from (1) and (2) [
Example
e U u
V4 Vi
[ ] Ld L]

V3 Vo
F4 N(F4-)
In the above example F4, A vertex set D = {u} is a minimum clique neighborhood dominating set. Therefore y ., (F,) = 1
Theorem: 2.8
For the banana tree B, ,, , ¥cin (Bnn) = 2 for n>2.
Proof:
Let G be a banana tree with atleast 6 vertices and V(G) = {u, v, uy, Uy, ..., Uy, V1, Uy, ..., U, } be the vertex set of G.
Let u,v € V(G) such that d(u)=d(v)= A(G) in G then the set S = {u, v} forms a clique neighbourhood set of G.
Hence y.,(G) < |S]| =2 ...(1)
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Let S be the y,-set of G. Since N(G) contains two complete components, then for the domination of N(G) , S must

contain atleast one vertex from each component. Hence S has atleast two vertices.

Therefore y.,(G) = |S| = 2 ... (2
The result follows from (1) and (2). |
o Us oV _
u\ e oV u >~< N(B; )
B3
oy oV bV,

In the above example B, ,, A vertex set D = {u,v} is a minimum clique neighborhood dominating set. Therefore chn(Bz,z) =2

Theorem: 2.9
For the book graph B, ¢ (Bn) = 2 for n>2.
Proof:
Let G be a book graph B,, with atleast 6 vertices and V(G) = {u, v, uq, Uy, ..., Uy, V1, V4, ..., Uy} be the vertex set of G.
Let u,v € V(G) such that d(u)=d(v)= A(G) in G then the set S = {u, v} forms a clique neighbourhood set of G.
Hence y.,(G) < |S| =2 ..(D Let S be
the y.,-Set of G. Since N(G) contains two complete components, then for the domination of N(G) , S must contain atleast one
vertex from each component. Hence S has atleast two vertices.

Therefore y.,,(G) =S| = 2 ... (2)
From (1) and (2) the result follows. |
Example N(Bs)
V3 u
V2
Vi uz
\) Us

In the above example B3, A vertex set D = { u, v} is a minimum clique neighborhood dominating set, therefore y,,(Bs) = 2
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Theorem: 2.10
For the n-barbell graph,y.,,(G) = 2, for n>2.
Proof:
Let G be a n-barbell graph with atleast 6 vertices and V(G) = {u, v, uy, Uy, ..., Uy, V1, V3, ..., U, } be the vertex set of G.
Let u, v € V(G) such that d(u)=d(v)= A(G) in G then the set S = {u, v} forms a clique neighbourhood set of G.
Hence y.,(G) < |S| =2 ...(1)
Let S be the y,-set of G. Since N(G) contains two complete components, then for the domination of N(G) , S must contain
atleast one vertex from each component. Hence S has atleast two vertices.
Therefore y.,(G) = |S| = 2 ... (2
From (1) and (2) the result follows. |
Example

V2 V1 uz us

V3 5 Ly 4

V3

In the above example 5-barbell graph,
A vertex set D= {uy, v1} is a minimum clique neighborhood dominating set, therefore y,,(G) = 2

Theorem: 2.11
For the friendship graph, v, (C3*) = 1, for m= 2.
Proof:
Let G be a friendship graph with atleast 5 vertices and (G) = {u, v, v,, ..., v, } be the vertex set of G.
Let u € V(G) has the maximum degree in G then the set S = {u} forms a clique neighbourhood set of G.
Hence y.n(G) < [S| =1 ..(D
Let S be the y;,,-set of G. The dominating set in N(G) must contain atleast one vertex in N(G) and hence the clique

neighbourhood set has atleast 1 vertex.
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Therefore y.,(G) = |S]| =1 ...(2)
The result follows from (1) and (2) |
Example:

e Vo e V3

Vs

C3

In the above example C3

The vertex set S = {u} is a minimum clique neighbourhood dominating set.
Therefore ., (G) = 1.

3. CONCLUSION

In this paper, we found the exact values of clique neighbourhood domination number for Complete graph, Complete bipartite
graph, Star graph, Wheel graph, Fan graph, Banana tree, Book graph, n-barbell graph, Friendship graph.
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