

Testing Aspect Oriented Software Using UML Activity Diagrams
 Charnpreet Kaur, Sushil Garg

CSE Deptt.RIMT-IET, Mandi Gobindgarh, HOD CSE Deptt.RIMT-IET, Mandi Gobindgarh

Abstract

Aspect oriented programming (AOP) is an

extension to object oriented programming (OOP).

Aspect oriented programming supports the

separation of crosscutting concerns. AOP is a

software engineering paradigm that gives new

types of constructs such as advice, join points,

point cut and aspect in order to improve the

separation of concerns. AOP new constructs brings

new types of faults incorrect advice, point cut and

aspect precedence. In this paper we test the Aspect

specific faults with UML activity Diagrams and

check that it conforms to its expected crosscutting

behavior. This approach focus on integration of

crosscutting concerns to primary concern and

generates test sequence based on interaction

between aspect and primary models and verifies

the execution of selected sequence.

1. Introduction

Aspect oriented programming is a technology that

supports separation of crosscutting concerns [1],

[2] (i.e. functionality that tends to be tangled with

and scattered through the rest of the system). The

crosscutting mechanism of aspects frees the

programmer from interweaving different concern

(goals, concepts or area of interest). The concept of

AOP supports modularization of different concerns

while in traditional approach there are concerns

that are clearly mapped to isolated modules of

implementation for instance concern such as

Access control, synchronization policies and

logging tend to be tangled with and scattered

throughout the basic modules of implementation

(dominated base code) these concerns are called

crosscutting concerns.

AOP Supports the implementation of separate

modules called aspects that have ability to cut

across other modules, adding behavior that would

otherwise spread throughout the base code. AOP

languages defined new features due to this new

types of faults occurs (1) incorrect point cut (2)

Incorrect Advice (3) incorrect aspect precedence.

A join point is a well defined point in the execution

of the program such as method calls a constructor

invocation or a variable access. A point cut is a set

of pattern that is used to select join points. Advice

is a method like construct that contains additional

behavior to be added at the matched join points.

Advices represent a fragment of control and data

that must be added to the body of existing method.

Aspect is a construct that encapsulates a

crosscutting concern. Aspect weaving is the

process by which behavior on aspects are merged

to the original code. In aspect oriented

programming the behavior of aspect are merged to

the original code. The process of weaving cause a

lots of problems in the testing process because it is

very difficu lt to predict exactly how this code will

weave in the other code what kind of changes will

it introduce, what kind of dependencies or change

in the already existing dependencies will be

introduced. Will the base code be changed by

weaving the code and how all the changes will

influence the behavior of the system?

In this paper we present a UML activ ity diagram

based approach to test aspect oriented program or

verify that it conforms to its expected behavior.

This approach focuses on integrating one or more

aspects to primary model or generates test

sequences. In this approach firstly make activity

diagram of basic model then generate the test

sequences for basic model secondly weave the

aspects to basic model and generate integrated

model then generate the test sequences for

integrated model and finally verify that actual

behavior match to the expected behavior.

2. Related work

AOP provides a flexible mechanism for

modularizing crosscutting concerns [3] it raises

new challenges for testing aspect oriented

programs. Alexander et al. [4] have proposed a

fault model for aspect-oriented programming,

which includes six types of faults: incorrect

strength in point cut patterns, incorrect aspect

precedence, and failure to three establish post

conditions, failure to preserve state invariants,

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

1www.ijert.org

incorrect focus of control flow, and incorrect

changes in control dependencies (Alexander et al.,

2004). Th is fault model has not yet constituted a

fully developed testing approach. While some

faults (e.g., incorrect point cut strength and

incorrect aspect precedence) are undoubtedly useful

for developing testing tools and determining

coverage strategies, others are subtle. For example,

failures to establish post conditions or preserve

state invariants assume that the contract of classes

should be enforced by aspects at the design level.

Zhao in [5] has proposed a data flow based unit

testing approach for aspect oriented programs.

This approach tests two types of units for an

aspect-oriented program, i.e., aspects that are

modular units of crosscutting implementation of the

program, and those classes whose behavior may be

affected by one or more aspects. For each aspect or

class, this approach performs three levels of testing,

i.e., intra-module, inter module, and intra-aspect or

intra-class testing. This approach can handle unit

testing problems that are unique to aspect-oriented

programs. This approach uses control flow graph to

compute def-use pairs of an aspect or class being

tested and use such informat ion to guide the

selection of tests for the aspect or class. Zhao and

Rinard [6] have also exploited system dependence

graphs to capture the additional structures in

aspect-oriented features such as join points, advice,

aspects, and interactions between aspects and

classes. In this approach, control flow graphs are

constructed at both system and module level, and

test suites are derived from control flow graphs.

There is no any fault model is targeted to help

detect most likely faults.

Xu et al. proposed different approaches for

testing aspect-oriented programs [7], [8], [9]. They

proposed in [7] a state-based approach for unit

testing aspect-oriented programs. Their approach is

based on a model called Aspectual State Model

(ASM) that is an extension to the testable FREE

(Flattened Regular Expression) state model to

capture the impact of aspects on the state models of

classes. Once the ASM is created, it can be

transformed into a transition tree, which implies a

test suite for adequately testing object behavior and

interaction between classes and aspects in terms of

message sequences. In [8] they presented an

incremental testing approach for aspect-oriented

programs. The main idea of this approach is to

reuse the base class tests for testing aspects

according to the state-based impact of aspects on

their base classes. In particular, an extended state

model for capturing the impact of aspects on the

state transitions of base class objects as well as an

explicit weav ing mechanism for composing aspects

into their base models is presented. In addition,

several rules have been proposed for maximizing

reuse of concrete base class tests for aspects. They

also proposed in [9] a state-based approach for

testing integration aspects. They indicate that an

aspect integrating separated concerns, like other

aspects, can contain various programming faults.

Thus, they explo it an aspect-oriented state model to

specify integration aspects. By composing the state

models of aspects and classes, they are able to

generate test cases for integration aspects from

their state models. In addit ion, Xu et al. proposed in

[11], [12] an approach based on different UML

design models (class diagrams, aspect diagrams

and sequence diagrams) to derive test cases

covering the interactions between aspects and

classes. Liu and Chang in [13] proposed a state-

based testing approach for AOP programs. The

approach considers the state-based behavior

changes introduced by different advices in multiple

aspects. A test model is suggested to depict the

state based behavior of aspect-oriented program

after aspect weaving. Based on this model, test

cases can be derived in order to uncover the

potential state behavior errors in the AOP

programs. Badri et al. [14] presented a state- based

unit testing technique for aspect-oriented programs

and associated tool that focuses on the integration

of one or several aspects to a class. It supports both

the generation and verification of test sequences

and its objective is to ensure that the integration is

done correctly, without altering the original

behavior of the classes. The above works focus on

the behavior of a class where one or more aspects

are weaved. Our research is related to the

integration of one or more aspects to the behavior

of a group of objects. We propose an UML activity

diagram based approach to testing aspect-oriented

programs that is capable reveal some of aspect-

specific faults in the early stage of program

development. Our work is based on a paper

presented by Cui et al. [15] on modeling and

integrating aspects with UML activity diagram. We

improve this work from the perspective of model-

based test sequences generation, and test sequences

execution and verification.

3. Overview of this approach

This approach is consists of three steps. The first

step is related to building activity diagram of basic

model and generating the test sequence of basic

model. Th is step reduces the complexity to

eliminate faults that are only related to basic model

not related to Aspects. The second phase is to

integrating the aspects with the Basic model and

generates the test sequences. The third phase

consists of verify ing the execution of the sequence

and compares the actual sequence with the

expected sequence.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

2www.ijert.org

4. Testing process

Aspect oriented testing with activity diagram

integrate the aspect with basic model then generate

the test sequences and finally execute the test

sequences to verify process.

4.1. Aspect oriented Activity diagram

Aspect oriented activity diagram describes the

dynamic aspects of the system. Activity diagram is

basically a flowchart to represent the flow from one

activity to another. Aspect oriented activity

diagram motivated to capture important features

like join points, point cut and advice etc. Aspect

oriented model consist of basic model and aspect

model. Basic model is the actual model g ives

sequence of activity diagram. Aspect model which

consist of point cut model and corresponding

advice model. A point cut model is used to select

join points like nodes edges etc and join point

picked from basic model, An Advice model specify

additional behavior that added to basic model

(before, After etc).

Crosscutting concerns are either sequential or

parallel aspects that are running sequentially or in

parallel with basic concerns. Sequential aspect in

process depends on the result of another process.

Parallel Aspects in process running results not

influence the other process.

In this Testing Process Figure1 shows simple

aspect oriented activity model basic model,

Sequential aspect A1and Parallel aspect A2. Aspect

A1 in figure 1(b) consist of Point cut model and

Advice model. Po int cut model select the elements

in the Basic model to which the sequential advice

A1 will be applied. The point cut model is denoted

with <<Point cut>>.The Point cut model gives the

Join points. In figure 1(b) model A1 concern is

sequential which means advice action A1 is

performed before the join point nodes. The advice

model is denoted with <<Advice>>.The tagged

value type which ind icates the type of advice is

“Before”. In Advice model Enter Card or Eject

Card show the flow of basic model.

 The aspect A2 in Figure 1(c) consist of point cut

model and advice model constructed to select the

elements in the basic model to which parallel

advice is applied. Advice A2 concern as parallel

Advice and action A2 runs parallel with basic

model. Aspect oriented activity model essentially

depend on the weaving mechanis m that composes

aspect models with the basic model. The result of

this composition is integrated model. Integrated

model is prepared by finding join points in primary

model, init ializing advice model, and weaving

advices into basic model. Figure2 is the integrated

model after weaving the advice with basic model.

In this model Advice1 is inserted before the “M3a”

node and Advice2 is inserted after the “M3b”.

(a) Basic model of activi ty diagram

 Point cut1 Advice1

(b) As pect1

 Point cut2 Advice2

(c) Aspect2

Figure1. Aspect oriented activity diagram

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

3www.ijert.org

Figure2. Integrated model

4.2. Test sequence generation

 We start by generating the test sequence of basic

concern and test this separately. This process

reduces the complexity of testing process and

removes the faults related to Basic concern. Table1

shows the test sequence of Basic model depicted in

Figure1 (a)

Table1. Basic test sequence

Table2. Integrated test sequence

5. Case study

The above approach is applied to the ATM system

and test the incorrect point cut, incorrect advice and

incorrect aspect precedence. We take simple

example of ATM system in which user validation

and withdraw money features are added using

aspects where withdraw money depend on the user

validation. ATM system consists of:
 Customer has ATM card to access the

account.

 ATM machine make all transactions and

show balance amount to user.

 Bank check fo r validate user with the help

of pin no. Bank also checks for sufficient

amount to withdraw

 The aspects of the system are user

validation to check for validity of user.

After checking for valid user pin number

user withdraws money. User validation

follows withdraw money.

Figure3. Diagram of ATM system

In table 3 various faults like incorrect advice type,

weak or strong point cut strength and incorrect

aspect precedence. Our experiment results reveal

these types of faults. In the table 3 shows example

of each of target fault type. Each row is for special

type faults it includes:

 The specification of advice type, point cut

and aspect precedence.

 The Expected method sequences.

 The actual implementation of advice type,

point cut and aspect precedence.

 The actual method sequences.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

4www.ijert.org

Table3. Shows the revealing of various faults

Type of

fault

Model Implementation

Advice type

/Point cut

pattern/ Aspect

precedence

 Expected sequence

Advice type

/Point cut

pattern/ Aspect

precedence

 Actual sequence

Incorrect

advice type

After/

ATM(float

withdraw

money)/

 NA

Customer. Insert card()->

Customer. Enter pin()->

Bank. Authorize()->

Customer. Enter amount()->

Bank. Check account bal()->

Customer. Collect money()->

Bank. Debit account()->

ATM. Show balance()->

ATM. Eject card()->

Customer. Take card()

Before/

ATM(float

withdraw

money)

Customer. Insert card()->

Customer. Enter pin()->

Bank. Authorize()->

Bank. Check account bal()->

Customer. Enter amount()->

Customer. Collect money()->

Bank. Debit account()->

ATM. Show balance()->

ATM. Eject card()->

Customer. Take card()

Weak

point cut

After/

ATM(float

withdraw

money)/

 NA

Customer. Insert card()->

Customer. Enter pin()->

Bank. Authorize()->

Customer. Enter amount()->

Bank. Check account bal()->

Customer. Collect money()->

Bank. Debit account()->

ATM. Show balance()->

ATM. Eject card()->

Customer. Take card()

After/

ATM(float

withdraw

money*)/

 NA

Customer. Insert card()->

Customer. Enter pin()->

Bank. Authorize()->

Customer. Enter amount()->

Customer. Collect money()->

Bank. Debit account()->

ATM. Show balance()->

ATM. Eject card()->

Customer. Take card()

Strong

point cut

After/

ATM(float

withdraw

money)/

 NA

Customer. Insert card()->

Customer. Enter pin()->

Bank. Authorize()->

Customer. Enter amount()->

Bank. Check account bal()->

Customer. Collect money()->

Bank. Debit account()->

ATM. Show balance()->

ATM. Eject card()->

Customer. Take card()

After/

ATM(float

withdraw

money not

updated)/

NA

Customer. Insert card()->

Customer. Enter pin()->

Bank. Authorize()->

Bank. Check account bal()->

Customer. Enter amount()->

Customer. Collect money()->

ATM. Show balance()->

ATM. Eject card()->

Customer. Take card()

Incorrect

precedence

 NA/

 NA/

Debit account

Show balance

Customer. Insert card()->

Customer. Enter pin()->

Bank. Authorize()->

Customer. Enter amount()->

Bank. Check account bal()->

Customer. Collect money()->

Bank. Debit account()->

ATM. Show balance()->

ATM. Eject card()->

Customer. Take card()

 NA/

 NA/

Show balance

Debit account

Customer. Insert card()->

Customer. Enter pin()->

Bank. Authorize()->

Customer. Enter amount()->

Bank. Check account bal()->

Customer. Collect money()->

Bank. Debit account()->

ATM. Show balance()->

ATM. Eject card()->

Customer. Take card()

In the first row of table the expected sequence is

different from actual sequence. The difference in

sequences helps us to reveal faults. In this row advice

is changed from after (in expected) to before (in

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

5www.ijert.org

actual). The second row describes a weak point cut

fault. Weak po int cut means point cut that is not too

necessarily needed. In this row check account

balance is not necessary to collect money. Third row

describes strong point cut that is necessarily needed.

In this row debit account is necessary to show the

balance.

6. Conclusion and future work

In this paper we describe the testing aspect oriented

program with UML activity diagram. This approach

helps the tester to reveal the various types of faults

such as incorrect advice type, strong or weak point

cut, and incorrect aspect precedence. In this strategy

tree main steps are (1) Make activity diagram of

basic concern and generating the test sequences. This

step reveals the various faults present in basic model

not in aspect (2) Make aspect model and integrate

them in to basic model with this increment way we

reduce the complexity of test. (3) Th is step verifies

the generated sequences that implementation

conforms to its specificat ion. This approach

manually generate the test sequence for future work

this manual approach can be automated or enhanced

with automated test sequence generation.

7. References

[1] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit,

“Aspect-Oriented Software Development”, Addison-

Wesley Professional Boston, 2004.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C.V. Lopes, J.M. Loingtier, and J. Irwin, 1997
“Aspect oriented programming” In Proc. of

ECOOP’97, LNCS 1241, pp. 220-242.

[3] The Aspectj Team. The Aspectj Programming Guide.

August 2001

[4] R. T. Alexander, J. M. Bieman, and A.A. Andrews
2004. “Towards the systematic testing of aspect-

oriented programs” ,Technical Report, Colorado State

University.

[5] J. Zhao, “Data-flow-based unit testing of aspect-

oriented programs”, In Proc of the 27th Annual IEEE
International Computer Software and Applications

Conference (COMPSAC'03), pp.188-197, 2003.

[6] J. Zhao and M. Rinard, “System dependence graphs

construction for aspect-oriented programs”, MIT-

LCS-TR -891, Laboratory for Computer Science,
MIT, March 2003.

[7] D. Xu, W. Xu, and K. Nygard, “A state-based

approach to testing aspect-oriented programs”, In

Proceedings of the 17 th International Conference on

Software Engineering and Knowledge Engineering,
pp. 366-371, 2005.

[8] D. Xu, and W. Xu, “State-based incremental testing of

aspect-oriented programs”, In Proceedings of the 5th

International Conference on Aspect-Oriented

Software Development, pp. 180-189, 2006.

[9] W. Xu, and D. Xu, “State-based testing of integration
aspects”, In Proceedings of the 2nd Workshop on

Testing Aspect-Oriented Programs, pp. 7-14, 2006.

[10] R. V. Binder, “Testing Object-Oriented Systems:

Models, Patterns, and Tools”, Addison-Wesley

Professional, Boston, 2000.
[11] W. Xu, D. Xu, and W. E. Wong, “Testing Aspect-

Oriented Programs with UML Design Models”,

International Journal of Software Engineering and

Knowledge Engineering, Vol. 18, No. 3, pp. 413-437,

May 2008.
[12] W. Xu, and D. Xu, “A model-based approach to test

generation for aspect-oriented programs”, AOSD

2005 Workshop on Testing Aspect-Oriented

Programs, Chicago, 2005.

[13] C. H. Liu, and C. W. Chang, “A State-Based Testing
Approach for Aspect-oriented Programming”, In

Journal of Information Science and Engineering , pp.

11-31, 2008.

[14] B. Badri, L. Badri, M. B. Fortin, “Automated State-

Based Unit Testing for Aspect-Oriented Programs: A
Supporting Framework”, In Journal of Object

Technology, vol. 8, no. 3, pp. 121-126, 2009.

[15] Z. Cui, L. Wang and X. Li, “Modeling and integrating

aspects with UML activity diagrams”, Proceedings of

the 2009 ACM symposium on Applied Computing,
2009.

[16] M. Mortensen, and R. Alexander, “Adequate Testing

of Aspect-Oriented Programs”, Technical report CS

04-110, Colorado State University, Fort Collins,

Colorado, USA, December 2004.
[17] Offut, J., Xiong, Y., and Liu, S., “Criteria for

Generating Specification-based Tests”, In Engineering

of Complex Computer Systems, ICECCS '99, 1999.

[18] C. Chavez, and C. Lucena, 2002. A meta-model for

aspect-oriented modeling, The Workshop on Aspect-
Oriented Modeling with UML.

[19] A. Andrews, R. France, S. Ghosh, and G. Craig,

“Test adequacy criteria for UML design models”

Journal of Software Testing, Verification and

Reliability, 13(2):95-127, 2003.
[20] E. Barra, G. Génova, and J. Llorens, (2004).”An

approach to aspect modeling with UML 2.0”. The

Fifth International Workshop on Aspect-Oriented

Modeling (AOM’04).

[21] M., and Andrews, A.A., 2004. “Towards the
systematic testing of aspect-oriented programs”,

Technical Report, Colorado State university http://

www.cs.colosate.ed/~rta/publications/CS-04-105.pdf.

[22] AspectJ Web Site, http://eclipse.org/aspectj/.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 3, May - 2012

ISSN: 2278-0181

6www.ijert.org

