Proceedings of International Conference “ICSEM’13”

Test data reduction using LFSR reseeding technique
in benchmark circuits

R.KARTHICK'

Associate Professor,

Department of ECE,

Pondicherry Engineering College
rskarthick2003@yahoo.com

Abstract-Power dissipation during test is a significant problem as
the size and complexity of systems-on-chip (SOCs) keep on to
grow up. In scan shifting, more transitions occur in the flip-flops
compared to what occurs during normal functional operation.
This problem is further compounded when pseudorandom filling
of the unassigned input values is engaged. Too much power
dissipation during test can increase manufacturing costs by
requiring the use of a more expensive chip packaging or causing
unnecessary yield loss. In this project, a new test-data-
compression scheme based on linear feedback shift register
(LFSR) reseeding that significantly reduces power consumption
during test is proposed. Test-data volume has also increased
dramatically as the size and the complexity of chips grow. A large
number of test pattern bits being assigned randomly cause a
large number of transitions in the scan chains thereby increasing
power dissipation during test drastically. To overcome this a new
encoding algorithm is proposed to achieve test data compression
without high test power.

Keywords-SOC, LFSR, Power Dissipation, Encoding algorithm.
1. INTRODUCTION

As the size and complexity of systems-on-a-chips (SOCs)
continue to grow, the cost of VLSI test is increasing drastically.
Larger chips require a larger amount of test data and dissipate a larger
amount of power during test. Moreover, they are typically harder to
test because they tend to have more hard-to-detect faults. Test time is
a critical part of test cost and increases as the size and complexity of
a chip increase. Reducing test cost is becoming an increasingly
critical issue. This dissertation focuses on two important sources of
the test cost, namely test data volume and test power. Test time
depends on both test data volume and test power. Large test data
volume increases test time because it requires more time to transfer
the data to and from the chip.

Test power can slow down test speed, thereby increasing
test time. If the average power Consumption during test is higher than
the chip package’s capability to dissipate heat the test must be run at
a lower frequency. Therefore, both test power and test data should be
considered to reduce test time effectively. Conventional test data
compression schemes generally dissipate high power. Most
conventional compression schemes exploit the fact that a test set has
a large number of don’t cares and only 1~5% of specified (care) bits.
The don’t cares are assigned to maximize compression. In this
process, a large number of transitions may occur in test patterns. The

DR.V.SAMINADAN?,

Associate Professor,

Department of ECE,

Pondicherry Engineering College
saminadan@pec.edu

larger the number of transitions in the test patterns, the larger the
power dissipation. This dissertation addresses these two important
problems in the VLSI testing area, namely test data volume and test
power.

1.1 TEST POWER VS. TEST DATA

Conventional test data compression schemes generally
increase test power. Most conventional test data compression
techniques are based on the fact that a large percentage of test set,
typically 90%~95%, is filled with don’t care bits. The don’t care bits
are assigned in a way that minimizes test data volume and not test
power. To reduce the number of transitions in a chip during test, the
don’t care bits should be set to constant values.

Then, test power dissipation will be minimized, but the
don’t care bits would not be used for test data compression. On the
other hand, if the don’t care bits are used for test data compression,
then the don’t care bits cannot be used for test power reduction. For
example, in linear feedback shift register (LFSR) reseeding scheme
that is used in several commercial tools including Test compress by
Mentor Graphics [02] and DBIST by Synopsys, the don’t care bits
are assigned almost randomly, which results in large power
dissipation[11]. This is why test power can be a serious problem in
test data compression techniques

1.2 LFSR RESEEDING

The basic idea in LFSR reseeding is to generate
deterministic test cubes by expanding seeds. A seed was an first state
of the LFSR that is lengthened by running the LFSR in self-
governing mode. Since typically only 1-5% of the bits in a test vector
are specified, most bits in a test cube do not need to be considered
when a seed is computed because they are don’t care bits. Therefore,
the size of a seed is large amount smaller than the size of a test
vector. Therefore, reseeding can considerably reduce test data storage
and bandwidth [12]. Many test data compression schemes are based
on LFSR reseeding. Causing high power dissipation. We present a
new encoding scheme that can be used in Conjunction with any
LFSR reseeding scheme to significantly reduce test power and even
further reduce test storage.

R.Karthick, Dr.V.Saminadan

42

International Journal Of Engineering Research and Technology(1JERT), ICSEM-2013 Conference Proceedings

2. PROPOSED METHODOLOGY

Pseudo CUT
Random > Hold | Scan L »{ Response
Pattern Flag chain
Generator

Fig 1. Basic Block Diagram

The proposed encoding scheme acts as a second stage of

compression after LFSR reseeding. It accomplishes two goals.
Initially, it decreases the number of transitions in the scan chains (by
satisfying the undetermined bits in a changed mode), and second it
reduces the number of specified bits that need to be generated via
LFSR reseeding. The investigational results specify to facilitate the
proposed method significantly reduces test power and in most cases
provides greater test data compression than LFSR reseeding alone.

2.1. ENCODING ALGORITHM

Let a transition in a test cube be defined as a specified 0 (1)
followed by zero or more X’s followed by a specified 1 (0). The main
thought of the planned encoding algorithm is to take advantage of the
fact that number of transitions in a test cube is always less than the
number of specified bits in a test cube. So, slightly using LFSR
reseeding to directly encode the specified bits as in conventional
LFSR reseeding, the future encoding algorithm segregates the test
cube into blocks and only uses LFSR reseeding to generate the blocks
that hold transitions. For the blocks that do not contain transitions;
the logic value fed into the scan chain is simply held constant.

This method decreases the amount of transitions in the scan
chains and in most cases also reduces the total number of specified
bits that must be generated by the LFSR as compared with
conventional LFSR reseeding

2.1.1 Basic Concept

The future encoding scheme encodes each test cube with two
kinds of data: hold flags and data bits. Every trial cube is divided into
multiple blocks and each block has a one-bit hold flag. The hold flag
indicates whether a transition occurs in a block.

There are three types of blocks:

1) Transition block (Hold flag = 0)

One or more transitions exist in the block. Either both 0 and

1 are present in the block (e.g., XX1X0X), or only 0 or 1 is present
but the last specified bit from a previous block was opposite.
2) Non-transition block (Hold flag = 1)

Proceedings of International Conference “ICSEM’13”

No transition occurs in current block. Only 0 or 1 is present
in the block, and the last specified bit from a previous block is same
(e.g., X0XX0X).

3) Don’t care block (Hold flag = X)

No specified bits occur in the block, all are don’t cares. If
the hold flag for a block is 1, then the data bits in the block are
simply held constant from the last data bit in the previous block. If
the hold flag is 0, then the data bits are loaded directly from the
LFSR. If the hold flag is X, then it can be either treated as a non-
transition block or as a transition block with all X data. Both the hold
flags and the data bits are generated from a single LFSR using
reseeding.

Table 1. Example of encoding test data

BLOCK BLOCK BLOCK BLOC | BLOCK

K
Original 0 X X| X 1 1|1X1X|X X X
1 1 X
Encoded 00X X|1IX1 1]I1X1X|XXXXX

1

An example of the proposed encoding is shown in Table
3.1. The test sequence in the example is composed of 4 blocks and
each block has 1 hold flag and 4 data bits. The hold flags are shown
in bold in the “Encoded” bit sequence row. The original test cube
contains 7 specified bits. However, using the proposed encoding
scheme, the encoded data has only 3 specified hold flags and 2
specified data bits giving a total of only 5 specified bits.

Table 2. Example of encoding test data

BLOCK | BLOCK | BLOCK | BLOCK | BLOCK

Original [X 0 1| X 0 X| X X X| 1 11
X 0 X X

Encoded |0 X 01 |1 XO0X|[0XXX|[111 1
X 0 1 X

Thus, the proposed encoding scheme reduces the number of
specified bits that need to be generated using LFSR reseeding. As
shown in table2 the 1’s in block 2 and block 3 don’t need to be
generated directly by the LFSR, but are rather generated as a by-
product of the fact that the hold flags keep the input to the scan chain
held constant at 1. Thus, test data compression can be achieved in this
way.

Moreover, no transitions will occur when generating block
2 and block 3 because the hold flags are 1 thus keeping all the bits in
the blocks constant. This would not be the case in conventional LFSR
reseeding where the X’s in blocks 1 and 2 get filled with random data
which may results in many more transitions. Thus, a reduction in the
number of transitions can be achieved in this way.

2.1.2 Conversion Procedure

R.Karthick, Dr.V.Saminadan

43

International Journal Of Engineering Research and Technology(1JERT), ICSEM-2013 Conference Proceedings

It is possible to increase the number of non-transition
blocks by converting some transitions blocks into non-transition
blocks. There are two requirements that must be satisfied in order to
convert a transition block into a non-transition block. The first is that
it cannot contain both specified 0’s and specified 1’s. The second is
that the last bit of the previous block must be an X. Two examples of
this are shown in table3.1.

Block 2 is initially a transition block even though it only
contains specified 0’s because the last specified bit in block 1 was a
1. However, the very last bit of block 1 is a don’t care, so a
conversion procedure can be used to specify that don’t care as a 0 and
thereby convert block 2 into a non-transition block. Even though this
conversion required adding an extra specified data bit, the net result
is still a reduction in the total number of specified bits because now
block 2 is a non-transition block and thus none of its data bits need to
be generated by the LFSR.

This same conversion procedure can also be used to
convert block 4 in Table 1. In to a non-transition block. By increasing
the number of non-transition blocks, the conversion procedure can
help to reduce both test storage (since it can reduce the total number
of specified bits) as well as test power (since it can reduce the
number of transitions by enabling all the X’s in the converted non-
transition block to be filled with the same logic value Convert blocks
2 and 4 into non-transitions blocks).

Table 2. Example of conversion procedure (last bit of
blocks 1 and 3 are specified to convert blocks 2 and 4 in to non-
transitions blocks

2.1.3. Partitioning into Hold Cube Compatible Sets

The test storage for LFSR reseeding depends on the
number of specified bits. For each block that is not a don’t care
block, the hold flag for that block is specified. If the number of
specified hold flags becomes larger than the number of the specified
test data bits that are reduced by using the proposed encoding
scheme, then the encoding scheme would be reducing test power
dissipation at the cost of test storage. The test storage would increase
because the total number of specified data bits plus specified hold
bits would exceed the total number of specified bits in the original
test cubes. However, in this chapter, a method for reducing the
number of specified hold flags is introduced. The key idea is to take
advantage of the fact that many test cubes may have compatible
assignments in their corresponding hold flags. We will denote the set
of hold flags for one test cube as a hold cube since each hold flag can
be either a 1, 0, or don’t care (X). If several consecutive test cubes
have the same hold cube, it is not necessary to change any of the hold
flags. Thus, the hold flags could be loaded once and then reused
when applying subsequent test cubes.

The hold cubes for a pair of test cubes are compatible if
they do not conflict in any specified bit positions. In other words, for
every bit position where one hold cube has a specified value, the
other hold Cube has either the same specified value or a don’t care
(and vice versa). Let a hold cube compatible set be defined as a set of
test cubes with mutually compatible hold cubes. Since typically only
around 1-5% of the data bits in a test cube are specified, the
corresponding hold cube will typically have a large number of don’t
cares

4. HARDWARE IMPLEMENTATION

Proceedings of International Conference “ICSEM’13”

The hardware implementation for the proposed scheme is
shown in Fig. 2. Each scan chain is divided into one or more blocks.
Let B be the number of blocks per scan chain. Each scan chain has a
hold flag shift register (HF-SR) whose size is equal to B. LFSR
reseeding is used to generate all of the data for each test cube which
consists of three components: update flag, hold flags, and test data.
The format for the data coming out of the LFSR for each test cube is

shown in Fig.3.
’—b Load signal for HF-SR

Scan Chain
L
F Phase Scan Chain
S Shifter
R
[]
[]
[]
| Scan Chain

Fig 2. Hardware implementation of the proposed scheme
Hold Cube

(Ifupdate flag is equal to 1) Testdat

D "o []
T et e Num. of
Update Flag : : Scan Chains
TX] []
\ J o /
Y h'd
Num. of Blocks

per Scan Chain (B) Scan chain lengt (L)

Fig.3 Data coming out of the LFSR for each test cube

The hardware implementation for the proposed scheme is
shown in Fig. 3 Each scan chain is divided into one or more blocks.
Let B be the number of blocks per scan chain [12]. Each scan chain
has a hold flag shift register (HF-SR) whose size is equal to B. LFSR
reseeding is used to generate all of the data for each test cube which
consists of three components: update flag, hold flags, and test data.
The format for the data coming out of the LFSR for each test cube is
shown in Fig.3

R.Karthick, Dr.V.Saminadan

44

International Journal Of Engineering Research and Technology(1JERT), ICSEM-2013 Conference Proceedings

There is a small finite state machine (FSM) controller that
controls where the data coming out from the LFSR is loaded. In the
initial clock cycle, the LFSR oscillates a single bit which is the
update flag. If the revise flag is 1, after that B clock cycles, the LFSR
oscillates the hold flags for each of the scan chains which are shifted
into the HF-SRs. If the update flag is 0, then the HF-SRs are not
loaded. Let the length of each scan chain be L.

Then for the next L clock cycles, the LFSR generates the
test data. For each L/B clock cycles, if the corresponding hold flag
for a scan chain is 0, after that the scan chain is stored from the
LFSR. If the corresponding hold flag is a 1, after that the final value
shifted into the scan chain is repeatedly shifted into the scan chain
and the data from the LFSR is ignored. After each L/B clock cycles,
the hold flag shift register is shifted so that the next hold flag
becomes active for its corresponding block and is used as the control
signal to a MUX (as shown in Fig. 2). After the scan chains have
been filled, then the scan vector is applied to the circuit-under-test
and the response is loaded back into the scan chain. The above
mentioned process repeated to generate the next scan vector.

The hardware overhead consists of one 2-to-1 MUX and a
HF-SR per scan chain, one 1-bit update flag flip-flop and the small
FSM controller [10]. The FSM controller consists of a bit counter
which is present for LFSR reseeding logic. The size of the HF-SR
predominantly used to find the hardware overhead in reseeding
scheme. It depends on the number of scan chains and the total
number of blocks.

5. SIMULATION RESULTS

The code for LFSR and LFSR Reseeding with and without
Encoding Algorithm code is written in VHDL and simulated using
MODELSIM 5.7G

5.1 LFSR Reseeding Without Algorithm

By observing the result when the clock is high the LFSR
generates the Test patterns and it shifted to the scan chain, the scan
chain data are fed to input of the test circuit .In this method the test
patterns are high, they take more time to process the data and it’s
power consumption is measured with the help of XILINX power
analysis tool.

Proceedings of International Conference “ICSEM’13”

4
i
i
i
i
i
4
i
1
i
|
i
: |
i
i
i
’ |
i
: |
i
i
i
’ |
i
4
|
i

Fig 4 LFSR Reseeding without Algorithm (s27)

UL AU UL UUUUYUTLY |

Fig 5 LFSR Reseeding without Algorithm (c17)

5.2 LFSR Reseeding With Algorithm

By observing the result when the clock is high the LFSR
generates the Test patterns, if the hold flag is set, the encoded data
are fed to the scan chain otherwise generated LFSR test patterns are
fed to the scan chain. The scan chain data are fed to input of the test
circuit, and its power consumption is measured with the help of
XILINX power analysis tool.

R.Karthick, Dr.V.Saminadan

45

International Journal Of Engineering Research and Technology(1JERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

(AL b T L

T I X T {1

s
U AN ! ! I A1

Comparison of LFSR reseeding without algorithm along with
LFSR reseeding with algorithm

The Method LFSR Reseeding without algorithm consumes
more power and the device utilization is more, compare to LFSR
Reseeding with circuit

6. CONCLUSION

LFSR reseeding is a powerful approach for reducing test
storage. In this encoding scheme provides a technique to reduce test
power for LFSR reseeding. It acts as a second stage of compression
after LFSR reseeding. By employing hold flags, not only is test
power reduced, but also test storage can be reduced. Further the

1 gQri_]‘I&g scheme, will be implemented, LULEIQT Environment and will
rth-the-help—of Benchmark—Ciret Js using MODELSIM

iR lUJ 9 0 (0 D (T
q D, (N faYe) UMM IB{N W]

Fig 6. LFSR Reseeding With Algorithm

Criteria

Circuit
name

LFSR
reseeding
without
algorithm

LFSR
reseeding
with
algorithm

Power in
mw

S27

21

10

Power in
mw

C17

31

15

Test data
volume

S27

543

256

Test data
volume

C17

634

342

Fig 7. LFSR Reseeding With Algorithm

IS S S TS S S S SSSRSSS

i 10 (T T (T

NCES

1[1@

and K Chal v-nl'—mv%,:%

P1), "Combining low-

mg and fF'St Qam Ie)

Ti J

kit ON- a-chlp, % jit
i ==

: Chandra A

SOC TFectPata\Nali Pa

mpression for system-
onConf., pp. 166-169.
2002), "Reduction of

Q
Y—rest—pata—v-orume,—Dcan—1o

Using Alternating Run-length |Codes,"

Automation Conference, pp.|673-678

er and Testing Time
Proc. Of Design

Rosinger, P. M., B.M. Al-Hashimi, and N. Nicolici(2002),

"Low Power Mixed- Mode BIST B
Generation Using Dual LFSR |Re-s
Conference on Computer Design, pp.
Samaranayake, S., N. Sitchinava
Amin(2002), and T.W. Williams, "D
Down the Cost of Test," Computer,

aised on Mask Pattern
reding," Proc. of Int.
474-47.

, R. Kapur, M.B.
ynamic Scan: Driving
Vol. 35, Issue 10, pp.

“63 68, | |

RR. Oruganti, ahd N.A. Touba(2000),

(9]

"btatlccompacnon techmques to control scan vector power
dissipation," Proc. of VLSI Test Symp., pp. 35-40

N. Zacharia, J. Rasjski, and J. Tyszer(1995),
“Decompression of test data using variable-length seed
LFSRs,” in Proc. VLSI Test Symp., pp. 426-433.
Hellebrand, S., S. Tarnick, J. Rajski, and B.
Courtois(1992), "Generation of Vector Patterns through
Reseeding of Multiple-Polynomial Linear Feedback Shift
Register," Proc. of International Test Conference, pp. 120-
129.

Krishna, C.V., A. Jas, and N.A. Touba(2001), "Test Vector
Encoding Using Partial LFSR Reseeding", Proc. of IEEE
International Test Conference, pp. 885-893.

Hellebrand, S., J. Rajski, S. Tarnick, S. Venkataraman, and
B. Courtois(1995),"Built-in Test for Circuits with Scan
Based on Reseeding of Multiple-Polynomial Linear
Feedback Shift Registers," IEEE Trans. on Computers, Vol.
44, No. 2, pp. 223-233.

R.Karthick, Dr.V.Saminadan

46

International Journal Of Engineering Research and Technology(1JERT), ICSEM-2013 Conference Proceedings

Proceedings of International Conference “ICSEM’13”

[10] Krishna, C.V., and N.A. Touba(2001), "Reducing Test
Data Volume Using LFSR Reseeding with Seed
Compression ", Proc. of IEEE International Test
Conference, pp. 321-330.

[11] Koenemann, B(1991)., "LFSR-Coded Test Patterns for
Scan Designs," Proc. of European Test Conference, pp.
237-242.

[12] Jinkyu Lee and Nur A. Touba(2007),LFSR-Reseeding
Scheme Achieving Low-Power Dissipation During Test”,
Proc. of European Test Conference, pp. 237-242.

R.Karthick, Dr.V.Saminadan

47

International Journal Of Engineering Research and Technology(1JERT), ICSEM-2013 Conference Proceedings

