
Test Case Prioritization: A Review

Monika

CSE Department, DeenBandhuChhotu Ram University of

Science and Technology,

Murthal, Haryana, India

Ajmer Singh

CSE Department, DeenBandhuChhotu Ram University of

Science and Technology,

Murthal, Haryana, India

Abstract- Testing is a technique to certify the quality of

developed software. When some modifications are being done

in software regression testing is used to revalidate the software.

The main motive behind this review is to introduce the

enhancement in regression test case prioritization.

Keywords- test case prioritization, metaheuristic algorithms,

cost modal, time constraint.

I. INTRODUCTION

Considering the software development and maintenance

process one of the most critical activities is regression

testing. Test suites which are developed by software

developers for their software have being saved by them.

These test suites are then used in the form of regression

testing. Reuse of test suite and other activities related to

regression testing have one half of the cost of software

maintenance. Regression testing is very expensive but

ensures that the software program will work according to its

specification after changes have been made to it. Not only

the cost these activities can consume an inordinate amount

of time.

One of the approaches to overcome these problems testers

runs those test cases first which have highest priority

according to some criterion. This approach of regression

testing is called test case prioritization.

Various approaches of regression techniques are [1]:-

Fig 1 Approaches of regression techniques

1)

Retest All

2) Regression Test Selection

3) Test Suite Reduction

4) Test Case Prioritization

Retest All - It is the most straightforward approach of

regression testing. In this simply execute all the existing test

cases in the test suite.

Regression Test Selection – It deal with the problem of

selecting a subset of test cases from the test suite. These

selected test cases are then used to test the changed parts of

software.

Test Suite Reduction – This process has two parts. First is to

identify the absolute or redundant test cases and second to

eliminate those test cases.

Test Case Prioritization – Finally test case prioritization, it

concerns with the recognition of idyllic ordering of test

cases. That ordering should maximises desirable properties

like early fault detection and number of fault detection.

Another desirable property may be to minimise the testing

cost.

II. Prioritization Techniques

Classification based on the characteristics of the

prioritization algorithms-

A. Based on customer requirements

B. Based on coverage

C. Based on cost effective

D. Based on chronographic history

Based on customer requirements-

In these techniques various customer requirement factor are

considered. Assign some weight to these factors. Test cases

having high weight value are executed first and test cases

with low weight value are executed later.

Hema Srikanth and Laurie Williams [2] present a technique

in which they consider 3 factors

1) Customer-assigned priority on requirements (CP)

2) Requirement complexity (RC)

REGRESSION
TESTING

RETEST ALL
REGRESSION

TEST
SELECTION

TEST SUITE
REDUCTION

TEST CASE
PRIORITIZA

TION

1266

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051481

Vol. 3 Issue 5, May - 2014

3) Requirement volatility (RV)

CP value is allocated by the customer. RC value is allocated

by developer. Value of RV depends upon the number of

times modifications are being done in the requirements.

𝑊𝑃 = 𝑃𝐹 𝑣𝑎𝑙𝑢𝑒 ∗ 𝑃𝐹 𝑤𝑒𝑖𝑔ℎ𝑡 (1)

WP = weighted prioritization

PF value is values assigned to prioritization factors. PF

weight is weight assigned to prioritization factors.

Test cases are being ordered according to WP values .Test

cases having the higher values are executed first.

R.kavitha et al. [3] also proposed a technique in which they

consider 4 factors

1) Priority of requirements assigned by customer

2) Code implementation complexity assigned by

developer

3) Changes in requirements

4) Fault impact

Equation used

𝑅𝐹𝑉𝑖 = 𝐹𝑎𝑐𝑡𝑜𝑟 𝑣𝑎𝑙𝑢𝑒 𝑗

3

𝑗=1

/3 (2)

Where „n‟ requirements, „j‟ factor value. RFVi is

requirement factor value for each requirement „i‟.

Based on requirement factor values TCW test case weight is

calculated according to equation

𝑇𝐶𝑊 =
 𝑅𝐹𝑉𝑥𝑖

𝑥=1

 𝑅𝐹𝑉𝑦𝑛
𝑦=1

 ∗ 𝑖/𝑛 (3)

Test cases are ordered according to values of TCW.

Ashraf et al. [4] present a requirement based technique in

which they consider 6 factors
1) Customer priority

2) Requirement volatility

3) Requirement traceability

4) Implementation complexity

5) Execution time

6) Fault impact of requirement

They present a value based prioritization algorithm. Their

algorithm works at 2 levels i.e. requirement level and testing

level.

To get the net values calculations are being done on the

values get from the above 2 levels. These values are further

used for ordering of test cases. They also compare their

algorithm with random prioritization algorithm.

Comparisons show that their algorithm is more effective for

early fault detection.

Based on coverage

For detecting faults earlier in testing, we have to achieve

more coverage. These techniques test internal structure of

data and may be consider as white box testing.

Wong et al. [5] propose a technique in which their criterion

of test case prioritization is of increasing cost per additional

coverage. They use the tool called ATAC an automatic

testing tool for analysis in c for test case selection and

minimization or prioritization.

Rothermal et al. [6] propose 4 coverage based techniques

they are total coverage, additional coverage, statement

coverage, branch coverage. For evaluation they used the

Aristotle a program analysis tool. APFD is used for

measuring the results. Their results shows that total

coverage surpass the additional coverage prioritization.

Elbaum et al. [7] propose the version specific prioritization

technique. They present 8 function level techniques they are
1) Total function

2) Additional function

3) Total FEP function

4) Additional FEP function

5) Total FI function

6) Additional FI function

7) Total FEP FI functional

8) Additional FEO FI functional

Total function and additional function are based on

coverage. 4 statement level techniques also presented but in

context of version specific. A comparison between function

and statement level was being done in terms of rate of fault

detection. APFD metric is used for fault detection. ANOVA

and Bonferroni analyses were performed on all techniques.

Optimal ordering is superior to all other techniques.

Random is the worst one. In terms of the cost effectiveness

function level are far better than statement level techniques.

Amitabh srivastava and Jay thigarajan [8] proposed a

prioritization technique based on binary code. They gave a

system called ECHELON.

 ECHELON prioritize the test cases based on the

modification are being done in the program.

 ECHELON is an integrated part of Microsoft

software development process.

 It uses simple and fast algorithm.

 It generates results within a few seconds thus

saving time and resources.

Do et al. [9] present a controlled experiment. JUnit

framework is a framework that is used by software

developers for generating test cases for programs that are

being implemented in java. JUnit framework helps the

developers to write the test cases and to rerun these test

cases whenever some modifications are being done in the

program. There experiment is for finding the effectiveness

of test case prioritization under this JUnit framework.

They present 6 block and method level techniques

1) Total block coverage

2) Additional block coverage

3) Total method coverage

4) Additional method coverage

5) Total DIFF method

6) Additional DIFF method

1267

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051481

Vol. 3 Issue 5, May - 2014

Three type of information are being used. They are coverage

information, modification information and use of feedback.

Modification information is for DIFF method. These

techniques are specific to JUnit environment and a

comparison was being done with techniques specific to C

language [10].

The result shows that there is no effect of level of

granularity and the modification information on the

prioritization. Because the instrumentation granularity of

java is different from C, so statement level techniques based

on java were found better than function level techniques

based on java.

Renee C. Bryce and Atif M. Memon [11] prioritizes test

cases for interaction coverage. Mainly their work is for

event driven software. They prioritize test cases based on

five criterions

1) Unique event coverage-prioritize test cases so that

they cover unique events as soon as possible.

2) Event interaction coverage- 2-way interaction

and 3-way interaction.

3) Longest to shortest with respect to length of test

cases.

4) Shortest to longest with respect to length of test

cases.

5) Random test ordering-test cases are ordered

randomly without any rule.

The result shows that if we want to achieve fastest fault

detection rate our test suite must have leading percentage of

2-way and 3-way interaction.

Belli et al. [12] proposed techniques in this ordering of

relevant events are being done. The events have many

features. Events are prioritizing according to the importance

of their features. Graph modal based approach is used for

prioritization. Fuzzy c-Mean clustering algorithm is used for

erection of events. No need of prior information in this

approach. Run time complexity is 𝑜(𝑛2). Where n is the

number of events.

Do et al. [13] proposed a technique in which they want to

find out what are the effect on a specific prioritization

technique of variation in time constraint and also the effect

on cost benefits of regression testing. They propose four

techniques two are related to total and additional coverage

and two are related to Bayesian network. The equation used

in the technique is-

 𝐶𝑂𝑆𝑇 = 𝑃𝑆 ∗ (𝐶𝑆 𝑖 + 𝐶𝑂𝑖
𝑛
𝑖=2 𝑖 + 𝐶𝑂𝑟 𝑖 + 𝑏 𝑖 ∗

𝐶𝑉𝑖 𝑖 + 𝑐 𝑖 ∗ 𝐶𝐹(𝑖)) (4)

Additional techniques are found to be better than total.

Result shows that time constraint play a noteworthy role in

test case prioritization techniques.

Jiang et al. [14] proposed a Adaptive Random Test Case

Prioritization Technique (ART). They propose nine new

coverage based ART techniques. They are classified into

three groups‟ maxmin, maxavg and maxmax. Their

coverage is at statement level, function level and branch

level.

1) ART-st-maxmin

2) ART-st-maxavg

3) ART-st-maxmax

4) ART-fn-maxmin

5) ART-fn-maxavg

6) ART-fn-maxmax

7) ART-br-maxmin

8) ART-br-maxavg

9) ART-br-maxmax

A comparison was being done between these techniques and

random ordering, and these found 40 to 50% more effectual

than random ordering. ART-br-maxmax is best among the

group. In terms of revealing failure these are more efficient

and statically more effectual than traditional coverage

techniques.

Maia et al. [15] presents a metaheuristic algorithm called

GRASP (greedy randomized adaptive search procedure).

They do automatic test case prioritization with the help of

GRASP. A metaheuristic algorithm finds out good solutions

as well as optimal solutions. They compare the reactive

GRASP approach with other search algorithms like greedy

algorithm, additional greedy, genetic algorithm and

simulated annealing. Their comparison is in terms of time

performances and coverage. Their coverage criterions are

block, decision and statement.

The results show that out of these five algorithms additional

greedy is best one but reactive GRASP is not worse than

that. GRASP surpassed the genetic algorithm, greedy

algorithm and simulated annealing.

Dennis Jeffrey and Neelam Gupta [16] proposed a

prioritization technique using the relevant slice. A program

contains many statements. Some statements have no

influence on the output produced by the test case but some

statements have potential to influence the output produced

the test. All these statement forms a group and this group

correspond to relevant slice.

In this approach following factors are considered

 The number of statements in the relevant slice of

the output of the test case.

 The number of statements that are not in the

relevant slice of the output but are executed by

the test case.

Equation used for calculating the weight of a test case is

𝑇𝑊 = 𝑅𝑒𝑞𝑠𝑙𝑖𝑐𝑒 + 𝑅𝑒𝑞𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 (5)

Reqslice is number of requirements presented in the relevant

slice of output for the test case.

ReqExercise is number of requirements exercised by the test

case.

Based on cost effective-

There are much kind of cost related to test cases like cost of

analysis and cost of prioritization. In cost effective based

techniques test cases are ordered for execution based on

cost.

Leung and white [17] propose a cost modal that compare the

various regression strategies. They divide the total cost into

two parts

 Direct cost

 Indirect cost

1268

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051481

Vol. 3 Issue 5, May - 2014

Direct cost includes

1) System analysis cost 𝐶𝑎

2) Test selection cost 𝐶𝑠

3) Test execution cost 𝐶𝑒

4) Result analysis cost 𝐶𝑟

Indirect cost includes

1) Overhead cost

2) Tool development cost

One disadvantage of this technique is that they did not

include the cost of undetected faults.

Alexey Malishevsky et al. [18] proposed cost modal of cost-

benefit tradeoffs for regression testing. They did

experiments for test case selection, test case reduction and

test case prioritization and presents cost modals for them.

They used the cost factors like

 𝐶𝑎(𝑇) cost of analysis

 𝐶𝑒(𝑇) cost of execution

 𝐶𝑐(𝑇) cost of result checking

 𝐶𝑠(𝑇) cost of selection

 𝐶𝑚 (𝑇) cost of maintenance of the test suite

In experiment for test case prioritization they consider two

factors cost of analysis and cost of prioritization 𝐶𝑝 (𝑇) . In

their work they divide the testing process in two phase‟s one

preliminary and second critical phase. These two phases

have different costs. The result shows that the optimal

ordering, total function coverage and additional function

coverage have maximum saving.

Based on chronographic history-

In these type of prioritization techniques test execution

history considered to be the main factor for prioritization of

test cases.

Jung-Min-Kim and Adam Porter [19] proposed a history

based test case prioritization technique. It is for regression

testing in resource constrained environment. Their main

motive behind this is to show that historical information can

be useful for decreasing the cost and it may be useful in

increasing the effectiveness of testing process.

They do comparison of some prioritization methods like

LRU, random, safe random. LRU requires less total effort

than random both in terms of median and average. Safe

random requires less total effort than random in terms of

median and average. Safe random is little bit better than

LRU in terms of median and average.

Weakness of their cost modal is that they only take the

consequence of last execution of the test case to calculate

the selection probability of the test cases.

Park et al. [20] propose an approach that uses the historical

information for cost-cognizant test case prioritization. This

information improves the effectiveness of regression testing.

Factors consider are-

1) Function level gratuity

2) Historical information of the cost of the test cases

3) Fault severities of detected defects in a test suite

4) These factors are used to calculate the historical

value of the test case and that value is used for test

case prioritization.

A comparison is being done between their technique and

functional coverage technique. Results show that in terms of

APFD it better than functional level technique.

Fazlalizadeh et al. [21] make some changes in the technique

of Kim and porter. If resource and time constraint

environment is considered they motive is to give faster fault

detection.

Factor consider are-

1) Historical effectiveness of the test cases

2) Execution history of the test cases

3) Last priority assigned to the test cases.

A comparison was being done with the random ordering.

The box plots shows that it has faster fault detection and

stability.

III. CONCLUSION

This paper present a review on regression test prioritization

techniques which evaluates the research work related to the

area. This paper summarises the research papers along with

the techniques they compared. Explanation makes the

researches understand the scope of working various

techniques. We can conclude that there are so many

techniques that are used for test case prioritization. Each

technique has its advantages and disadvantages. According

to requirement a tester can use any technique.

IV. ACKNOWLEDGMENT

I would like to place on record my deep sense of gratitude

of Mr. Ajmer Singh, Assistant Professor at Deenbandu

Chhotu Ram University of Science and Technology,

Murthal, Haryana, for their valuable time and useful

suggestions which are responsible for the work produced

here.

REFERENCES

[1] S.Yoo, M.Harman, “Regression testing Minimisation, Selection and

Prioritization: A Survey” Wiley InterScience DOI: 10.1002/000,

2007

[2] Hema Srikanth, Laurie Williams, “Requirements-Based Test Case

Prioritization”.
[3] R.Kavitha, V.R.Kavitha. N. Suresh Kumar “Requirement Based Test

Case Prioritization” 978-7-4244-7770-8 IEEE, 2010.

[4] E. Ashraf, A. Rauf, and K. Mahmood, “Value Based Regression Test
case Prioritisation”, Proceedings of the World Congress on

Engineering and Computer Science 2012 Vol I WCECS 2012,

October 24-26, 2012, San Francisco, USA.
[5] W.E. Wong, J.R.Horgan, S.London, and A.Aggarwal, “A study of

effective regression testing in practice”, Proceedings of the Eighth

International Symposium Software Reliability Engineering,
[6] G. Rothermel, R.Untch, C.Chu, and M.J.Harrold, “Test case

prioritization: An empirical study”, Proceedings of International

Conference Software Maintenance, pp. 179-188, Aug. 1999.
[7] S.Elbaum, A.Malishevsky and G. Rothermel, “Prioritizing test cases

for regression testing”, Proceedings of the International Symposium

on Software Testing and Analysis, pp. 102-112, Aug.2000.

[8] A.Srivastava, and J.Thiagarajan, “Effectively prioritizing tests in

development environment”, Proceedings of the International

Symposium on Software Testing and Analysis, pp.97-106, July
2002.

[9] H.Do, G.Rothermel and Kinner, “Empirical studies of test case

prioritization in a Junit testing environment”, Proceeding of the
International Symposium on software Reliability Engineering,

pp.113-114, NOV 2004.

1269

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051481

Vol. 3 Issue 5, May - 2014

[10] S.Elbaum, A.G.Malishevsky, and G.Rothermel, “Test case
prioritization: A family empirical studies”, IEEE Transactions on

Software Engineering, Vol. 28, No. 2, pp. 159-182, Feb.2002.

[11] R.C. Bryce, A.M. Menon, “Test Suite Prioritization by Interaction
coverage”, Proceedings of the workshop on domain specific

approaches to software test automation (DOSTA), ACM, pp. 1-7,

2007.
[12] F.Belli, M.Eminov, N.Gokco, “Coverage-Oriented, Prioritization

Testing A fuzzy Clustering Approach and Case Study”. In:

Bondavalli.A.Brasileiro, F.Rajsbaum, S.(eds.) LADC 2007, LNCS,
Springer, Heidelberg, Vol. 4746, pp. 95-110, 2007.

[13] H. Do, S. Mirarab, L. Tahvildari, G. Rothermel, "An Empirical Study

of the effect of time constraints on the cost benefits of regression
testing" Proceedings of the 16th ACM SIGSOFT International

Symposium on Foundations of software engineering,pp71-82,2008.

[14] B.Jiang, Z.Zhang, W.K.Chan, T.H.Tse, “Adaptive Random test case

prioritization” In Proceedings of International Conference on

Automated Software Engineering, pp:233-243, 2009.

[15] C. L. B. Maia, R. A. F. do Carmo, F. G. De Freitas, G. A. L. de
campos and J. T. De Souza, “Automated test case prioritization with

reactive GRASP,” In Proceedings of Advances in Software

Engineering, pp.1-18, 2010.
[16] Dennis Jeffrey and Neelam Gupta “Test case prioritization using

relevant slices” Department of computer science The University of

Arizona TUCSON, AZ85721
[17] Harton K. N. Leung and Lee White “A Cost Modal to compare

Regression Test Strategies” CH3047-8|91|0000|0201, IEEE 1991.
[18] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg Rothermel,

Sebastian Elbaum “Cost-cognizant Test Case Prioritization”

Technical Report TRUNL-CSE-2006-0004, Department of
Computer Science and Engineering, University of Nebraska –

Lincoln, 2006.

[19] J.M.Kim, A. Porter, “A History-Based Test Prioritization Technique

for Regression Testing in Resource Constrained Environment” ,

Proceedings of the 24th International Conference Software

Engineering, pp.119-129, May.2002.
[20] H. Park, H.Ryu, J.Baik, “Historical value-based approach for cost-

cognizant test case prioritization to improve the effectiveness of

regression testing”, Proceedings of second International Conference
on Secure System Integration and reliability, Improvement, pp. 39-

46, 2008.

[21] Y.Fazlalizadeh, A.Khalilian, H.A.Azgomi, S.Parsa, “Incorporating
historical test case performance data and resource constraints into

test case prioritization” , Lecture notes in Computer Science,

Springer, Vol. 5668, pp. 43-57, 2009.

1270

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS051481

Vol. 3 Issue 5, May - 2014

