
 Test Case Minimization Techniques : A Review
Rajvir Singh1 and Mamta Santosh2

1,2Department of Computer Science and Engineering, DCRUST, Murthal, Haryana(India)

Abstract

Software testing is most expensive phase of

development. It becomes unfeasible to execute all the

test cases. Test case minimization techniques are

used to minimize the testing cost in terms of execution

time, resources etc. The purpose of test case

minimization is to generate representative set from

test suite that satisfy all the requirements as original

test suite with minimum number of test cease. Main

purpose of test case minimization techniques is to

remove test cases that become redundant and

obsolete over time. Several techniques have been

purposed in literature. These techniques can be

categorized as Heuristics, Genetic Algorithm, Integer

Linear Programming based techniques. This paper

presents a survey on the work that has been done in

test case minimization.

Keywords: Test Case Minimization, Software

Testing, Survey, Literature review, Test suite

reduction techniques.

1. Introduction
Software testing is most important and expensive

part of software development process. Test cases are

run on the software to find errors. Test cases need to

be defined along with the requirement specification.

Test case is defined in IEEE standard as [6]: “A set of

test inputs, execution, and expected results developed

for a particular objective, such as to exercise a

particular program path or to verify compliance with

a specific requirement”. A test suite consists of all

the test cases that satisfy all the testing requirements.

As software is developed, test suite grows larger. It

becomes unfeasible to run all the test cases as it result

in high testing cost. Test case minimization

techniques are used to minimize the testing cost. Test

case minimization techniques generate a

representative set from the original test suite that

satisfy all the requirements as original test suite but

contains less number of test cases. Redundant test

cases are removed from the test suite. A test case is

said to be redundant if same requirements can be

satisfied by other test cases.

The problem of selecting a representative set of

test cases that provides the desired testing coverage

of a program or part of a program is stated as

follows[1]:

Given: A test suite TS, a list of testing

requirements r1,r2,…rn, that must be tested to provide

the desired testing coverage of the program, and a list

of subsets of TS, T1, T2,…. Tn, one associated with

each of the ri’s such that any one of the test cases tj

belonging to Ti can be used to test the requirement ri.

Problem: Find a representative set of test cases tj

that will satisfy all of the ri’s.

Various techniques have been proposed for

minimizing test suites. These techniques can be

categorized as:

 Heuristic based

 Genetic algorithm based approach

 Integer Linear Programming based approach

 Hybrid techniques

Heuristic based techniques include Heuristic H,

GE and GRE. These strategies are based on three

strategies - essential, redundant and 1-to-1 redundant

test cases. Genetic algorithm based approach uses

production, mutation and crossover to produce

representative set. Integer Linear Programming based

approach uses equation form to find minimal set.

Rest of the paper is organized as: Section 2

contains a review on existing techniques. Table

Quick Review shows a year wise brief description of

paper. Section 3 contains conclusion. Section 4

contains References.

2. A Review

Harrold et al. [1] defined heuristic H for test case

minimization. Their technique identified redundant

and obsolete test cases and removed them from test

suite. Test cases are selected according to their

degree of essentialness. A test case is essential if

requirement satisfied by that test case cannot be

satisfied by any other test case. Next it selects test

cases which satisfy most uncovered requirements.

Chen and Lau [22] proposed heuristic GE for test

1048

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120560

case minimization. Heuristic GE is based on the

greedy strategy and essential strategy. Firstly

essential strategy is applied i.e. all the essential test

cases are added to representative set. Then greedy

strategy is applied on remaining test cases repeatedly

until the entire test requirements are satisfied.

Heuristic GE performed better than heuristic G since

essential test cases are selected at first stage.

Chen and Lau [2] introduced GRE approach for

minimization. This approach is based on three

strategies – Essential strategy, 1-to-1 redundant

strategy, Greedy strategy. In this approach, firstly

essential test cases are selected and added to

representative set, then 1-to-1 redundant test cases

are removed repeatedly and then greedy approach is

applied on the remaining test cases until all the

requirements are satisfied. GRE guaranteed to

generate optimal representative sets.

Time complexity of GRE approach in worst case

is O(min(m,n)(m+n
2
k)) where m and n number of

elements in requirement set and test suite

respectively, k is maximum number of requirements

that a test case can satisfy.

Concept of GRE approach can be illustrated as

(Figure 1):

Figure 1

Chen and Lau [23] performed a simulation study

on heuristics for test suite reduction. They judged the

performance of heuristics by size of their

representative sets. They concluded that when

overlapping (< 2) among the requirements is very

small then all the heuristic produce same sized

representative sets. Greedy heuristic G is

recommended because it has smallest worst case time

complexity and requires no extra steps. When

overlapping is large (> 15) then heuristic H performs

better than others, heuristic G, GE, GRE has same

performance. Heuristic G is preferred because of

smallest worst case time complexity and no extra

processing steps. When overlapping is moderate (>2

& <15), GRE performs best and heuristic G performs

worst. Among heuristic GE and H, heuristic H

consistently performs better than heuristic GE.

Chen and Lau [3] proposed divide-and-conquer

approach towards test suite reduction. They

concentrated on dividing strategies that are complete

with respect to the minimal and optimal

representative sets, from the perspective of essential

test cases. Divide-and-conquer approach basically

decompose the original problem into smaller sub

problems, find optimal solutions for the sub

problems, and construct a solution for the original

problem from solution of the sub problems. They

derived essential subset and redundant subset

corresponding to essential test cases and redundant

test cases respectively. An essential subset contains

essential test case. A redundant subset is that whose

satisfied requirements can be satisfied by other test

cases. To form representative set, essential subset can

be included and redundant subset can be discarded.

Tallam and Gupta [4] proposed inspired greedy

algorithm for test suite reduction which is based on

Formal Concept Analysis of the relation between test

cases and testing requirements. Concept analysis can

be used for objects with discrete properties. For

minimization, test cases are considered as objects and

requirements as their attributes. Relationship between

object and attributes corresponds to the coverage

information of test case. Context can be analyzed

using a concept analysis framework. Concept

analysis identifies maximum grouping of objects and

attributes called contexts. Object reduction rules and

attribute reduction rules are used for reducing objects

and attributes. In classical greedy heuristic only

object implications are used, attribute implication

was not considered. In Tallam and Gupta’s delayed

greedy algorithm, initially context table was made

then the size of context table was reduced by

applying on the object reductions, attribute reduction

and owner reduction. The object and attribute

reductions slightly reduce the size of the context table

by removing redundant objects and attributes from

further consideration, the owner reduction removes

redundant objects and attributes and also selects a test

case which will be added to the minimized suite. At

each iteration, the owner reduction selects test cases

that will be included in the reduced and the

requirements covered by these test cases are removed

from further consideration. Interference among test

cases was removed using greedy heuristic. They

conducted experiments with the programs in the

Siemens test suite and the space program to measure

the extent of test suite size reduction and evaluated

that for each test suite for each program, the size of

minimized suite generated by their technique was of

1049

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120560

the same size or of smaller size than that generated

by the traditional heuristic algorithms.

Jeffrey and Gupta [5] proposed test suite reduction

with selective redundancy to decrease the loss of

fault detection effectiveness. They observed that

removing some specific redundant test cases fault

detection capability suffers significant loss. So the

test cases that result loss in fault detection

effectiveness should be included in the reduced set.

For this, they used primary and secondary coverage

criteria. First they selected test cases which satisfy

primary requirements and then which satisfy

secondary requirements. They modified HGS

heuristic with selective redundancy in which they

selectively added those test cases that provide

additional def-use coverage at the time they become

redundant with respect to branch coverage. To find

redundant test cases they used branch coverage

information and def-use information obtained by data

flow analysis. The uncovered primary requirements

are considered in increasing order of associated

testing set cardinality. Then test case that covers the

most uncovered requirements are selected whose

testing sets are of the current cardinality. When a tie

occurs, the preference is given to the test case that

covers the most uncovered requirements whose

testing sets are of higher cardinalities. If maximum

cardinality is reached and there are still remaining

ties, a random selection is made among the test cases

that are tie. The selected test case is then added to the

reduced suite. Then newly covered requirements are

marked and removed from further consideration.

Coverage information is updated after addition of

each test case. For secondary requirements also, data

structures is updated to reflect the updated secondary

coverage information of reduced suite. After all the

primary requirements are satisfied, more test cases

are selected from redundant test cases until all the test

cases are selected or the remaining test cases does not

satisfy any secondary requirement. They

experimented their technique on Siemens programs.

Errors were injected to the programs such as

changing the operator or operand in an expression,

changing value of a constant, adding and removing

code and changing the logical behavior of the code.

For secondary requirements they used all-uses

coverage information for each test case which is

computed by the ATAC tool. Their technique

produced representative sets with better fault

detection effectiveness by slightly increasing size of

reduced test suite.

Khan and Nadeem [6] proposed TestFilter in

which they used the statement-coverage criterion for

reduction of test cases. Weights were assigned to test

cases. Weights referred to number of occurrences of

particular test case that covers different statements.

They selected non-redundant test cases based on their

weights. They calculated weighted set of test cases

and selected higher weighted test cases firstly. Then

test cases of low weights are selected until all the

requirements are satisfied. In case of tie among test

cases, a random selection is made. Selected test cases

are added to reduced set. They performed

experimental evaluation on triangle problem to study

effectiveness of Test Filter. Their technique

consumed fewer resources like CPU cycles for

selection of test cases and storage space. Their

technique made significant reduction in the size of

test suite approximately 90% and also decreased cost

in terms of execution, storage and management cost.

Zhong, Zhang and Mei [20] did an experimental

study on heuristic H, heuristic GRE, genetic

algorithm based approach and ILP based test suite

reduction techniques. They implemented four typical

test suite reduction techniques on the same platform

and performed an experimental comparison of them

by applying them on both small and large subject

programs. All the studied techniques were

implemented using Microsoft Visual C++6.0. All the

techniques were executed on a PC with 512 M

memory Intel Pentium 2.26 GHz CPU, running the

Windows 2000 Professional operating system.

Eleven programs were used in the experiment among

those seven were Siemens programs and four were

XMLPPL, TCC, GNU tar and PdfToHtml. In their

experiment statement coverage was used as test

requirement. Main focus of comparison were

execution time and representative set. They found

that except genetic algorithm all other techniques

generate smaller and almost same sized

representative set. Genetic algorithm was less

efficient in generating less sized representative set.

ILP-based approach can always produce the smallest

representative sets among other approaches. Genetic

algorithm based technique performs worst in

execution time. Among others, heuristic H is the

fastest, while among heuristic GRE and ILP based

approach, heuristic GRE is a little faster. Different

reduction techniques produce different representative

sets of same size. They concluded that heuristic H is

best than others after that ILP based approach should

be used where representative set of smallest size and

high fault detection effectiveness are required.

Smith, Geiger and Soffa [7] introduced use of call

trees for prioritizing and reduction. They constructed

tree based model of program behavior. Using

dynamic call tree, reduction component finds the

subset among test cases that covers same call tree

paths and prioritization is used to reorder the test

cases so that all the requirements are met as early as

1050

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120560

possible. Coverage effectiveness is used for

prioritization. They implemented the call tree

constructor with the Java 1.5 and AspectJ 1.5

programming languages. The tree constructor

initialize the call tree prior to first test case runs, then

store the tree and measure the execution time of each

test. The tool builds a call tree, this call tree contains

a node for every test case invocation . Each path is a

unique test requirement because it represents a series

of method calls that took place during testing. After

creating call tree, reduction algorithm was used to

generate reduced test suite that satisfies all the

requirements but contains less number of test cases

than the original test suite. they performed their study

on a GradeBook application containing 1455 non-

commented source statements (NCSS), 10 classes

and 147 methods. The experiments showed that the

call tree construction probes increase test suite

execution time by 12.3%. When using the overlap-

aware greedy algorithm and testing time by 82%.

The coverage effectiveness of prioritized test suite

was .96 while of original test suite was .38. Their

reduced set was coverage effective but more time is

consumed in constructing call trees. Their reduced set

contained 45% less test cases than the original suite.

They observed that prioritized suites are able to

achieve coverage faster.

Chen, Zhang and Xu [8] proposed degraded ILP

Approach for Test Suite Reduction. They developed

the technique to bridge the gap between ILP

approach and traditional heuristic approach. They

produced a lower bound of minimum test suite and

feasible solution near lower bound was searched. If

the size of representative set equals to lower bound

then representative set is best result, if size of

representative set is closer to lower bound then it can

be considered as good result, if size of representative

set is far from lower bound then it need to use Integer

Linear Programming or any other expensive methods

to improve representative set. Firstly they applied 1-1

reduction on test cases and requirement to ensure that

there are no 1-1 redundant test cases and no 1-1

redundant requirements. The basic idea of degraded

ILP is the single-branch strategy in which only one

most possible sub problem is selected for each

variable. They compared their result with heuristic

based approaches and found that their approach

always performed better than the traditional

approaches and sometimes guarantee minimum size

reduced set. DILP could generate minimum test suite

for all Boolean specifications. However, the

complexity of their technique was higher than the

heuristic approaches.

Lin and Huang [9] analyzed test suite reduction

with enhanced tie-breaking technique. They used

some additional coverage criteria for breaking the tie

among two test cases which was different than

traditional approaches where a random decision was

made. They used coverage information as first and

def-use pair as second criterion for breaking the tie

among test cases. They chose HGS and GRE

approach and developed new algorithms. In

modified HGS (M-HGS) algorithm, when tie occurs

between test cases then the test case which covers

more secondary requirements is selected. In modified

GRE (M-GRE) approach they modified 1-to-1

redundancy strategy and greedy strategy. They used

Siemens suite programs and Space programs for

comparing their results. They compared the results

and found that M-HGS and M-GRE produce reduced

set with better fault detection capability than original

HGS original GRE respectively. Their technique

improved the fault detection effectiveness.

Khalilian and Parsa [10] proposed Bi-criteria test

suite reduction with cluster analysis of execution

profiles. They combined the two general techniques

called distribution-based and coverage-based

techniques to construct full coverage reduced test

suites with minimum overlap in the execution

profiles. Coverage based techniques uses def-use pair

criterion for the selection of test cases because such

test cases cover execution paths which may contain

faults. Distribution based techniques clusters the test

cases on the basis of their execution profiles and can

be described by two methods: cluster filtering and

failure pursuit. In cluster filtering, cluster analysis is

used to partition the test cases into clusters such that

the objects with similar attributes are in same cluster.

After that, test cases are sampled from each cluster.

Therefore, they combined these two techniques to

form full coverage reduced set and minimum

overlapping between the test cases. They analyzed

their technique on Siemens suite. Their technique

generated reduced test suites with less fault detection

capability.

Parsa, Khalilian and Y. Fazlalizadeh [11]

proposed a new algorithm based upon the cluster

analysis. The proposed approach combined the idea

of coverage based and distribution based approaches

for test suite reduction. Firstly execution profile of

test cases is calculated. Then test cases are divided

into clusters based on the similarity of their execution

profiles. Test cases whose execution profiles are

similar are placed in same cluster. Test cases in same

cluster likely cover same program elements. Heuristic

is applied to sample test cases from clusters to make

1051

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120560

coverage of reduced test suite equal to that of

reduced suite. In their proposed approach, heuristic

method sorts the clusters in ascending order on the

basis of number of test cases in each cluster. Then

each cluster from first to last is considered repeatedly

until all the requirements are satisfied. In each

iteration, sample test case is selected from each

cluster. They performed experiment on Siemens.

Each program of the Siemens suite contains a single

fault seeded in it. They calculated percentage of test

suite size reduction and percentage of fault detection

loss. For clustering of test cases based on their

execution profiles they used tool Weka 3.5.8 .

Clustering algorithm CLOPE was used as CLOPE is

efficient and fast method for clustering large and high

dimensional data. For controlling level of inter-

cluster similarity, a value Repulsion is used. By

varying this value Repulsion, number of clusters can

be changed. They concluded that their technique

produced reduced size test suite. Their reduced set

was coverage adequate but less fault detection

effectiveness than H algorithm.

 Yoo and Harman [12] proposed multi-objective

test suite reduction. They utilized a hybrid, multi-

objective genetic algorithm. This algorithm combined

the efficient approximation of the greedy approach

with the genetic algorithm to produce high quality

Pareto fronts. The main aim was to achieve multiple

objectives. Objective functions are mathematical

description of test criterion. For two-objective

optimization computational cost and statement

coverage were considered as objective, a cost

cognizant version of the additional greedy algorithm

was implemented. In three objective optimization

past fault detection history was also considered, code

coverage, fault coverage and execution time were

combined by taking the weighted sum of code

coverage per unit time and fault coverage per unit

time using the classical weighted-sum approach.

Testing decisions made by their technique were more

efficient.

Nachiyappan, Vimaladevi and SelvaLakshmi [13]

proposed genetic algorithm for test suite reduction.

Their approach used mathematical model for test

suite reduction. The model built the initial population

based on test history. The fitness value of test cases

was calculated based on the block based coverage

value and execution time of the test cases. The test

cases with optimum fitness were selected. Test cases

which violate fitness constraint were rejected. Their

approach reduced the test suite size with same

coverage as original test suite.

Zhao and Luo [14] proposed an algorithm for

Reducing Test Suites based on Interface Parameters

for Black Box Testing. They used interface

parameters and bipartite graph for eliminating

redundant and obsolete test cases. Their technique

was based upon relationship among interface

parameters. Their approach can greatly reduce the

size and redundancy of test suite but coverage size

was same. Major limitation of this technique was that

a graph may not be complete bipartite graph.

Galeebathullah and Indumathi [15] proposed set

theory for test suite reduction. They used set theory

and greedy algorithm to form reduced sets.

Intersection function was used to identify the unique

requirement that have not been satisfied. Set theory

was used to find the intersection between one

requirement to other requirements of branch coverage

criteria for the set of test cases. Firstly, intersection

among the requirements is calculated. If any

intersection elements occur then the test case is added

to the reduced suite. This process is repeated until all

the requirements are satisfied. They experimented

their approach on a small program based on the

branch coverage criterion. Their approach covered

all the requirements and produced test suites same

similar size to traditional approaches. They compared

their

Huang, Liu et al. [16] proposed improved

quantum genetic algorithm for reducing test suites. In

their approach chromosome is encoded with quantum

bit as information bit. Improved quantum genetic

algorithm (IQGA) is the combination between

evolutionary algorithm and quantum computing.

Improved Quantum Genetic Algorithm is based on

the vector representation of the quantum. Quantum

bits are encoded to represent the chromosomes and

the quantum rotating gate are used to achieve the

update of chromosome. Improved quantum genetic

algorithm can adjust the quantum rotating gates

dynamically according to the individual fitness value.

It can simplify the query computation and reduce its

complexity. Their technique improved test efficiency

and reduced testing costs greatly. Reduced test set

generated by IQGA was smaller than the traditional

techniques.

Zhang, Marinov et al. [17] evaluated empirical

study of JUnit test suite reduction. They implemented

four test-suite reduction techniques – Greedy, H

heuristic, GRE heuristic and ILP approach on Java

programs with real-world JUnit test suites.

Performance of traditional test-suite reduction

techniques on larger programs was studied.)). They

proposed that which strategy tester should use. The

time complexity for the greedy technique is

O(mlmin(m, n)) where m corresponds to original test

suite, n corresponds to requirements, l corresponds to

maximum number of requirements satisfied by a test

case . The time complexity of this heuristic H is O((m

1052

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120560

+ n)nk), here k corresponds to maximum number of

test case that can satisfy one requirement. The time

complexity for heuristic GRE is O((n + m2l)min(m,

n)). They used 19 versions of four real-world Java

programs for their study, which includes 3 versions

of jtopas, 3 versions of xml-security, 5 versions of

jmeter, and 8 versions of ant.jtopas1. Each version of

program comes with JUnit test suites and a set of

manually seeded faults. They concluded that

technique H always achieves largest reduction in test-

suite sizes while achieving nearly the least reduction

in fault detection capability on both seeded and

mutated faults. To achieve cost-effective reduction in

practice, heuristic H should be used. The techniques

which achieve high reduction in test suite also have

high reduction of same degree in fault detection

capability.

You and Lu [18] proposed Genetic Algorithm for

the Time-Aware Regression Testing Reduction

Problem. Time criteria were added with the genetic

algorithm. Aim of time aware regression testing

reduction is to minimize the total running time.

Fitness function minimizes the total running time in

terms of objective function. The algorithm removes

all redundant test cases and also decreases total

running time.

Xu, Miao and Gao [19] proposed Weighted Set

Covering Techniques also called weighted greedy

algorithm for test suite reduction. In first step it is

determined whether any test case which can satisfy

all the requirements is present. If so, we select that

test case otherwise repeatedly eliminate 1-to-1

redundant test cases and update test suite and

remaining uncovered requirements. Essential test

cases are selected and added to reduced set. For

remaining uncovered requirements, priorities are

assigned to test cases and sorted. Test cases are

selected in decreasing order of priority until all the

requirements are satisfied. The optimized test suite

had a higher efficiency. They experimented on the

test suite of Student Achievement Retrieval

Navigation Model. The algorithm produced

minimum size test suites and minimum cost test.

Although so many techniques have been

addressed in literature, Still it is hard to tell which

one performs best among these.

 Greedy algorithm based approach provide

significant reduction in test suite but need to be

optimized in large scale test suites.

 Genetic algorithm based approach need to

further investigate the fault detection capability of

block based test suite on software and coverage or

some other criteria may also be included.

 Integer Linear Programming based approach

can always produce the smallest representative sets

among other approaches but cost and increased

complexity need further discussion .

 Hybrid techniques combine two or more

techniques into single for significant reduction in test

suites and multi-objective optimization but provide

high complexity. More number of techniques can be

incorporated with existing hybrid techniques.

Other techniques include call tree and clustering

based techniques. Call tree based techniques generate

optimal set but high running time makes them

insignificant to some extent. Clustering technique

selects test cases on based of coverage and

distribution based techniques. They produce smaller

representative sets but less fault detection ability.

Table 1: Quick Review

Sr. No. Year Author Title of Paper Technique Conclusion

[1] 1990

Mary Jean

Harrold, Rajiv

Gupta, Mary

Lou Soffa

A methodology for

controlling the size of test

suite

Heuristic H

Produced smaller

size reduced set

[2] 1998
T.Y. Chen,

M.F. Lau

A new heuristic for test

suite reduction
Heuristic GRE

Produced optimal

representative set

[3] 2002
T.Y. Chen ,

M.F. Lau

On the divide-and-

conquer approach towards

test suite reduction

Dividing strategies for

computing the minimal

and optimal

representative sets.

Dividing strategies

related to the

divide- and-

conquer approach

toward TSR

1053

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120560

studied

[4] 2005

Sriraman

Tallam,

Neelam Gupta

A Concept Analysis

Inspired Greedy

Algorithm

for Test Suite

minimization

Concept Analysis of

relation between test

cases and requirements

reduced sets were

either same or less

in size than greedy

approach

[5] 2005

Dennis

Jeffrey,

Neelam Gupta

Test Suite Reduction with

Selective Redundancy

branch coverage and

all-uses coverage

obtained by data-flow

analysis

Larger test suites

but better fault

detection

capability

[6] 2006

Saif-ur-

Rehman Khan,

Aamer

Nadeem

TestFilter: A Statement-

Coverage Based Test Case

Reduction Technique

Statement coverage as

weight

can find redundant

test cases and

reduced cost

[7] 2007

Adam Smith,

Joshua Geiger,

Mary Lou

Soffa

Test Suite Reduction and

Prioritization with Call

Trees

Dynamic call trees for

reducing and

prioritizing test cases

constructing call

trees increase 13%

testing time

[8] 2008

Zhenyu Chen,

Xiaofang

Zhang and

Baowen Xu

A Degraded ILP

Approach for Test Suite

Reduction

Searches a feasible

solution close to the

produced lower bound.

problem can be

solved in

polynomial time

but more complex

[9] 2009

Jun-Wei Lin,

Chin-Yu

Huang

Analysis of test suite

reduction with enhanced

tie-breaking techniques

Additional coverage

criteria for breaking tie

among test cases

Improved fault

detection

effectiveness

[10] 2009

Alireza

Khalilian and

Saeed Parsa

Bi-criteria Test Suite

reduction by Cluster

Analysis of Execution

Profiles

Combination of

distribution-based and

coverage-based

techniques

Reduced test

suites with less

fault detection loss

[11] 2009

S. Parsa, A.

Khalilian and

Y.

Fazlalizadeh

A New Algorithm to Test

Suite Reduction Based on

Cluster Analysis

Clusters test cases

based on the similarity

of

their execution profiles

reduced suite is

coverage adequate

[12] 2009
Shin Yoo ,

Mark Harman

Using hybrid algorithm

for Pareto efficient multi-

objective test suite

minimization

Hybrid, multi objective

genetic algorithm with

greedy approach

More efficient

testing decisions

[13] 2010

S.Nachiyappan

,A.Vimaladevi

,

C.B.SelvaLaks

hmi

An Evolutionary

Algorithm for Regression

Test

Suite Reduction

Genetic algorithm

Produced optimal

sized test-suite

taking execution

time and coverage

factors into

account

[14] 2010
Liang Zhao,

Wenbin Luo

An Algorithm for

Reducing Test Suite

Based on Interface

Parameters

Used interface

parameters and

bipartite graph for

removing redundant tc

greatly reduced

the size and

redundancy of test

suite

1054

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120560

[15] 2010

B.Galeebathull

ah,

C.P.Indumathi

A Novel Approach for

Controlling a Size of a

Test Suite with Simple

Technique

Set theory, Greedy

algorithm

All requirements

are covered,

reduced set same

as greedy and

HGS

[16] 2010

Yi-kun

ZHANG, Ji -

ceng LIU,

Ying-an CUI,

Xin-hong EI,

Ming-hui

ZHANG

An Improved Quantum

Genetic Algorithm for

Test Suite Reduction

Chromosome is

encoded with quantum

bit as information bit

Can reduce

testing costs

greatly and

improve test

efficiency

[17] 2011

Lingming

Zhang, Darko

Marinov, Lu

Zhang, Sarfraz

Khurshid

An Empirical Study of

JUnit Test-Suite

Reduction

Performance of

traditional

test-suite reduction

techniques on larger

programs were studied

To achieve cost-

effective reduction

in practice,

heuristic H should

be used

[18] 2012
Liang You

Yansheng Lu

A Genetic Algorithm For

The Time-Aware

Regression Testing

Reduction Problem

Genetic algorithm with

time constraints

Reduced test suite

and minimum

running time

[19] 2012

Shengwei Xu,

Huaikou Miao,

Honghao Gao

Test Suite Reduction

Using Weighted Set

Covering

Techniques

Weighted Set Covering

to adopt the heuristic

method to eliminate

redundancy, and

determined priority of

test cases to lower cost

Reduced test suite

size and reduced

cost

3. Conclusion

This paper outlined the brief summary of

techniques that has been proposed in literature for

test case minimization. The techniques studied

include Heuristic H, GRE, and Divide and conquer

approach, Genetic algorithm, selective redundancy,

TestFilter, Integer Linear Programming based DILP,

Cluster analysis, set theory etc. Almost among these

produced reduced test suites. Each technique is

superior to another in some aspect. Many of them

generated significant reduction in test suite, but it is

harder to tell which one performs best. Heuristic

based approach produced significant reduction but

less fault detection effectiveness. ILP based approach

guaranteed minimal set but more complex and

increased cost. For a technique to be efficient it

should be good in both - reduced test suite size and

improved fault detection efficiency.

4. References

[1] Mary Jean Harrold, Rajiv Gupta, Mary Lou Soffa, A

methodology for controlling the size of test suite, CH2921-

5/90/0000/0302$01 1990 IEEE

[2] T.Y. Chen, M.F. Lau, A new heuristic for test suite

reduction,” Information and Software Technology “,40,

(1998), 347-354

[3] T.Y. Chen , M.F. Lau ,On the divide-and-conquer

approach towards test suite reduction,” Information

Sciences “,152, (2003), 89–119

[4] Sriraman Tallam, Neelam Gupta, A Concept Analysis

Inspired Greedy Algorithm for Test Suite minimization,

2005 ACM 1595932399/05/0009

[5] Dennis Jeffrey, Neelam Gupta, Test Suite Reduction

with Selective Redundancy, Proceedings of the 21st IEEE

International Conference on Software Maintenance

(ICSM’05), 1063-6773/05 $20.00 © 2005 IEEE

[6] Saif-ur-Rehman Khan, Aamer Nadeem, TestFilter: A

Statement-Coverage Based Test Case Reduction

Technique, 1-4244-0794-X/06/$20.00 ©2006 IEEE

1055

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120560

[7] Adam Smith, Joshua Geiger, Mary Lou Soffa, Test

Suite Reduction and Prioritization with Call Trees, ACM

978-1-59593-882-4/07/0011.

[8]Zhenyu Chen, Xiaofang Zhang and Baowen Xu, A,

Degraded ILP Approach for Test Suite Reduction, National

Natural Science Foundationof China (60425206, 60773104,

60403016, 60633010)

[9] Jun-Wei Lin, Chin-Yu Huang, Analysis of test suite

reduction with enhanced tie-breaking techniques,

Information and Software Technology”, 0950-5849/$,

2008 Elsevier

[10] Alireza Khalilian and Saeed Parsa, Bi-criteria Test

Suite reduction by Cluster Analysis of Execution Profiles”,

LNCS 7054, pp. 243–256, 2012. c IFIP International

Federation for Information Processing 2012

 [11] S. Parsa, A. Khalilian and Y. Fazlalizadeh, A New

Algorithm to Test Suite Reduction Based on Cluster

Analysis, 978-1-4244-4520-2/09/$25.00 ©2009 IEEE

[12] Shin Yoo , Mark Harman, Using hybrid algorithm for

Pareto efficient multi-objective test suite minimization, The

Journal of Systems and Software 83 (2010) 689–701

[13] S.Nachiyappan,A.Vimaladevi, C.B.Selva Lakshmi, An

Evolutionary Algorithm for Regression Test Suite

Reduction, Proceedings of the International Conference on

Communication and Computational Intelligence – 2010,

pp.503-508

[14] Liang Zhao, Wenbin Luo, An Algorithm for Reducing

Test Suite Based on Interface Parameters, 978-1-4244-

5392-4/10/$26.00 ©2010 IEEE

[15] B.Galeebathullah, C.P.Indumathi, A Novel Approach

for Controlling a Size of a Test Suite with Simple

Technique, (IJCSE) International Journal on Computer

Science and Engineering Vol. 02, No. 03, 2010, 614-618

[16] Yi-kun ZHANG, Ji -ceng LIU, Ying-an CUI, Xin-

hong EI, Ming-hui ZHANG, An Improved Quantum

Genetic Algorithm for Test Suite Reduction, 978-1-4244-

8728-8/11/$26.00 ©2011 IEEE

[17] Lingming Zhang, Darko Marinov, Lu Zhang, Sarfraz

Khurshid, An Empirical Study of JUnit Test-Suite

Reduction, 2011 22nd IEEE International Symposium on

Software Reliability Engineering, © 2011 IEEE

[18] Liang You Yansheng Lu, A Genetic Algorithm For

The Time-Aware Regression Testing Reduction Problem,

2012 8th International Conference on Natural Computation

(ICNC 2012), ©2012 IEEE

[19] Shengwei Xu, Huaikou Miao, Honghao Gao,Test

Suite Reduction Using Weighted Set Covering Techniques,

2012 13th ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing, © 2012 IEEE

[20] Hao Zhong, Lu Zhang , Hong Mei, An experimental

study of four typical test suite reduction techniques,

Information and Software Technology 50 (2008) 534–546.

1056

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 12, December - 2013

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV2IS120560

