
TDD In Embedded Systems: A Case Study
Sayali A. Kulkarni, Charudatta V. Kulkarni, Rakesh Mehta

MIT College of Engineering, Pune

Abstract

The complexity and quality of the soft ware’s

required is increasing day by day, and hence the

requirement of various new techniques or methods

to tackle and handle them. One such method is the

TDD – Test Driven Development in software

development. TDD is a technique to build software

incrementally. The same method and the process

can be effectively used in the development of the

embedded system software development. This paper

provides a case study of an application specific

embedded system, the problems faced in the

development and the solutions found using the

TDD. The TDD has become very popular and plays

a significant role in increasing the efficiency of the

programmers and developing a bug free code. This

technique not only very easy to implement for those

who are used to programming the DLP (Debug

Later Programming), hence the efficiency of the

programmers and the quality and maintainability

of the software is at stake.

This paper provides an example for using

TDD in Embedded Software Design and

Development. TDD also increases the modularity

of the program to a great extent. Hence, the use of

TDD can be made a practice in the field of

embedded software development.

1. Introduction to TDD

TDD that is the Test Driven Development is

an advanced software development technique

used for software development. With in the

field of software development embedded

software is a unique and special. The Higher

level of software developments those made in

the IT sector generally have very less contact

with the physical/ actual world and are run in

clean sophisticated environments.

Bugs when present on the IT sector

software, enterprise software PC the

applications are patched and ready to use. This

is relatively easier in contrast with the

embedded software which is used to such a

great extent in the public domain applications

and is in contact with the real world. For

example in the embedded application of the

automobile sector if a flaw / bug is present in

the fuel injection system then this can cause

massive explosion which can also result in

humane loss.

The result of this flaw can lead to severe

financial damage as well. Hence, a small flaw

in the software of an embedded system can

result in the loss of human life. As the

complexities of embedded systems grow and

the ubiquity of embedded systems continues to

grow, hence grows the probability and

possibility of the software flaws resulting into

really expensive losses. The use of TDD can

bring these flaws to narrow down extremely

well.

The TDD flow or process is as given in the

below diagram:

TEST Case

(retest)

TEST Result?

Make

required

changes in

the code

Run All TEST

cases

Clean Up the

Code for

clarity

Test

Fails

Test Passes

Test Passes

Test case/s fail

Repeat Process

till All the Units

And Test Cases

are completely tested.

Test Driven Development Flow / Process

2845

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60919

Figure 1: Test Driven Development Flow /

Process

The TDD follows the following essential

steps:

1. Identifying a part of system module

or functionality to be implemented

(a single function or method).

2. Simple test program to verify the

identified functionality

3. Compile the code under test and

terminate the functional code

4. Compile; run the test, the test fails

5. Terminate the non required

functional code.

6. Compile; run the test.

7. Refactor the functional code to

clean the code and remove

duplication

8. Repeat the tasks 6 & 7 until the test

passes and the functional code is

cleanly implemented.

The tasks above will be repeated until all

the modules and functionalities are cleanly and

precisely implemented.

2. About the System, Problems Faced

during development and solutions

2.1 The System:

The goal is to develop a system using,

ARM processor which will act as the Front

Panel for the complete system for automated

navigation. The panel should be able to

communicate with external UART (8

channels), External Flash, Audio Amplifier,

Display for Displaying, and also taking inputs

through a 5x4 self-illuminated keypad for

decision making of the system. The hardware

must be supported with the APIs and Device

drivers for all the interfaces. The hardware

should be made with an ARM processor and

the interfaces such that can be used as a front

panel for any system.

The main objective of the project is to

develop a low power, efficient flexible and

low cost hardware which can implement and

be used as a User interface for the system and

can be effectively used in applications related

to vehicle automation and defence sectors.

The system should have the following

architecture:

 Processor: The processor needs to be

an advanced fast processor which can

meet the requirements like Ethernet,

sufficient internal memory, inbuilt

display driver, etc.

 Ethernet: The system must have an

Ethernet chip which can enable it to be

controlled over the LAN.

 External UART: It needs to have at-

least 8 UART (serial) channels for

communication, hence and external

UART is a requirement as most

processors cannot satisfy this demand.

 Flash Memory: The external ROM is

required to store the application code

(firmware) if the internal memory is

insufficient.

External

8 Port

UART

(XR16L788)

ARM 7

LPC2478
Bicolour

5 LEDs

DISPLAY

VFD (Vacuum Fluorescent

Display)

KEYPAD

4x5

FLASH 4MB
ISP

JTAG

Audio

In

Ethernet Phy

DP83848

Audio Amp.

TDA7056AT

Audio

Out

Power In

+12V
12V

Crystals

A12MHz

25MHz

14.78MHz

B

C

A

B

C

DTR /RTS for Programming

ARM through Serial Port

4 UART channels

(TX/RX/GND)

4 UART channels

(TX/RX/GND)

 Figure 2: Block Diagram of the Application

Specific system

2846

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60919

2.2 ARM Processor Overview:-

The ARM processor is chosen as a modular,

configurable and versatile hardware platform

for the working and interfacing of the various

interfaces used for the front panel module. The

processor must satisfy the requirement of

interfacing with the various interfaces

simultaneously.

Apart from the above requirements the

selection is also dependent on the aspects like

Number of Input Output Pins required, the

operating Speed at which the system, the

power consumption, the memory requirements

and the firmware or the size requirement for

the system .

2.3 List of Problems faced and solutions:-

1. Flash: Addressing of the Flash - wrong

offset calculated for the access, Write

and Read cycles not proper

Solution: Observations of the W/R pin on the

Oscilloscope: Modifications required in the

code for address access.

2. Ethernet Boot loader: - booting from

external flash: JTAG connections were

not accessible outside the enclosure.

Hence it was not possible to program

the external flash through JTAG.

Thus, the Ethernet boot loader was

required.

Solution: Ethernet Boot Loader was used.

3. External UART and External FLASH:

Mapping of external UART was done

on CS0 and that of the Flash memory

was done on CS1. For an external boot

loader to work, to store the executable

in the external flash and to execute

from external flash, the ARM

processor has an option open, only if

the Flash is connected to CS0. But in

our case the case was opposite.

Solution: Flexibility in the selection of CS0

and CS1 for both flash and UART was

provided so that the mapping of the Flash on

CS0 can be made as and when required.

Changes need to be made in the UART

production code.

4. Generation of HEX file for the

external flash

Solution:

A. In the “Options for Target „Target1‟”

window go to the “Target” tab. Select the

default “Read/Only Memory areas” as the off-

chip ROM1 and enter the appropriate start

address and size.

B. In the “Options for File „LPC2400.s‟”

window click on “ASM” tab.

C. In the “Conditional Assembly Control

Symbols” enter the define symbols “REMAP,

EXTMEM_MODE”. This alters the

“MEMMAP” register of ARM core for code

execution from external flash. (Refer to

“Memory Mapping” section in LPC24xx user

manual for more details) NXP Ethernet utility

did not accept the hex file for external flash. (It

is designed to be used for internal flash only)

Solution: Keil Command sequence from “elf -

-bin temp\Ext_flash_UDP.axf –o

temp\firmware.bin” was used to convert the

hex file into binary file. The TFTP protocol

was used to download this generated bin file

into the external flash. The new boot loader

which accepts the TFTP protocol was

downloaded into the internal flash using the

Flash Magic utility.

2.4 Testing with the Hardware:-

Using the various simulation and emulation

techniques along with the interfaces and

isolation of the various peripherals to be testes

allows us to know and develop a test

significant system behavior and n in which the

hardware would react to the developed

production code without access to the real

2847

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60919

target hardware. The simulation, emulation

and automated tests applied on the hardware

add value as they perform tests independent of

the hardware target subsystems. This also

helps in avoiding the loss in terms of finances

and also loss of the target subsystem in case

the production code goes too wrong.

Example of a UART code for our system using

TDD is as given below: uart.c

#include <stdio.h>

#include "LPC24XX.h"

#include "7_CHANNEL_UART.h"

#include "uart_RT.h"

//UART receiving string

s32 Uart_RcvString(Uart

driver,s8* strgToRcv, u32

StringLength)
{
 int i;
 s8 string_char;
 if (strgToRcv == 0)
 return 0;
 if (driver == (Uart) 0)
 return 0;
 for (i=0; i<StringLength; i++)
 {
 string_char=

getByteFromHardware(driver);
 stringToRcv[i] =

string_char;
 if (string_char ==
UART_RX_NOT_READY)
 break;
 }
 return i;
}

//Getting a Byte from the

Hardware

s8 getByteFrmHW(Uart driver)
{

//checking the Timeout for the

UART to //respond and calling

the //getByteFrmHWWhenRdy

function
 if(driver-

>timeout==UART_DRIVER_TIMEOUT_I

NFINITE)
 return getByteFrmHWWhenRdy(
driver->hardware);

 else
 return
getByteFrmHWRetImmediately(

driver->hardware);
}

//getting Byte from the ready

hardware

s8 getByteFrmHWWhenRdy(UartHW

hardware)
{
 volatile s8 theStringChar;
 do
 {
 theStringChar =

getByteFrmHWRetImmediately(

hardware);
 } while (theStringChar ==
UART_RX_NOT_READY);
}

//called when the timeout

occurs

s8 getByteFrmHWRetImmediately(

UartHW hardware)
{
 return UartHW_RcvChar(
hardware);
}

Test Case for testing the above Code:

void test_UartRcvStrg (void)
{
 s8 strToRcv[5];

UartHW_RcvChar_ExpectAndReturn(

mockHardware,UART_RX_NOT_READY)

;

Uart_SetRcvTimeout(mockDriver,

UART _TIMEOUT_NO_WAIT);

// when fails test returns a -1

TEST_ASSERT_EQUAL(0,

Uart_RcvStr(mockDriver,strToRec

eive,)); TEST_ASSERT_EQUAL(-1,

strgToRcv[0]);
}

The production code and the test code were

written for both external as well as internal

UART. The test cases were made and all the 8

channels of the external UART were tested

2848

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60919

successfully using them. Hence making

changes just in the header file would solve the

problem of making the major changes in the

code.

Using the TDD in the similar form for all the

other modules the problems were effectively

handled. The mocks for all the required

modules were created so that the real hardware

can be isolated from the testing phase. The

production codes were then tested on the

actual hardware after passing the test cases

using TDD on each module.

3. Benefits of Using TDD in Embedded

Systems

The results of all the unit tests provide a

constant feedback that each component is

working.

 The unit tests when well written

including the comments present along

with the code, act as updated

documentation, unlike the separate

documentations which need to be

frequently updated.

 Verifying production code using the

test cases reduces the risk, as the tests

are independent of hardware, can be

completed even before hardware is

ready or when hardware is expensive

and scarce.

 Reduce the number of long target

compile, link, and upload cycles that

are executed by removing bugs on the

development system.

 Isolation of hardware/software

interaction issues by modeling

hardware using simulation and

emulation techniques.

 When the test passes and the

production code is “refactored” to

remove duplication, the code is then

cleaned and made easy to maintain.

Hence, the developer can move to the

development of the next module.

 For creating the production code and

the test cases the developer needs to

truly understand the requirement and

must know what the expected / desired

result to be and what should be the

suitable test case for the same. The

TDD forces the developer to analyze

critically and design after

understanding the requirements of the

module.

 The software is better designed and

easily maintainable. It is also loosely

coupled and readable hence makes it

easier to manage.

 Using TDD increases the efficiency of

the developer as the debugging time is

reduced to a great extent.

 The developer gains confidence to

make decisions about the design and

can “refactor” simultaneously

knowing that the software would still

be working.

 The set of test cases act as a protection

layer from the bugs.

If any bug us found in any part of the software

the developer must write a test to reveal the

bug without disturbing the other part of the

code. So that the other tests still remain in the

passed state and the developer does not have to

go through the entire length of the code to

remove the bug. Thus every time the tests are

run all the fixed bugs are verified all over

again. Hence, a double check takes place each

time the tests are run.

Debugging time is reduced to a great extent.

The software becomes more maintainable and

robust.

Conclusion

The Test Driven Development plays a very

significant role in the field of software

development in terms of its value addition to

the process of software development. All the

benefits stated above prove that the TDD need

to be used widely so as to develop better

software which are maintainable and robust. It

also allows the developer to take a free hand in

designing the system software as the developer

is more confident about the software and

production codes because of the results of the

tests that they undergo.

2849

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60919

The TDD must be widely used in the field of

embedded system development as well so that

the process of software development for

embedded applications also benefits from it.

Thus, this makes the embedded softwares

more reliable, maintainable and robust.

References
[1] John Peatman, “Microcomputer based Design”,

published by Tata McGraw Hill, 2005 edition,pg.

365.

[2] Michael Barr, “Programming Embedded Systems in

C and C++”, Oreilly Publication, edition January

1999.

[3] Byte Craft, “First Steps with Embedded Systems”,

ByteCraft Limited, first edition.

[4] Andrew Sloss, Dominic Symes and Chris Wright

“ARM System Developers Guide – Designing and

Optimizing System Software” , published by

ELSEVIER, 2009 edition.

[5] Ted Van Sickle, “Programming Microcontrollers in

C”, LLH Technology Publishing, 2001 edition.

[6] James Grenning, “Test Driven Development for

Embedded C”, The Pragmatic Programmers

Publication, 2009 edition.

[7] Michael J. Karlesky, William I. Bereza, and Carl B.

Erickson, “Effective Test Driven Development for

Embedded Software”,
http://www.atomicobject.com/files/EIT2006Embedded
TDD.pdf

[8] Wolfgang Schmitt. “Automated Unit Testing of

Embedded ARM Applications” Information

Quarterly, Volume 3, Number 4, p. 29, 2004.

[9] David Astels, “Test Driven Development: A

Practical Guide”, Upper Saddle River, NJ: Prentice

Hall PTR, 2003.

[10] James Grenning, “TDD with Embedded C” ,
http://leandog.com/tdd-embedded/ (URL)

[11] Guidelines for Test Driven Development, MSDN

library,
http://msdn.microsoft.com/en-

us/library/aa730844(v=vs.80).aspx

[12] Introduction to Test Driven Development, by Agile

org. http://www.agiledata.org/essays/tdd.html (URL)

[13] “Unit Test.” http://en.wikipedia.org/wiki/Unit_test

[14] http://www.atomicobject.com/embeddedtesting.page

[15] Many tutorial papers from URL
http://www.cs.chalmers.se/~rjmh/tutorials.html

2850

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60919

