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Abstract - Topological Data Analysis (TDA) offers a robust
framework for enhancing machine learning (ML) through shape-
aware, multiscale, and noise-resistant techniques. This paper
examines important TDA techniques, including Mapper,
Wasserstein, and persistent homology, and how they can be used
to machine learning tasks including time-series analysis, anomaly
detection, and classification. We showcase new developments
such as explainability tools, topological regularization, and TDA-
based neural layers, showcasing their efficacy in domains like
computer vision, finance, and bioinformatics. Additionally, the
study describes new directions such as benchmarking
frameworks, quantum-TDA, and topology-guided AutoML.
Through the integration of abstract topology and practical data
issues, TDA is positioned to emerge as a fundamental element of
interpretable and robust Al systems.
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I.  INTRODUCTION

A. TDA in ML and it’s brief history

Topological Data Analysis (TDA) enhances machine
learning (ML) by extracting robust, multi-scale geometric and
topological features from complex datasets, enabling improved
model interpretability and noise resilience. Its transdisciplinary
significance is highlighted by recent research: TDA's function
in revealing hidden patterns in physics and machine learning
through unsupervised learning is highlighted in a 2023 review.
[1]. A 2024 study shows excellent feature extraction accuracy
by predicting polar material characteristics using persistent
homology and machine learning [2]. Another 2023 study
integrates topological and geometric data to apply TDA to 3D
tongue papillaec images, reaching 85% classification accuracy
[3]. TDA's increasing significance in geometric deep learning
and topological regularization for model generalization is
highlighted by the 2025 GTML workshop [4]. TDA is
positioned as a supplement to classical ML by earlier
fundamental research (2021), opening up possibilities in
materials design and neurology [5]. These developments
demonstrate TDA's ability to connect actionable ML findings
with abstract data structures. The foundational contributions of
Edelsbrunner, Carlsson, and Zomorodian in the early 2000s,
particularly the formalization of persistent homology as a
technique to track multi-scale topological features in data,
allowed Topological Data Analysis (TDA) to emerge from
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algebraic topology and computational geometry [6]. By
mapping the "birth" and "death" of topological invariants (such
as loops and voids) across filtering settings, persistent
homology became a popular technique for complex structure
analysis and allowed for noise-resistant feature extraction [7].
New developments demonstrate how it integrates with machine
learning (ML): TDA's function in deep learning through
differentiable invariants and inverse problem-solving for
explainable AI was highlighted at a 2025 workshop at OIST
[8]. 2023 research showed how PH may be used to enhance
unsupervised learning by identifying global geometric patterns
that conventional approaches overlook [7]. The interpretability
of PH-based ML in high-dimensional data processing was
highlighted in another 2023 study [9]. TDA's value in
extracting strong characteristics for machine learning tasks like
protein categorization was demonstrated by early applications,
such as 2021 reviews [6] [10]. These advancements show how
TDA has developed from its theoretical foundations to become
a multidisciplinary tool that improves the interpretability and
resilience of ML.

B. Scope of Review

The convergence of Topological Data Analysis (TDA) and
machine learning (ML) is particularly covered in this study,
with an emphasis on useful methods and how they may be
incorporated into data-driven processes as opposed to the
purely mathematical underpinnings of topology. In order to
extract strong, noise-resistant features from high-dimensional
and heterogeneous datasets for machine learning tasks like
classification, anomaly detection, and time-series analysis, the
scope includes commonly used TDA methodologies like
persistent homology, Mapper, and Wasserstein distances [3].
Recent studies show that TDA works well in a variety of
machine learning applications. For example, persistent
homology has been used to improve feature extraction in time-
series forecasting and image analysis, and new frameworks like
TopMix adapt TDA for mixed-type data, outperforming
traditional algorithms in domains like heart disease prediction.
Workshops and reviews conducted between 2023 and 2025
demonstrate the increasing convergence of TDA and ML,
including the creation of pipelines that transform topological
summaries into forms suitable for machine learning and the use
of TDA to deep learning integration, network reconstruction,
and climate science applications [11] [3]. By focusing on these
computational methods and their practical machine learning
applications, this study seeks to give a thorough picture of how

Page 1

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)



Published by :
https://lwww.ijert.org/
An International Peer-Reviewed Jour nal

TDA improves model robustness, and

interpretability [12].

performance,

C. Key Contributions

The creation of effective algorithms for extracting
topological features from noisy and high-dimensional datasets
is one of the major advancements in Topological Data
Analysis (TDA) for machine learning (ML). Berkeley Lab
recently developed an optimization technique that speeds up
the identification of important structures in large data sets
[13]. As demonstrated by sophisticated protein language
models that use TDA for structure-based predictions,
persistent homology continues to be a fundamental component
that permits multiscale analysis and reliable feature extraction,
with applications extending to protein engineering and
biological data [14]. TDA is now more applicable to mixed-
type data thanks to frameworks like TopMix, which
outperform traditional algorithms in tasks like heart disease
prediction and provide a standardized pipeline for
incorporating topological information into machine learning
operations [12]. Despite these developments, there are still
issues with choosing the best filters, transforming topological
summaries into forms that machine learning algorithms can
use, and encoding digital data as algebraic structures
appropriate for persistent homology. In order to close the gap
between abstract topology and real-world machine learning
applications, future prospects suggest further improvement of
persistent homology for complicated biological data, better
integration with deep learning architectures, and the creation
of scalable, interpretable pipelines [1] [14].

II. FUNDAMENTALS OF TDA

A. Core TDA Concepts

1. Simplicial Complexes

Simplicial complexes are a fundamental construct in algebraic
topology, which provide the fundamental tools for topological
data analysis (TDA). Topological structures may be
represented in data thanks to these complexes, which are
constructed from vertices, edges, triangles, and higher-
dimensional simplices. Recent developments emphasize their
use in machine learning applications, computational efficiency,
and persistent homology. For example, [15]investigate
scalable TDA using sparse simplicial complexes, whereas [16]
study their categorical properties. [17] optimize filtrations for
dynamic data, and [18] integrate them with neural networks.
Additionally, [19] analyze stability in approximations. These
pieces highlight how versatile simplicial complexes are in
contemporary TDA.

2. Homology groups and Betti numbers
In topological data analysis (TDA), homology groups and their
corresponding Betti numbers (represented as [y, By, 2, etc.)
are essential instruments that measure the quantity of loops,
higher-dimensional holes, linked components, and voids in a
dataset. While f8; and f8, capture one-dimensional cycles and
two-dimensional cavities, respectively, the zeroth Betti number
(By) counts linked components. Their uses in material science,
neurology, and machine learning have increased recently.
[20] show how Betti numbers encode topological
characteristics to enhance graph categorization, while [21]
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create statistical techniques to compare dataset’s Betti number
distributions. [22] apply persistent homology to detect hidden
structures in high-dimensional data, and[23] optimize
computational methods for large-scale Betti number
calculations. Additionally, [24] For improved interpretability,
incorporate Betti curves into deep learning frameworks.
Additional developments by [25] for more detailed topological
descriptors, investigate multi-parameter persistence. These
examples demonstrate how Betti numbers are increasingly
being used to glean valuable insights from complicated data.

3. Persistent Homology

A key component of topological data analysis (TDA) is
persistent homology, which offers a multiscale framework for
measuring the presence (birth) and disappearance (death) of
topological characteristics across several sizes, including loops,
voids, and linked components. Persistent homology, which is
frequently represented by persistence diagrams or barcodes,
captures the lifespan of these traits by building a filter of
simplicial complexes (such as Vietoris-Rips or Cech
complexes). New applications, statistical robustness, and
computing efficiency are the main focuses of recent
developments. Robinson also presents a distributed computing
strategy  for  sustained large-scale homology [26],
while [27] provide ~stability assurances for noise-filled
persistence diagrams. [28] examine kernel techniques to
compare persistence diagrams and improve machine learning
integration. [29] optimize memory-saving techniques for TDA
in real time, and [30]examine dynamic networks for
abnormalities by using persistent homology.
Additionally, [31] to create richer data representations, apply
these strategies to multi-parameter persistence. These
developments highlight the adaptability of persistent homology
in a variety of domains, including material science and
biological imaging.

4.  Mapper Algorithm
By using a combinatorial approach to capture the topological
structure of high-dimensional data, the Mapper method offers a
robust framework for building discrete approximations of Reeb
graphs, facilitating the presentation and study of such data.
Mapper is very helpful for exploratory data analysis in domains
like biology, materials science, and machine learning since it
generates a simplicial complex that describes the structure of
the data by employing a covering of the data space and
clustering within each region. Enhancing its scalability,
resilience, and interpretability has been the main emphasis of
recent developments. The report [32] introduced a GPU-
accelerated implementation of Mapper for large-scale datasets,
while [33] developed a theoretical framework for stability
guarantees under noise. Also, [34] integrated Mapper with deep
learning for feature extraction in image datasets,
and [35] optimized its parameters for time-varying data.
[36] extended Mapper to multi-parameter settings, enhancing
its ability to capture complex relationships in heterogeneous
data. Additionally, [37] improved usability in applied contexts
by proposing an interactive visualization tool for Mapper
outputs. These advancements demonstrate Mapper's expanding
significance as a flexible tool for exploring topological data.
By projecting high-dimensional data into lower-dimensional
spaces using lens functions, the Mapper technique makes it
possible to create simplicial complexes that use clustering
pullbacks to capture topological features. Recent developments
highlight different lens functions: 2023 studies comparing the
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effectiveness of intrinsic and extrinsic lenses for biological data
analysis showed that the former preserve local geometry using
geodesic distances in the original space, while the latter reduce
dimensionality to reveal global patterns [38]. A combinatorial
representation of the dataset's topology is produced by
clustering pullbacks, which divide data points inside
overlapping intervals of the lens output. Clusters create nodes
in the simplicial complex, while edges link nodes sharing data
points [39]. Configurable UMAP lens functions that filter
connection graphs were presented in 2024 research, allowing
for multi-perspective analysis of high-dimensional datasets
[40]. In the meanwhile, research conducted in 2025 focused on
parameter sensitivity and shown that lens selection (e.g., PCA
vs. t-SNE) has a considerable influence on complex structure
and interpretability, with PCA providing the best balance
between local connectivity and global topology [41]. These
advancements highlight Mapper's versatility in using selective
lens selection and grouping to derive relevant insights from
complicated data.

B. Key TDA Tools

1. Persistent Homology- Filtration, Vietoris-Rips, Cech
complexes

Vietoris-Rips and Cech complexes are two basic structures
used in persistent homology, which uses filtering techniques to
examine the development of topological properties across
scales. While the Cech complex employs intersecting balls for
more topological precision but at a higher computational cost,
the Vietoris-Rips complex links points within a defined
distance & and offers computational efficiency. Enhancing
scalability, theoretical guarantees, and applications have been
the main topics of recent study. To speed up calculations in
high dimensions, [42] presented a sparsification method for
Vietoris-Rips filtrations, and [43] created adaptive methods
for Cech complexes with noisy data. [44] improved the
resilience of machine learning pipelines by establishing new
stability constraints for persistence diagrams under varied
filtration parameters. A distributed system for extensive
filtrations was proposed by [45]and [46]used persistent
homology and sheaf theory to identify enhanced features.
Furthermore, Vietoris-Rips architectures were refined for
dynamic point clouds by, [47] allowing for real-time TDA in

sensor networks and robotics. These developments
demonstrate the increasing convergence of persistent
homology's  theoretical underpinnings and real-world
applications.

2. Distance Metrics
In topological data analysis, bottleneck and Wasserstein
distances are essential metrics for comparing persistence
diagrams (PDs), each of which has unique benefits depending
on the requirements of the application. The p-Wasserstein
distance (1 < p < o) aggregates differences across all points,
offering a more nuanced comparison sensitive to global
topological structure, whereas the bottleneck distance (oo-
Wasserstein) measures the maximum displacement between
corresponding points in PDs, giving robustness to outlier’s
priority [48]. The universality of p-Wasserstein metrics for
PDs, which allow for consistent comparisons across various
data types by sub additive commutative monoid
characteristics, is one example of recent theoretical
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developments [49]. Studies do point out several limits, though:
In high-dimensional data, bottleneck distances may over
penalize geometric dissimilarities, whereas p-Wasserstein
(especially p=2) strikes a compromise between sensitivity and
stability, as demonstrated in manifold-embedded datasets,
where convergence happens when p surpasses the intrinsic
manifold dimension [50]. By measuring topological similarity
through coefficient comparisons, parametric models such as
the RST framework supplement these metrics and handle
situations in which geometrically different datasets have
identical PDs [51]. Wasserstein gradients are also included
into dynamical systems in recent work, allowing PD
optimization using energy functionals that direct topological
characteristics ~ toward  desired  configurations  [52]
[53]. Despite advancements, problems with interpretability
and computing scalability still exist, which motivates research
into hybrid strategies that blend metric-based comparisons
with machine learning-driven topological summaries [54].

3. TDA software
Leading open-source software libraries GUDHI, Ripser, and
giotto-tda have made substantial progress in the real-world
implementation of Topological Data Analysis (TDA) in both
industry and academics [55]. Geometry Understanding in
Higher Dimensions, or GUDHI, is a comprehensive C++
library with a Python interface that provides cutting-edge
algorithms for computing topological descriptors like
bottleneck distances and persistent homology as well as for
building different kinds of simplicial complexes, such as Rips,
Witness, Alpha, and Cech complexes [56]. It is a flexible
toolset for computational topology and TDA processes due to
its modular architecture, which allows statistical analysis,
topological  descriptor  computation, and  manifold
reconstruction.
In persistent homology computations, Ripser is notable for its
computational efficiency, especially when dealing with large-
scale and high-dimensional datasets. Building on the quick
C++ core, the Python program Ripser.py offers an easy-to-use
interface for calculating cohomology, lower-star filtrations,
and persistence diagrams, as well as for visualizing the results.
With continuous development guaranteeing cross-platform
compatibility and integration with GPU-accelerated versions
for even faster computing, it is well known for its speed and
scalability, supporting both sparse and dense datasets.
The Python package called "giotto-tda" was created to easily
include TDA into machine learning pipelines using an API
akin to scikit-learn. It enables end-to-end workflows from data
preparation to model training and assessment by wrapping
fundamental TDA algorithms, such as those from Ripser and
GUDHLI, and extending them with transformers for persistence
diagrams, vectorization, and kernel approaches. For
researchers and practitioners looking to use TDA in data
science and machine learning contexts, giotto-tda is a flexible
and user-friendly option thanks to recent releases that have
added sophisticated features like weighted Rips filtrations,
better clustering, and increased compatibility.
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III. TDA DRIVEN MACHINE LEARNING

A. Feature Extraction and Dimensionality reduction

1. Topological feature for ML model

To extract holes or related components as features, use PH. In
order to enable robust feature extraction and dimensionality
reduction for machine learning (ML) models, persistent
homology (PH) has become a potent tool for extracting
topological features from complex data, such as connected
components (0-dimensional holes), loops (1-dimensional
holes), and voids (higher-dimensional holes). PH offers a
multi-scale summary of the data structure that is both
interpretable and noise-resistant by analyzing how these
features emerge and vanish across stages in a filter. For
instance, PH-derived features have been utilized to build
topological loss functions in image segmentation, which
enhances deep learning models' capacity to recognize the
underlying boundaries and forms in pictures [57]. By
collecting delicate local structural information that standard
descriptors ignore, the integration of PH features into graph
neural networks has greatly improved the prediction of defect
behaviors in perovskite materials in materials science [58].

In fields like social network research, where it measures the
form and connectedness of subgraphs, and biomedical
applications, where it helps categorize intricate biological
structures, PH also makes it easier to extract significant
characteristics from high-dimensional or noisy information
[59] [60]. Practitioners may better comprehend and visualize
the elements impacting ML model decisions because to the
interpretability of PH characteristics, such as the persistence of
related components or loops [61]. In order to lower computing
costs while preserving the stability and discriminative strength
of PH features in machine learning pipelines, recent studies
have presented effective simplicial complex constructions,
such as the Delaunay-Rips complex [62]. Overall, PH has
shown itself to be a reliable and adaptable method for
improving the performance and interpretability of machine
learning models in a variety of scientific and engineering
applications by extracting and vectorizing topological
information like holes and related components.

2. Mapper for TDA: Visualizing high dimensional
ML datasets

High-dimensional datasets may be transformed into
interpretable topological networks that uncover hidden
features, clusters, and outliers using the Mapper method,
which has become a potent tool for exploratory data analysis
(EDA) in machine learning. Mapper creates a simplicial graph
that captures the inherent structure of the data by clustering
the data inside overlapping intervals and using a filter function
(such as PCA, UMAP, or a custom measure). Mapper has
been enhanced for large-scale machine learning applications
by recent developments. [63] presented DeepMapper, which
incorporates neural network embeddings as filter functions to
enhance feature extraction in picture datasets while
[64] created RobustMapper, which adds differential privacy
assurances for sensitive biological data. Through parallelized
graph creation, [65] improved Mapper's scalability and made it
possible to analyze datasets containing millions of points in
real time. Through the visualization of transaction networks
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and the identification of aberrant subgraphs that PCA missed,
[66] illustrated Mapper's usefulness in fraud detection in
applied situations. In the meanwhile, [67] bridged topology
and interpretable Al by combining Mapper and SHAP data to
describe feature relevance in black-box models. These
developments demonstrate how Mapper's ability to preserve
global topology while revealing local linkages makes it a
unique complement to conventional dimensionality reduction
techniques (such as t-SNE).

B. TDA Enhanced ML models

1. Topological regularization

Using topological loss terms to include persistent homology
(PH) into deep learning has become a potent method for
enforcing geometric and structural priors in neural networks.
These losses direct models to maintain crucial topological
properties, such as linked components, loops, or voids, during
tasks like dimensionality reduction or creation by punishing
differences between the PH of input and output
data. [68] created a differentiable Wasserstein persistence loss
for autoencoders, which is essential for medical imaging
applications since it guarantees that the reconstructed data has
the same multiscale topology as the input. [69] suggested a
persistent barcode loss for graph autoencoders that preserves
cavity geometries (. features) and ring structures (B
features), hence increasing molecule synthesis. [70] created a
topological adversarial loss for GANs in which training is
stabilized by discriminators comparing persistence diagrams.
Meanwhile, [71] created a dynamic PH loss that preserves
temporal coherence in latent regions for time-series
forecasting. [72] coupled contrastive learning with PH losses,
highlighting  topologically invariant characteristics to
demonstrate improvements in few-shot categorization. These
methods use estimated PD gradients to solve important issues
like computing efficiency. [73] scalability by effective
computing of persistence diagrams in high dimensions,
resistance to noise by highlighting qualities with significant
persistence [6] and interpretability by allocating topological
features [30] and versatility via adaptable topological
embeddings across many data modalities.

2. Neural Networks with TDA layers
In order to bridge the gap between algebraic topology and
deep learning, recent developments have produced specialized
neural network layers that explicitly calculate or maintain
topological characteristics. These TDA layers allow end-to-
end learning of topologically meaningful representations by
directly integrating topological loss functions or persistent
homology (PH) calculations into network
structures. [74] presented PersLay, a neural layer that captures
multi-scale topological patterns and projects persistence
diagrams into learnable Hilbert spaces, resulting in state-of-
the-art performance on graph classification challenges.
[75] introduced TopoPool, a PH-driven graph pooling layer
that outperforms conventional pooling techniques in molecular
property prediction by hierarchically collapsing nodes while
maintaining crucial cycles (Bi) and connectedness (fo). For
computer vision, [76] created Cubical Homology Layers,
which preserve boundary structures in medical scans and
analyze image data as cubical complexes to improve
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segmentation accuracy. [77] created the Differentiable Mapper
layer, which uses high-dimensional activations to create
simplicial complexes and offers interpretable insights into how
neural networks make decisions. Meanwhile, [78] developed
TopoReg, a regularization layer based on PH that protects
autoencoder latent spaces from topological distortion, which is
essential for anomaly detection applications [79].

3. Interpretability

The measurement and visualization of structural components
that influence predictions using persistent homology (PH) has
emerged as a powerful basis for enhancing the interpretability
of machine learning models. In contrast to conventional
feature attribution techniques, PH-based interpretability tools
provide intuitive insights into model behavior by exposing
global topological patterns that endure across scales, such as
clusters, loops, or voids Also, [80] presented Topo CAM, a
class activation mapping methodology based on persistence
diagrams that improves diagnostic consistency by 22% by
highlighting topologically relevant areas in medical imaging
(such as tumor cavities in MRI scans). [81] created TopoGrad,
a tool that breaks down model predictions into contributions
from Betti numbers (Bo, B1, and B2), revealing how cyclic
patterns or connectivity influence graph neural network
(GNN)  decisions. For models that use time
series, [82] suggested Persistence LIME, which highlights
topological transitions (such as regime shifts in financial data)
by modifying local interpretability. Meanwhile, [83] shown
that PH may uncover topological bias in models, such as when
a classifier for particle physics data over weights spherical
shapes (high f2).

C. Graph and Geometric Learning

1. TDA for Graph Neural Networks
Combining graph neural networks (GNNs) with topological
data analysis (TDA) has become a potent method for
modelling interactions that go beyond paired node
associations. Researchers can extract multi-scale topological
features, like cycles (Bi), communities (o), and higher-
dimensional cavities (B2), that are inherently overlooked by
conventional message-passing GNNs by building graph
filtrations (e.g., using edge weights, node degrees, or spectral
embeddings) and computing persistent homology (PH). [84]
presented TopoGNN, which explicitly models ring structures
to enhance graph convolutions with PH-based attention across
persistent cycles, increasing performance on molecular
property prediction by up to 18% [85]. Additionally, Zhao
created PersGNN, which converts persistence diagrams into
learnable  topological —signatures that enhance node
embeddings. This method is especially useful for identifying
persistent community structures in social network
research. [86] suggested a filtration-adaptive GNN that, in
response to the emergence or extinction of topological
characteristics in a hierarchy of clique complexes,
dynamically modifies its aggregation scheme. For the
categorization of graphs, [87] created Wasserstein Graph
Kernels, which outperform conventional graph kernels on
bioinformatics datasets by comparing graphs based on the
bottleneck distance between their persistence diagrams.
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Meanwhile, [88]used Pi-persistence as a regularizer to
guarantee that created molecules have realistic ring
configurations while utilizing PH in graph formation.

2. Time series analysis with PH

By identifying topological properties that endure over several
temporal scales, such as loops (B:) and related components
(Bo), persistent homology (PH) has become a potent tool for
time-series data analysis. In applications like ECG
classification, where conventional techniques frequently
overlook minute but clinically meaningful patterns, our
strategy is very helpful. [89] presented TopoTS, a technique
that outperforms LSTM-based models in situations with low
signal-to-noise ratios by using delay embeddings to transform
time-series into point clouds and calculate PH to identify
arrhythmias with 94% accuracy. [90] Garland created
Persistence Barcodes, a portable PH pipeline that tracks the
stability of P: characteristics to detect aberrant breathing
patterns in wristwatch PPG data. Regarding financial
markets, [91] employed topological volatility indicators
developed from PH to forecast crashes by observing the
formation of enduring cycles in asset correlation networks.
IoT in industry, [92] developed TopoAnomaly, which detects
equipment breakdowns in sensor data 30% sooner than
threshold-based systems by combining o (component
tracking) and P: (periodicity detection). Meanwhile, [93]
suggested Multiscale PH Embeddings for the prediction of
epileptic seizures, where a 72-hour early warning window is
provided by the development of topological properties in
EEGs.

IV. APPLICATIONS OF TDA-ML STRATEGY

A. Computer Vision

1. Shape classification

By collecting inherent form properties that are frequently
invisible to conventional convolutional neural networks
(CNNs), such as cavities (B2), handles (B:), and linked
components (Bo), persistent homology (PH) has become a
potent tool for 3D object detection. By examining the
multiscale topological characteristics of 3D meshes or point
clouds, PH offers a strong framework for classifying shapes
that is impervious to noise and deformations. [94] presented
TopoMesh, a technique that far outperforms voxel-based
CNNs by integrating PH-based Betti curves with graph neural
networks (GNNs) to identify 3D medical anatomies with 96%
accuracy on the ShapeNet dataset. Meanwhile, [95] presented
Topological Moment Descriptors, which improve aircraft part
categorization in aerospace engineering by combining PH with
geometric moments. [96] further developed the area using PH-
Contrastive Learning, which enhances few-shot 3D
recognition by using topological properties as self-supervision
signals.

2. Adversarial robustness
Persistent homology (PH) has emerged as a powerful
technique for identifying adversary attacks in deep learning by
identifying topological anomalies in data manifolds. Unlike
traditional adversarial defenses that rely on statistical
anomalies or gradient masking, PH-based approaches analyze
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changes in topological features (such Betti numbers) caused
by adversarial perturbations. [97] shown that the Wasserstein
distances between the clean and disturbed persistence
diagrams may be used to identify the false high-dimensional
holes (B2) that adversarial instances produce in image
judgment boundaries. [98] achieved 94% detection rates on
CIFAR-10 under PGD assaults by developing TopoGuard, a
lightweight PH layer that flags inputs generating anomalous
Bo/B: transitions in latent space activations. Additionally, it
proposed a topological regularization loss for resilient training
and conceptually connected adversarial sensitivity to the
instability of 0-dimensional persistence (Bo) for graph data.
Meanwhile, [99] detected "topological noise" in hostile audio
samples by combining spectral analysis with PH.

B. Anamoly Detection

1. PH for network intrusion detection

Persistent homology (PH), which looks for strange connection
patterns in cybersecurity data, is a powerful topological
technique for detecting network intrusions. In contrast to
conventional anomaly detection techniques that depend on
statistical thresholds, PH detects multi-scale topological
invariants that show complex assaults like botnet coordination
or lateral movement, such as persistent loops (Bi) and
unconnected components (Bo). [100] shown that Wasserstein
distance metrics may be used to identify the characteristic
high-dimensional voids (B2) that distributed denial-of-service
(DDoS) assaults produce in network flow graphs.[101]
created TopoNetIDS, a real-time intrusion detection system
that detects zero-day vulnerabilities with 96% accuracy by
combining graph neural networks (GNNs) with Vietoris-Rips
filtrations. Early identification of supply chain threats is made
possible by the microservice compromise, which modifies the
persistence barcodes of API call graphs for cloud security.
[102] presented adaptive PH sampling, which uses temporal
changes in Po characteristics to identify slow-burn credential
stuffing assaults. All of the TDA-ML applications in each
domain are summarized in Table 1, together with the TDA
technique, ML task, and results. All of the TDA-ML
applications in each domain are summarized in Table I,
together with the TDA technique, ML task, and results.

TABLE 1. SUMMARY OF TDA-ML APPLICATIONS
Domain Method (TDA) ML task Outcome
Persisent redicton securaey (e

Healthcare Homology + Classification p vieg,

Mapper cancer subtype

classification)
Neuroscienc Persistent Clustering, Better understanding of
Homology Classification brain state transitions and

e brain network topology

Finance Persistence Anomaly Detected market crashes,
Diagrams + Detection regime shifts using
Kernel topological features
Methods
Material Persistence Regression, Predicted material
Science Images + SVM | Classification properties with higher
interpretability
Image Persistent Classification Enhanced feature
Recognition Homology + extraction for improved
CNNs image recognition
Bioinformati | Vietoris-Rips Classification Accurate protein
cs Complex + structure and function
SVM prediction
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Sensor Mapper + Clustering Robust topological
Networks Clustering clustering in noisy sensor
environments
Climate Mapper + Pattern Discovered extreme
Science Dimensionalit Recognition event conditions
y Reduction
Genomics Persistent Feature Enhanced classification
Homology Selection of gene expression data

2. Mapper algorithm for fraud detection activity patterns

A powerful topological technique for fraud detection is the
Mapper approach, which reveals hidden patterns in high-
dimensional financial transaction networks. By creating a
simplicial complex representation of transaction data, Mapper
may identify topological outliers, suspicious groups, and
bridges between normal and abnormal behavior that are missed
by traditional rule-based systems. [103] showed how Mapper's
lens functions may achieve 23% better detection rates than
deep autoencoders by capturing money laundering patterns
while maintaining the topological structure of temporal
transaction sequences. [104] created FraudMap, an adaptive
Mapper implementation that effectively detects synthetic
identity theft in credit card data by combining transaction
amounts, frequencies, and geographical locations into a
topological network. For blockchain analysis, [105] applied
Mapper to Ethereum transaction graphs, exposing smart
contract vulnerabilities through peculiar f1 persistence traits.
[106] presented dynamic Mapper, which tracks topological
changes in consumer behavior networks over time frames,

enabling real-time fraud monitoring. Meanwhile, [107]
Mapper's nerve complex structure offers probabilistic
assurances for identifying collusive fraud rings, as

demonstrated theoretically.

V. FUTURE DIRECTIONS

A. AutoML with TDA

A potential area for topology-aware hyperparameter
adjustment to optimize model performance is the combination
of automated machine learning (AutoML) with topological
data analysis (TDA). Researchers are creating new ways to
direct hyperparameter selection by using persistent homology
to quantify the topological properties of data manifolds and
model decision limits. [108] presented TopoOpt, a system that
reduces training time by 30% without sacrificing accuracy by
dynamically modifying neural network topologies depending
on the topological complexity of latent representations using
persistence diagrams. Betti numbers are used as priors for
hyperparameter distributions in the Bayesian optimization
method put out by Carpio A. Convergence in high-
dimensional search spaces is greatly enhanced by [109]. [110]
showed that by maintaining crucial topological structures
throughout training, PH-based metrics can automatically
choose the best graph pooling ratios. In the meanwhile, others
developed strong foundations for topology-guided AutoML by
establishing theoretical relationships between generalization
error and Wasserstein distances of persistence diagram.
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B. Quantum TDA

By using quantum methods to get beyond traditional
processing limitations, the new area of quantum topological
data analysis (Quantum-TDA) offers exponential speedups in
calculating persistent homology (PH). Recent developments
show quantum advantage for important PH subroutines, such
as Betti number estimation and boundary matrix
reduction. [111] created the first end-to-end quantum PH
pipeline, using Grover-optimized clique discovery on quantum
RAM to achieve a quadratic speedup in the generation of
Vietoris-Rips complex. [112] suggested a quantum version of
the Mayer-Vietoris sequence that, for some simplicial
complexes, computes relative homology in O (log n) time. For
real-world uses, [113] used IBMQ processors to create a
quantum-classical hybrid method that speeds up the creation
of persistence diagrams for tiny biomolecules, while [114]
proven complexity-theoretic underpinnings for approximation
Betti number computations that demonstrate BQP-
completeness. Meanwhile, [115] [116] reduced the amount of
memory needed for large filtrations by optimizing discrete
Morse functions using the annealing technique.

C. Topological Explainable AI (XIA)

A powerful tool for explainable Al (XAI) is the Mapper
approach, which provides topological representations of model
decision-making processes across complex, high-dimensional
datasets. Recent developments show how Mapper may use
simple complicated visualizations to show the inherent
structure of neural network activations, feature significance
distributions, and  prediction  bounds. [117]  created
TopoMapX, which tracks the propagation of input samples
through deep learning architectures and identifies crucial
bifurcation points where classification judgments differ by
building Mapper graphs from latent space trajectories. For
graph neural networks, [118] developed TopoGNN-Explainer,
which uses Mapper to show how topological signatures are
produced by message-passing pathways in molecular property
prediction. Meanwhile, [119] revealed the correlation between
linguistic aspects and topological patterns in attention heads
by using Mapper to attention processes in transformers.

D. Benchmarking Standardization TDA-ML evaluation
datasets

Establishing defined standards for topological data
analysis (TDA) in machine learning (ML) has become
essential to provide comprehensive evaluation, reproducibility,
and fair comparison of novel techniques. Current efforts
involve creating curated datasets with ground-truth topological
characteristics and performance criteria designed to evaluate
topological integrity and computational efficiency. [120]
presented TopoBench, an extensive collection of 3D shape,
graph, and time-series datasets with permanent homology
characteristics that allow TDA-enhanced ML models to be
directly compared. [121] created TopoML-Eval, which
incorporates parametrized topological complexity synthetic
data generators to assess noise robustness and scalability. For
biomedical applications, [122] developed MedTopo-21, a set
of labeled medical pictures (microscopy, CT, and MRI) with
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topological biomarkers verified by experts. [123] suggested
assessment procedures, such as metrics to measure the
preservation of homology structures across embeddings, for
TDA-based graph representation learning. Meanwhile, [124]
introduced an open TDA Challenge Platform with
leaderboards for challenges such as creating persistence
diagrams and detecting topological anomalies.

A powerful paradigm for enhancing machine learning (ML) is
Topological Data Analysis (TDA), which incorporates shape-
awareness, multiscale analysis, and resilience to noise and
deformations. By quantifying structural components including
loops (B:1), voids (B2), and connected components (Bo), TDA
provides an additional viewpoint to traditional geometric or
statistical techniques, exposing hidden patterns in complex
datasets. Its ability to capture invariant topological fingerprints
has spurred breakthroughs in fields ranging from fraud
detection (anomaly identification in transaction networks) to
diagnostic imaging (tumor diagnosis using persistence
diagrams). Furthermore, TDA's integration with deep learning
through neural layers, explainability tools, and topological loss
terms demonstrates its versatility in modern Al pipelines.
In order to reach TDA's maximum potential, we support:

a. Wider Adoption: ML professionals should include
TDA into routine processes by using libraries such as
giotto-tda and GUDHI for model diagnostics and
feature extraction.

b. Interdisciplinary Collaboration: From quantum-TDA
to topological AutoML, new applications will be

sparked by fortifying collaborations among
topologists, data scientists, and subject matter
specialists.

¢.  Benchmarking and Standardization: TDA-enhanced
ML research will be rigorous and reproducible if
standardized ~ assessment  frameworks (like
TopoBench) are developed.

VI. CONCLUSION

Topological Data Analysis (TDA) offers a robust and
complementary framework for machine learning by
embedding shape-awareness, multiscale structure, and noise
resilience into data analysis. TDA shows intricate patterns that
are sometimes obscured by traditional statistical or geometric
techniques by capturing invariant topological properties like
connected components, loops, and voids. This allows for
significant applications in a variety of fields, such as fraud
detection and medical diagnostics. Its usefulness in modern Al
systems is further highlighted by its smooth integration with
deep learning architectures. In order to ensure scalability,
rigor, and reproducibility in future TDA-enhanced machine
learning research, more widespread usage of TDA in ML
workflows, improved interdisciplinary collaboration, and the
creation of standardized benchmarking frameworks are
crucial.
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