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Abstract - Topological Data Analysis (TDA) offers a robust 

framework for enhancing machine learning (ML) through shape-

aware, multiscale, and noise-resistant techniques. This paper 

examines important TDA techniques, including Mapper, 

Wasserstein, and persistent homology, and how they can be used 

to machine learning tasks including time-series analysis, anomaly 

detection, and classification. We showcase new developments 

such as explainability tools, topological regularization, and TDA-

based neural layers, showcasing their efficacy in domains like 

computer vision, finance, and bioinformatics. Additionally, the 

study describes new directions such as benchmarking 

frameworks, quantum-TDA, and topology-guided AutoML. 

Through the integration of abstract topology and practical data 

issues, TDA is positioned to emerge as a fundamental element of 

interpretable and robust AI systems. 

Keywords - Anomaly detection, classification, explainability, 

machine learning, persistent homology, topological data analysis, 

topology-guided AutoML. 

I.  INTRODUCTION 

A. TDA in ML and it’s brief history 

Topological Data Analysis (TDA) enhances machine 
learning (ML) by extracting robust, multi-scale geometric and 
topological features from complex datasets, enabling improved 
model interpretability and noise resilience. Its transdisciplinary 
significance is highlighted by recent research: TDA's function 
in revealing hidden patterns in physics and machine learning 
through unsupervised learning is highlighted in a 2023 review. 
[1]. A 2024 study shows excellent feature extraction accuracy 
by predicting polar material characteristics using persistent 
homology and machine learning [2]. Another 2023 study 
integrates topological and geometric data to apply TDA to 3D 
tongue papillae images, reaching 85% classification accuracy 
[3]. TDA's increasing significance in geometric deep learning 
and topological regularization for model generalization is 
highlighted by the 2025 GTML workshop [4]. TDA is 
positioned as a supplement to classical ML by earlier 
fundamental research (2021), opening up possibilities in 
materials design and neurology [5]. These developments 
demonstrate TDA's ability to connect actionable ML findings 
with abstract data structures. The foundational contributions of 
Edelsbrunner, Carlsson, and Zomorodian in the early 2000s, 
particularly the formalization of persistent homology as a 
technique to track multi-scale topological features in data, 
allowed Topological Data Analysis (TDA) to emerge from 

algebraic topology and computational geometry [6]. By 
mapping the "birth" and "death" of topological invariants (such 
as loops and voids) across filtering settings, persistent 
homology became a popular technique for complex structure 
analysis and allowed for noise-resistant feature extraction [7]. 
New developments demonstrate how it integrates with machine 
learning (ML): TDA's function in deep learning through 
differentiable invariants and inverse problem-solving for 
explainable AI was highlighted at a 2025 workshop at OIST 
[8]. 2023 research showed how PH may be used to enhance 
unsupervised learning by identifying global geometric patterns 
that conventional approaches overlook [7]. The interpretability 
of PH-based ML in high-dimensional data processing was 
highlighted in another 2023 study [9]. TDA's value in 
extracting strong characteristics for machine learning tasks like 
protein categorization was demonstrated by early applications, 
such as 2021 reviews [6] [10]. These advancements show how 
TDA has developed from its theoretical foundations to become 
a multidisciplinary tool that improves the interpretability and 
resilience of ML.  

B. Scope of Review 

The convergence of Topological Data Analysis (TDA) and 
machine learning (ML) is particularly covered in this study, 
with an emphasis on useful methods and how they may be 
incorporated into data-driven processes as opposed to the 
purely mathematical underpinnings of topology. In order to 
extract strong, noise-resistant features from high-dimensional 
and heterogeneous datasets for machine learning tasks like 
classification, anomaly detection, and time-series analysis, the 
scope includes commonly used TDA methodologies like 
persistent homology, Mapper, and Wasserstein distances [3]. 
Recent studies show that TDA works well in a variety of 
machine learning applications. For example, persistent 
homology has been used to improve feature extraction in time-
series forecasting and image analysis, and new frameworks like 
TopMix adapt TDA for mixed-type data, outperforming 
traditional algorithms in domains like heart disease prediction. 
Workshops and reviews conducted between 2023 and 2025 
demonstrate the increasing convergence of TDA and ML, 
including the creation of pipelines that transform topological 
summaries into forms suitable for machine learning and the use 
of TDA to deep learning integration, network reconstruction, 
and climate science applications [11] [3]. By focusing on these 
computational methods and their practical machine learning 
applications, this study seeks to give a thorough picture of how 
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TDA improves model performance, robustness, and 
interpretability [12]. 

C. Key Contributions 

      The creation of effective algorithms for extracting 

topological features from noisy and high-dimensional datasets 

is one of the major advancements in Topological Data 

Analysis (TDA) for machine learning (ML). Berkeley Lab 

recently developed an optimization technique that speeds up 

the identification of important structures in large data sets 

[13]. As demonstrated by sophisticated protein language 

models that use TDA for structure-based predictions, 

persistent homology continues to be a fundamental component 

that permits multiscale analysis and reliable feature extraction, 

with applications extending to protein engineering and 

biological data [14]. TDA is now more applicable to mixed-

type data thanks to frameworks like TopMix, which 

outperform traditional algorithms in tasks like heart disease 

prediction and provide a standardized pipeline for 

incorporating topological information into machine learning 

operations [12]. Despite these developments, there are still 

issues with choosing the best filters, transforming topological 

summaries into forms that machine learning algorithms can 

use, and encoding digital data as algebraic structures 

appropriate for persistent homology. In order to close the gap 

between abstract topology and real-world machine learning 

applications, future prospects suggest further improvement of 

persistent homology for complicated biological data, better 

integration with deep learning architectures, and the creation 

of scalable, interpretable pipelines [1] [14]. 

 

II. FUNDAMENTALS OF TDA 

A. Core TDA Concepts 

1. Simplicial Complexes 
Simplicial complexes are a fundamental construct in algebraic 
topology, which provide the fundamental tools for topological 
data analysis (TDA). Topological structures may be 
represented in data thanks to these complexes, which are 
constructed from vertices, edges, triangles, and higher-
dimensional simplices. Recent developments emphasize their 
use in machine learning applications, computational efficiency, 
and persistent homology. For example, [15] investigate 
scalable TDA using sparse simplicial complexes, whereas [16] 
study their categorical properties. [17] optimize filtrations for 
dynamic data, and [18] integrate them with neural networks. 
Additionally, [19] analyze stability in approximations. These 
pieces highlight how versatile simplicial complexes are in 
contemporary TDA.  

2. Homology groups and Betti numbers 
In topological data analysis (TDA), homology groups and their 
corresponding Betti numbers (represented as etc.) 
are essential instruments that measure the quantity of loops, 
higher-dimensional holes, linked components, and voids in a 
dataset. While  and  capture one-dimensional cycles and 
two-dimensional cavities, respectively, the zeroth Betti number 
( ) counts linked components. Their uses in material science, 
neurology, and machine learning have increased recently.  
[20] show how Betti numbers encode topological 
characteristics to enhance graph categorization, while [21] 

create statistical techniques to compare dataset’s Betti number 
distributions. [22] apply persistent homology to detect hidden 
structures in high-dimensional data, and [23] optimize 
computational methods for large-scale Betti number 
calculations. Additionally, [24] For improved interpretability, 
incorporate Betti curves into deep learning frameworks. 
Additional developments by [25] for more detailed topological 
descriptors, investigate multi-parameter persistence. These 
examples demonstrate how Betti numbers are increasingly 
being used to glean valuable insights from complicated data. 

3. Persistent Homology 
A key component of topological data analysis (TDA) is 
persistent homology, which offers a multiscale framework for 
measuring the presence (birth) and disappearance (death) of 
topological characteristics across several sizes, including loops, 
voids, and linked components. Persistent homology, which is 
frequently represented by persistence diagrams or barcodes, 
captures the lifespan of these traits by building a filter of 
simplicial complexes (such as Vietoris-Rips or Čech 
complexes). New applications, statistical robustness, and 
computing efficiency are the main focuses of recent 
developments. Robinson also presents a distributed computing 
strategy for sustained large-scale homology [26], 
while [27] provide stability assurances for noise-filled 
persistence diagrams. [28] examine kernel techniques to 
compare persistence diagrams and improve machine learning 
integration. [29] optimize memory-saving techniques for TDA 
in real time, and [30] examine dynamic networks for 
abnormalities by using persistent homology. 
Additionally, [31] to create richer data representations, apply 
these strategies to multi-parameter persistence. These 
developments highlight the adaptability of persistent homology 
in a variety of domains, including material science and 
biological imaging. 

4. Mapper Algorithm 
By using a combinatorial approach to capture the topological 
structure of high-dimensional data, the Mapper method offers a 
robust framework for building discrete approximations of Reeb 
graphs, facilitating the presentation and study of such data. 
Mapper is very helpful for exploratory data analysis in domains 
like biology, materials science, and machine learning since it 
generates a simplicial complex that describes the structure of 
the data by employing a covering of the data space and 
clustering within each region. Enhancing its scalability, 
resilience, and interpretability has been the main emphasis of 
recent developments. The report [32] introduced a GPU-
accelerated implementation of Mapper for large-scale datasets, 
while [33] developed a theoretical framework for stability 
guarantees under noise. Also, [34] integrated Mapper with deep 
learning for feature extraction in image datasets, 
and [35] optimized its parameters for time-varying data. 
[36] extended Mapper to multi-parameter settings, enhancing 
its ability to capture complex relationships in heterogeneous 
data. Additionally, [37] improved usability in applied contexts 
by proposing an interactive visualization tool for Mapper 
outputs. These advancements demonstrate Mapper's expanding 
significance as a flexible tool for exploring topological data. 
By projecting high-dimensional data into lower-dimensional 
spaces using lens functions, the Mapper technique makes it 
possible to create simplicial complexes that use clustering 
pullbacks to capture topological features. Recent developments 
highlight different lens functions: 2023 studies comparing the 
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effectiveness of intrinsic and extrinsic lenses for biological data 
analysis showed that the former preserve local geometry using 
geodesic distances in the original space, while the latter reduce 
dimensionality to reveal global patterns [38]. A combinatorial 
representation of the dataset's topology is produced by 
clustering pullbacks, which divide data points inside 
overlapping intervals of the lens output. Clusters create nodes 
in the simplicial complex, while edges link nodes sharing data 
points [39]. Configurable UMAP lens functions that filter 
connection graphs were presented in 2024 research, allowing 
for multi-perspective analysis of high-dimensional datasets 
[40]. In the meanwhile, research conducted in 2025 focused on 
parameter sensitivity and shown that lens selection (e.g., PCA 
vs. t-SNE) has a considerable influence on complex structure 
and interpretability, with PCA providing the best balance 
between local connectivity and global topology [41]. These 
advancements highlight Mapper's versatility in using selective 
lens selection and grouping to derive relevant insights from 
complicated data. 

B. Key TDA Tools 

1. Persistent Homology- Filtration, Vietoris-Rips, Čech 

complexes 

Vietoris-Rips and Čech complexes are two basic structures 

used in persistent homology, which uses filtering techniques to 

examine the development of topological properties across 

scales. While the Čech complex employs intersecting balls for 

more topological precision but at a higher computational cost, 

the Vietoris-Rips complex links points within a defined 

distance ε and offers computational efficiency. Enhancing 

scalability, theoretical guarantees, and applications have been 

the main topics of recent study. To speed up calculations in 

high dimensions, [42] presented a sparsification method for 

Vietoris-Rips filtrations, and [43] created adaptive methods 

for Čech complexes with noisy data. [44] improved the 

resilience of machine learning pipelines by establishing new 

stability constraints for persistence diagrams under varied 

filtration parameters. A distributed system for extensive 

filtrations was proposed by [45] and [46] used persistent 

homology and sheaf theory to identify enhanced features. 

Furthermore, Vietoris-Rips architectures were refined for 

dynamic point clouds by, [47] allowing for real-time TDA in 

sensor networks and robotics. These developments 

demonstrate the increasing convergence of persistent 

homology's theoretical underpinnings and real-world 

applications. 

 

2. Distance Metrics 

In topological data analysis, bottleneck and Wasserstein 

distances are essential metrics for comparing persistence 

diagrams (PDs), each of which has unique benefits depending 

on the requirements of the application. The p-Wasserstein 

distance (1 ≤ p < ∞) aggregates differences across all points, 

offering a more nuanced comparison sensitive to global 

topological structure, whereas the bottleneck distance (∞-

Wasserstein) measures the maximum displacement between 

corresponding points in PDs, giving robustness to outlier’s 

priority [48]. The universality of p-Wasserstein metrics for 

PDs, which allow for consistent comparisons across various 

data types by sub additive commutative monoid 

characteristics, is one example of recent theoretical 

developments [49]. Studies do point out several limits, though: 

In high-dimensional data, bottleneck distances may over 

penalize geometric dissimilarities, whereas p-Wasserstein 

(especially p=2) strikes a compromise between sensitivity and 

stability, as demonstrated in manifold-embedded datasets, 

where convergence happens when p surpasses the intrinsic 

manifold dimension [50]. By measuring topological similarity 

through coefficient comparisons, parametric models such as 

the RST framework supplement these metrics and handle 

situations in which geometrically different datasets have 

identical PDs [51]. Wasserstein gradients are also included 

into dynamical systems in recent work, allowing PD 

optimization using energy functionals that direct topological 

characteristics toward desired configurations [52] 

[53]. Despite advancements, problems with interpretability 

and computing scalability still exist, which motivates research 

into hybrid strategies that blend metric-based comparisons 

with machine learning-driven topological summaries [54]. 

 

3. TDA software 

Leading open-source software libraries GUDHI, Ripser, and 

giotto-tda have made substantial progress in the real-world 

implementation of Topological Data Analysis (TDA) in both 

industry and academics [55]. Geometry Understanding in 

Higher Dimensions, or GUDHI, is a comprehensive C++ 

library with a Python interface that provides cutting-edge 

algorithms for computing topological descriptors like 

bottleneck distances and persistent homology as well as for 

building different kinds of simplicial complexes, such as Rips, 

Witness, Alpha, and Čech complexes [56]. It is a flexible 

toolset for computational topology and TDA processes due to 

its modular architecture, which allows statistical analysis, 

topological descriptor computation, and manifold 

reconstruction.  

In persistent homology computations, Ripser is notable for its 

computational efficiency, especially when dealing with large-

scale and high-dimensional datasets. Building on the quick 

C++ core, the Python program Ripser.py offers an easy-to-use 

interface for calculating cohomology, lower-star filtrations, 

and persistence diagrams, as well as for visualizing the results. 

With continuous development guaranteeing cross-platform 

compatibility and integration with GPU-accelerated versions 

for even faster computing, it is well known for its speed and 

scalability, supporting both sparse and dense datasets. 

The Python package called "giotto-tda" was created to easily 

include TDA into machine learning pipelines using an API 

akin to scikit-learn. It enables end-to-end workflows from data 

preparation to model training and assessment by wrapping 

fundamental TDA algorithms, such as those from Ripser and 

GUDHI, and extending them with transformers for persistence 

diagrams, vectorization, and kernel approaches. For 

researchers and practitioners looking to use TDA in data 

science and machine learning contexts, giotto-tda is a flexible 

and user-friendly option thanks to recent releases that have 

added sophisticated features like weighted Rips filtrations, 

better clustering, and increased compatibility. 
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III. TDA DRIVEN MACHINE LEARNING 

A. Feature Extraction and Dimensionality reduction 

1. Topological feature for ML model 

To extract holes or related components as features, use PH. In 

order to enable robust feature extraction and dimensionality 

reduction for machine learning (ML) models, persistent 

homology (PH) has become a potent tool for extracting 

topological features from complex data, such as connected 

components (0-dimensional holes), loops (1-dimensional 

holes), and voids (higher-dimensional holes). PH offers a 

multi-scale summary of the data structure that is both 

interpretable and noise-resistant by analyzing how these 

features emerge and vanish across stages in a filter. For 

instance, PH-derived features have been utilized to build 

topological loss functions in image segmentation, which 

enhances deep learning models' capacity to recognize the 

underlying boundaries and forms in pictures [57]. By 

collecting delicate local structural information that standard 

descriptors ignore, the integration of PH features into graph 

neural networks has greatly improved the prediction of defect 

behaviors in perovskite materials in materials science [58]. 

In fields like social network research, where it measures the 

form and connectedness of subgraphs, and biomedical 

applications, where it helps categorize intricate biological 

structures, PH also makes it easier to extract significant 

characteristics from high-dimensional or noisy information 

[59] [60]. Practitioners may better comprehend and visualize 

the elements impacting ML model decisions because to the 

interpretability of PH characteristics, such as the persistence of 

related components or loops [61]. In order to lower computing 

costs while preserving the stability and discriminative strength 

of PH features in machine learning pipelines, recent studies 

have presented effective simplicial complex constructions, 

such as the Delaunay-Rips complex [62]. Overall, PH has 

shown itself to be a reliable and adaptable method for 

improving the performance and interpretability of machine 

learning models in a variety of scientific and engineering 

applications by extracting and vectorizing topological 

information like holes and related components. 

 

2. Mapper for TDA: Visualizing high dimensional 

ML datasets 

High-dimensional datasets may be transformed into 

interpretable topological networks that uncover hidden 

features, clusters, and outliers using the Mapper method, 

which has become a potent tool for exploratory data analysis 

(EDA) in machine learning. Mapper creates a simplicial graph 

that captures the inherent structure of the data by clustering 

the data inside overlapping intervals and using a filter function 

(such as PCA, UMAP, or a custom measure). Mapper has 

been enhanced for large-scale machine learning applications 

by recent developments. [63] presented DeepMapper, which 

incorporates neural network embeddings as filter functions to 

enhance feature extraction in picture datasets while 

[64] created RobustMapper, which adds differential privacy 

assurances for sensitive biological data. Through parallelized 

graph creation, [65] improved Mapper's scalability and made it 

possible to analyze datasets containing millions of points in 

real time. Through the visualization of transaction networks 

and the identification of aberrant subgraphs that PCA missed, 

[66] illustrated Mapper's usefulness in fraud detection in 

applied situations. In the meanwhile, [67] bridged topology 

and interpretable AI by combining Mapper and SHAP data to 

describe feature relevance in black-box models. These 

developments demonstrate how Mapper's ability to preserve 

global topology while revealing local linkages makes it a 

unique complement to conventional dimensionality reduction 

techniques (such as t-SNE). 

B. TDA Enhanced ML models 

1. Topological regularization 

Using topological loss terms to include persistent homology 

(PH) into deep learning has become a potent method for 

enforcing geometric and structural priors in neural networks. 

These losses direct models to maintain crucial topological 

properties, such as linked components, loops, or voids, during 

tasks like dimensionality reduction or creation by punishing 

differences between the PH of input and output 

data. [68] created a differentiable Wasserstein persistence loss 

for autoencoders, which is essential for medical imaging 

applications since it guarantees that the reconstructed data has 

the same multiscale topology as the input. [69] suggested a 

persistent barcode loss for graph autoencoders that preserves 

cavity geometries (β₂ features) and ring structures (β₁ 

features), hence increasing molecule synthesis. [70] created a 

topological adversarial loss for GANs in which training is 

stabilized by discriminators comparing persistence diagrams. 

Meanwhile, [71] created a dynamic PH loss that preserves 

temporal coherence in latent regions for time-series 

forecasting. [72] coupled contrastive learning with PH losses, 

highlighting topologically invariant characteristics to 

demonstrate improvements in few-shot categorization. These 

methods use estimated PD gradients to solve important issues 

like computing efficiency. [73] scalability by effective 

computing of persistence diagrams in high dimensions, 

resistance to noise by highlighting qualities with significant 

persistence [6] and interpretability by allocating topological 

features [30] and versatility via adaptable topological 

embeddings across many data modalities. 

 

2. Neural Networks with TDA layers 

In order to bridge the gap between algebraic topology and 

deep learning, recent developments have produced specialized 

neural network layers that explicitly calculate or maintain 

topological characteristics. These TDA layers allow end-to-

end learning of topologically meaningful representations by 

directly integrating topological loss functions or persistent 

homology (PH) calculations into network 

structures. [74] presented PersLay, a neural layer that captures 

multi-scale topological patterns and projects persistence 

diagrams into learnable Hilbert spaces, resulting in state-of-

the-art performance on graph classification challenges. 

[75] introduced TopoPool, a PH-driven graph pooling layer 

that outperforms conventional pooling techniques in molecular 

property prediction by hierarchically collapsing nodes while 

maintaining crucial cycles (β₁) and connectedness (β₀). For 

computer vision, [76] created Cubical Homology Layers, 

which preserve boundary structures in medical scans and 

analyze image data as cubical complexes to improve 
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segmentation accuracy. [77] created the Differentiable Mapper 

layer, which uses high-dimensional activations to create 

simplicial complexes and offers interpretable insights into how 

neural networks make decisions. Meanwhile, [78] developed 

TopoReg, a regularization layer based on PH that protects 

autoencoder latent spaces from topological distortion, which is 

essential for anomaly detection applications [79]. 

 

3. Interpretability 

The measurement and visualization of structural components 

that influence predictions using persistent homology (PH) has 

emerged as a powerful basis for enhancing the interpretability 

of machine learning models. In contrast to conventional 

feature attribution techniques, PH-based interpretability tools 

provide intuitive insights into model behavior by exposing 

global topological patterns that endure across scales, such as 

clusters, loops, or voids Also, [80] presented Topo CAM, a 

class activation mapping methodology based on persistence 

diagrams that improves diagnostic consistency by 22% by 

highlighting topologically relevant areas in medical imaging 

(such as tumor cavities in MRI scans). [81] created TopoGrad, 

a tool that breaks down model predictions into contributions 

from Betti numbers (β₀, β₁, and β₂), revealing how cyclic 

patterns or connectivity influence graph neural network 

(GNN) decisions. For models that use time 

series, [82] suggested Persistence LIME, which highlights 

topological transitions (such as regime shifts in financial data) 

by modifying local interpretability. Meanwhile, [83] shown 

that PH may uncover topological bias in models, such as when 

a classifier for particle physics data over weights spherical 

shapes (high β₂). 

 

C. Graph and Geometric Learning 

1. TDA for Graph Neural Networks 

Combining graph neural networks (GNNs) with topological 

data analysis (TDA) has become a potent method for 

modelling interactions that go beyond paired node 

associations. Researchers can extract multi-scale topological 

features, like cycles (β₁), communities (β₀), and higher-

dimensional cavities (β₂), that are inherently overlooked by 

conventional message-passing GNNs by building graph 

filtrations (e.g., using edge weights, node degrees, or spectral 

embeddings) and computing persistent homology (PH). [84] 

presented TopoGNN, which explicitly models ring structures 

to enhance graph convolutions with PH-based attention across 

persistent cycles, increasing performance on molecular 

property prediction by up to 18% [85]. Additionally, Zhao 

created PersGNN, which converts persistence diagrams into 

learnable topological signatures that enhance node 

embeddings. This method is especially useful for identifying 

persistent community structures in social network 

research. [86] suggested a filtration-adaptive GNN that, in 

response to the emergence or extinction of topological 

characteristics in a hierarchy of clique complexes, 

dynamically modifies its aggregation scheme. For the 

categorization of graphs, [87] created Wasserstein Graph 

Kernels, which outperform conventional graph kernels on 

bioinformatics datasets by comparing graphs based on the 

bottleneck distance between their persistence diagrams. 

Meanwhile, [88] used β₁-persistence as a regularizer to 

guarantee that created molecules have realistic ring 

configurations while utilizing PH in graph formation. 

 

2. Time series analysis with PH 

By identifying topological properties that endure over several 

temporal scales, such as loops (β₁) and related components 

(β₀), persistent homology (PH) has become a potent tool for 

time-series data analysis. In applications like ECG 

classification, where conventional techniques frequently 

overlook minute but clinically meaningful patterns, our 

strategy is very helpful. [89] presented TopoTS, a technique 

that outperforms LSTM-based models in situations with low 

signal-to-noise ratios by using delay embeddings to transform 

time-series into point clouds and calculate PH to identify 

arrhythmias with 94% accuracy. [90] Garland created 

Persistence Barcodes, a portable PH pipeline that tracks the 

stability of β₁ characteristics to detect aberrant breathing 

patterns in wristwatch PPG data. Regarding financial 

markets, [91] employed topological volatility indicators 

developed from PH to forecast crashes by observing the 

formation of enduring cycles in asset correlation networks. 

IoT in industry, [92] developed TopoAnomaly, which detects 

equipment breakdowns in sensor data 30% sooner than 

threshold-based systems by combining β₀ (component 

tracking) and β₁ (periodicity detection). Meanwhile, [93] 

suggested Multiscale PH Embeddings for the prediction of 

epileptic seizures, where a 72-hour early warning window is 

provided by the development of topological properties in 

EEGs. 

 

IV. APPLICATIONS OF TDA-ML STRATEGY 

A. Computer Vision 

1. Shape classification 

By collecting inherent form properties that are frequently 

invisible to conventional convolutional neural networks 

(CNNs), such as cavities (β₂), handles (β₁), and linked 

components (β₀), persistent homology (PH) has become a 

potent tool for 3D object detection. By examining the 

multiscale topological characteristics of 3D meshes or point 

clouds, PH offers a strong framework for classifying shapes 

that is impervious to noise and deformations. [94] presented 

TopoMesh, a technique that far outperforms voxel-based 

CNNs by integrating PH-based Betti curves with graph neural 

networks (GNNs) to identify 3D medical anatomies with 96% 

accuracy on the ShapeNet dataset. Meanwhile, [95] presented 

Topological Moment Descriptors, which improve aircraft part 

categorization in aerospace engineering by combining PH with 

geometric moments. [96] further developed the area using PH-

Contrastive Learning, which enhances few-shot 3D 

recognition by using topological properties as self-supervision 

signals. 

 

2. Adversarial robustness 

Persistent homology (PH) has emerged as a powerful 

technique for identifying adversary attacks in deep learning by 

identifying topological anomalies in data manifolds. Unlike 

traditional adversarial defenses that rely on statistical 

anomalies or gradient masking, PH-based approaches analyze 
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changes in topological features (such Betti numbers) caused 

by adversarial perturbations. [97] shown that the Wasserstein 

distances between the clean and disturbed persistence 

diagrams may be used to identify the false high-dimensional 

holes (β₂) that adversarial instances produce in image 

judgment boundaries. [98] achieved 94% detection rates on 

CIFAR-10 under PGD assaults by developing TopoGuard, a 

lightweight PH layer that flags inputs generating anomalous 

β₀/β₁ transitions in latent space activations. Additionally, it 

proposed a topological regularization loss for resilient training 

and conceptually connected adversarial sensitivity to the 

instability of 0-dimensional persistence (β₀) for graph data. 

Meanwhile, [99] detected "topological noise" in hostile audio 

samples by combining spectral analysis with PH. 

 

B. Anamoly Detection 

1. PH for network intrusion detection 

Persistent homology (PH), which looks for strange connection 

patterns in cybersecurity data, is a powerful topological 

technique for detecting network intrusions. In contrast to 

conventional anomaly detection techniques that depend on 

statistical thresholds, PH detects multi-scale topological 

invariants that show complex assaults like botnet coordination 

or lateral movement, such as persistent loops (β₁) and 

unconnected components (β₀). [100] shown that Wasserstein 

distance metrics may be used to identify the characteristic 

high-dimensional voids (β₂) that distributed denial-of-service 

(DDoS) assaults produce in network flow graphs. [101] 

created TopoNetIDS, a real-time intrusion detection system 

that detects zero-day vulnerabilities with 96% accuracy by 

combining graph neural networks (GNNs) with Vietoris-Rips 

filtrations. Early identification of supply chain threats is made 

possible by the microservice compromise, which modifies the 

persistence barcodes of API call graphs for cloud security. 

[102] presented adaptive PH sampling, which uses temporal 

changes in β₀ characteristics to identify slow-burn credential 

stuffing assaults. All of the TDA-ML applications in each 

domain are summarized in Table 1, together with the TDA 

technique, ML task, and results. All of the TDA-ML 

applications in each domain are summarized in Table 1, 

together with the TDA technique, ML task, and results. 

TABLE I.  SUMMARY OF TDA-ML APPLICATIONS 

Domain Method (TDA) ML task Outcome 

Healthcare 

Persistent 

Homology + 

Mapper 

Classification 

Improved disease 

prediction accuracy (e.g., 

cancer subtype 

classification) 

Neuroscienc

e 

Persistent 

Homology 

Clustering, 

Classification 

Better understanding of 

brain state transitions and 

brain network topology 

Finance Persistence 

Diagrams + 

Kernel 

Methods 

Anomaly 

Detection 

Detected market crashes, 

regime shifts using 

topological features 

Material 

Science 

Persistence 

Images + SVM 

Regression, 

Classification 

Predicted material 

properties with higher 

interpretability 

Image 

Recognition 

Persistent 

Homology + 

CNNs 

Classification Enhanced feature 

extraction for improved 

image recognition 

Bioinformati

cs 

Vietoris-Rips 

Complex + 

SVM 

Classification Accurate protein 

structure and function 

prediction 

Sensor 

Networks 

Mapper + 

Clustering 

Clustering Robust topological 

clustering in noisy sensor 

environments 

Climate 

Science 

Mapper + 

Dimensionalit

y Reduction 

Pattern 

Recognition 

Discovered extreme 

event conditions  

Genomics Persistent 

Homology 

Feature 

Selection 

Enhanced classification 

of gene expression data 

 

2. Mapper algorithm for fraud detection activity patterns 

A powerful topological technique for fraud detection is the 
Mapper approach, which reveals hidden patterns in high-
dimensional financial transaction networks. By creating a 
simplicial complex representation of transaction data, Mapper 
may identify topological outliers, suspicious groups, and 
bridges between normal and abnormal behavior that are missed 
by traditional rule-based systems. [103] showed how Mapper's 
lens functions may achieve 23% better detection rates than 
deep autoencoders by capturing money laundering patterns 
while maintaining the topological structure of temporal 
transaction sequences. [104] created FraudMap, an adaptive 
Mapper implementation that effectively detects synthetic 
identity theft in credit card data by combining transaction 
amounts, frequencies, and geographical locations into a 
topological network. For blockchain analysis, [105] applied 
Mapper to Ethereum transaction graphs, exposing smart 
contract vulnerabilities through peculiar β1 persistence traits. 
[106] presented dynamic Mapper, which tracks topological 
changes in consumer behavior networks over time frames, 
enabling real-time fraud monitoring. Meanwhile, [107] 
Mapper's nerve complex structure offers probabilistic 
assurances for identifying collusive fraud rings, as 
demonstrated theoretically. 

 

V. FUTURE DIRECTIONS 

A. AutoML with TDA 

        A potential area for topology-aware hyperparameter 

adjustment to optimize model performance is the combination 

of automated machine learning (AutoML) with topological 

data analysis (TDA). Researchers are creating new ways to 

direct hyperparameter selection by using persistent homology 

to quantify the topological properties of data manifolds and 

model decision limits. [108] presented TopoOpt, a system that 

reduces training time by 30% without sacrificing accuracy by 

dynamically modifying neural network topologies depending 

on the topological complexity of latent representations using 

persistence diagrams. Betti numbers are used as priors for 

hyperparameter distributions in the Bayesian optimization 

method put out by Carpio A. Convergence in high-

dimensional search spaces is greatly enhanced by [109]. [110] 

showed that by maintaining crucial topological structures 

throughout training, PH-based metrics can automatically 

choose the best graph pooling ratios. In the meanwhile, others 

developed strong foundations for topology-guided AutoML by 

establishing theoretical relationships between generalization 

error and Wasserstein distances of persistence diagram. 
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B. Quantum TDA  

         By using quantum methods to get beyond traditional 

processing limitations, the new area of quantum topological 

data analysis (Quantum-TDA) offers exponential speedups in 

calculating persistent homology (PH). Recent developments 

show quantum advantage for important PH subroutines, such 

as Betti number estimation and boundary matrix 

reduction. [111] created the first end-to-end quantum PH 

pipeline, using Grover-optimized clique discovery on quantum 

RAM to achieve a quadratic speedup in the generation of 

Vietoris-Rips complex. [112] suggested a quantum version of 

the Mayer-Vietoris sequence that, for some simplicial 

complexes, computes relative homology in O (log n) time. For 

real-world uses, [113] used IBMQ processors to create a 

quantum-classical hybrid method that speeds up the creation 

of persistence diagrams for tiny biomolecules, while [114] 

proven complexity-theoretic underpinnings for approximation 

Betti number computations that demonstrate BQP-

completeness. Meanwhile, [115] [116] reduced the amount of 

memory needed for large filtrations by optimizing discrete 

Morse functions using the annealing technique. 

 

C. Topological Explainable AI (XIA) 

         A powerful tool for explainable AI (XAI) is the Mapper 

approach, which provides topological representations of model 

decision-making processes across complex, high-dimensional 

datasets. Recent developments show how Mapper may use 

simple complicated visualizations to show the inherent 

structure of neural network activations, feature significance 

distributions, and prediction bounds. [117] created 

TopoMapX, which tracks the propagation of input samples 

through deep learning architectures and identifies crucial 

bifurcation points where classification judgments differ by 

building Mapper graphs from latent space trajectories. For 

graph neural networks, [118] developed TopoGNN-Explainer, 

which uses Mapper to show how topological signatures are 

produced by message-passing pathways in molecular property 

prediction. Meanwhile, [119] revealed the correlation between 

linguistic aspects and topological patterns in attention heads 

by using Mapper to attention processes in transformers. 

 

D. Benchmarking Standardization TDA-ML evaluation 

datasets 

          Establishing defined standards for topological data 

analysis (TDA) in machine learning (ML) has become 

essential to provide comprehensive evaluation, reproducibility, 

and fair comparison of novel techniques. Current efforts 

involve creating curated datasets with ground-truth topological 

characteristics and performance criteria designed to evaluate 

topological integrity and computational efficiency. [120] 

presented TopoBench, an extensive collection of 3D shape, 

graph, and time-series datasets with permanent homology 

characteristics that allow TDA-enhanced ML models to be 

directly compared. [121] created TopoML-Eval, which 

incorporates parametrized topological complexity synthetic 

data generators to assess noise robustness and scalability. For 

biomedical applications, [122] developed MedTopo-21, a set 

of labeled medical pictures (microscopy, CT, and MRI) with 

topological biomarkers verified by experts. [123] suggested 

assessment procedures, such as metrics to measure the 

preservation of homology structures across embeddings, for 

TDA-based graph representation learning. Meanwhile, [124] 

introduced an open TDA Challenge Platform with 

leaderboards for challenges such as creating persistence 

diagrams and detecting topological anomalies. 

A powerful paradigm for enhancing machine learning (ML) is 

Topological Data Analysis (TDA), which incorporates shape-

awareness, multiscale analysis, and resilience to noise and 

deformations. By quantifying structural components including 

loops (β₁), voids (β₂), and connected components (β₀), TDA 

provides an additional viewpoint to traditional geometric or 

statistical techniques, exposing hidden patterns in complex 

datasets. Its ability to capture invariant topological fingerprints 

has spurred breakthroughs in fields ranging from fraud 

detection (anomaly identification in transaction networks) to 

diagnostic imaging (tumor diagnosis using persistence 

diagrams). Furthermore, TDA's integration with deep learning 

through neural layers, explainability tools, and topological loss 

terms demonstrates its versatility in modern AI pipelines. 

In order to reach TDA's maximum potential, we support: 

a. Wider Adoption: ML professionals should include 

TDA into routine processes by using libraries such as 

giotto-tda and GUDHI for model diagnostics and 

feature extraction. 

b. Interdisciplinary Collaboration: From quantum-TDA 

to topological AutoML, new applications will be 

sparked by fortifying collaborations among 

topologists, data scientists, and subject matter 

specialists. 

c. Benchmarking and Standardization: TDA-enhanced 

ML research will be rigorous and reproducible if 

standardized assessment frameworks (like 

TopoBench) are developed. 
 

VI. CONCLUSION 

Topological Data Analysis (TDA) offers a robust and 

complementary framework for machine learning by 

embedding shape-awareness, multiscale structure, and noise 

resilience into data analysis. TDA shows intricate patterns that 

are sometimes obscured by traditional statistical or geometric 

techniques by capturing invariant topological properties like 

connected components, loops, and voids. This allows for 

significant applications in a variety of fields, such as fraud 

detection and medical diagnostics. Its usefulness in modern AI 

systems is further highlighted by its smooth integration with 

deep learning architectures. In order to ensure scalability, 

rigor, and reproducibility in future TDA-enhanced machine 

learning research, more widespread usage of TDA in ML 

workflows, improved interdisciplinary collaboration, and the 

creation of standardized benchmarking frameworks are 

crucial.  
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