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Abstract— In this work, we propose the Taylor series method 

(TSM) coupled with a shooting technique to obtain solutions of 

boundary value problems (BVP). In order to assess the benefits of 

this proposal, four different kinds of nonlinear BVP problems of 

different kind are proximately solved and compared versus their 

numerical solutions: two Neumann boundary condition 

problems, a fifth order mixed boundary conditions equation with 

an exponential term and the governing equation of the steady 

diffusion-reaction regime in a porous slab with parallel plane 

boundaries. The obtained results show that TSM generates highly 

accurate handy approximations, requiring only a few steps. 

 

Keywords— Taylor series method, Shooting technique, 

Boundary valued problems. 

I. INTRODUCTION  

     Nonlinear differential equations are applied to model a 

wide scope of phenomena in almost all branches of sciences. 

Unfortunately, it is not common to find the exact solution of 

such equations. Therefore, approximative methods 

[1,2,3,4,5,6,7,8,9] are a good alternative when it is required to 

know more about the nature of the phenomenon and the 

influence of its parameters. 

    Among the approximative methods highlights the series 

method [10,11,12,13] or its equivalent Taylor series method 

(TSM) [14,15,16] due to its simplicity and power. Such 

methods are mathematical tools applied to obtain power series 

approximations of linear and nonlinear equations. Although 

both methods can generate equivalent results, TSM can be 

easier to implement due to its capability to obtain the 

coefficients of the power series by a straight forward procedure 

that involves derivatives of the differential equation. Besides, 

both methods are designed to solve problems governed by 

Dirichlet conditions. Nonetheless,  

 

the boundary valued problems (BVP) are very common and 

important in all the branches of sciences, from 

thermodynamics to biology and many more. Therefore, we 

propose the apply the combination of the TSM method with a 

shooting technique [16,17,18] to solve BVP problems as 

reported in [16,19,20]. The shooting technique aids to 

circumvent the issue of TSM method with boundary conditions 

by converting the BVP problem into a Dirichlet type problem. 

In this work, we will denote this procedure as 

shooting Taylor series method (STSM). The main idea behind 

the proposed technique is: 

 

1. First, the boundary conditions are substituted for 

the equivalent Dirichlet conditions. During this 

procedure the Dirichlet conditions not provided by 

the boundary conditions are replaced by shooting 

constants to be determined later by the STSM 

method. 

2. Next, we apply the TSM method to obtain the 

coefficients of the series solution using derivatives. 

The derivatives are obtained from the nonlinear 

differential equation. 

3. Then, the approximate solution is obtained by 

substituting the calculated coefficients from last step 

into the Taylor series expression. 

4. Finally, the values of the shooting constants are 

obtained by evaluating the approximate solutions at 

the boundary conditions and solving the resulting 

system of equations. 

 

    In order to show the potential of the proposed procedure, 

four nonlinear BVP problems are solved and compared versus 

numerical methods: two Neumann boundary condition 

problems [21,22], a fifth order equation [23] and the governing 
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equation of the steady diffusion-reaction regime in a porous 

slab with parallel plane boundaries [24]. 

    This paper is organized as follows. In Section II, we 

introduce the basic concept of STSM method. In Section III, 

we find the approximated solutions of four BVP problems of 

different kind. Numerical simulations and a discussion about 

the results are provided in Section IV. Finally, a concluding 

remark is given in Section V.  

II. INTRODUCTION OF STSM METHOD  

We consider a nonlinear differential equation of the 
following form 

          𝑢(𝑛) = 𝑁(𝑢) − 𝑓(𝑥)       𝑥 ∈  Ω, 

                             (1) 

with the boundary conditions  

𝐵(𝑢, 𝜕𝑢/𝜕𝑛) = 0, 𝑥 ∈ Γ, 

                  (2) 

where 𝑛  is the order of the differential equation, 𝑁 is a 
general  operator, 𝑓(𝑥) a known analytical function, 𝐵 is a 
boundary operator, Γ is the boundary of domain Ω, and  
𝜕𝑢/𝜕𝑛 denotes differentiation along the normal drawn 
outwards from  Ω. 

 In order to apply STSM, we express the solution of (1)  as 
a Taylor series 

 

𝑢 = 𝑢(𝑥0) + 
𝑢′(𝑥0)

1!
(𝑥 − 𝑥0)1 +  

𝑢′′(𝑥0)

2!
(𝑥 − 𝑥0)2 + 

 

 
𝑢′′′(𝑥0)

3!
(𝑥 − 𝑥0)3 + ⋯, 

                           (3) 

where (𝑥0) is the expansion point and derivatives 𝑢(𝑖)(𝑥0), (𝑖 =
0,1,2, ⋯ )  are expressed in terms of the parameters and 
boundary conditions of (1) . 

    As we require to solve BVP problems, the boundary 
conditions not located at the expansion point (𝑥0) will be 
replaced by shooting constants giving as result traditional 
Dirichlet conditions. Next, in order to obtain  the coefficients of 

(3) 𝑢(𝑖)(𝑥0), (𝑖 = 0,1,2, ⋯ ), STSM requires (I) calculate the  
successive derivatives of (1) and (II) evaluate each derivative 
using the Dirichlet Conditions. 

     Finally, in order to fulfil the boundary conditions originally 
replaced by the shotting constants, it is  necessary to evaluate 
(3) at such boundary conditions; then, the resulting  system of 
equations is solved to obtain the values of the shooting 
constants.   

III. CASE STUDIES 

In the present section, we will solve four case studies to 
show the accuracy and usefulness of the approximated 
solutions obtained by STSM. 

 

3.1 Bratu's problem with Newmann boundary conditions 

    Bratu's differential equation [21,22] arises in problems to 

fuel ignition in thermal combustions theory and also in the 

Chandrasekhar model of the expansion of the universe. Now, 

let’s consider the following  Bratu's  equations with Newman 

boundary conditions 

 
𝑢′′ − 2exp(𝑢) = 0, 𝑢′(0) = 0,     𝑢′(1) = 2 tan(1), 

       (4) 

where the exact solution is 𝑢(𝑥) = −2log(cos(𝑥)). 

    Considering the expansion point 𝑥0 = 0, it yields to the 
following Taylor series. 

𝑢(𝑥) = 𝑢(0) + 
𝑢′(0)

1!
(0)1 + 

𝑢′′(0)

2!
(0)2 + ⋯ 

       (5) 

where derivatives 𝑢(𝑚) , (𝑚 = 0,1,2, ⋯ ) are unknowns to be 
determined by Taylor series method. 

    Next, we derive successively (4), resulting 

𝑢′′ = 2exp(𝑢),   

𝑢′′′ = 2𝑢′exp(𝑢),   

𝑢(4) = 2exp(𝑢)(𝑢′2 + 𝑢′′),   

𝑢(5) = 2exp(𝑢)(𝑢′3 + 3𝑢′′𝑢′ + 𝑢′′′), ⋮ 

      (6) 

Now, the boundary conditions of (4) are transformed into 
[𝑢(0) = 𝑐, 𝑢′(0) = 0 ], and replaced it into (6) to obtain  

 

𝑢′′(0) = 2exp(𝑐),      𝑢′′′(0) = 0, 

𝑢(4)(0) = 4exp(2𝑐), 𝑢(5)(0) = 0,   

𝑢(6)(0) = 32exp(3𝑐), 𝑢(7)(0) = 0,    

𝑢(8)(0) = 544exp(4𝑐), 𝑢(9)(0) = 0,    

𝑢(10)(0) = 15872exp(5𝑐), 𝑢(10)(0) = 0,    

      (7) 

    Finally, substituting (7) into (5), yields the series 

𝑢(𝑥) = exp(𝑐)𝑥2 +
1

6
exp(2𝑐)𝑥4 + 

2

45
exp(3𝑐)𝑥6 +

17

1260
exp(4𝑐)𝑥8 + 

62

14175
exp(5𝑐)𝑥10, 0 ≤ 𝑥 ≤ 𝑥1. 

      (8) 

    Finally, if we substitute the second boundary condition  
𝑢′(1) = 2tan(1) into (8) and solve for the shooting constants, 
it results that 𝑐 = 0.006190945532. 

3.2 Nonlinear Burguers’ equation 

    Now, we consider the following Newmann boundary 

conditions Burguers’ equations [21] 

𝑢′′ = −𝑢𝑢′ − 𝑢 + (
1

2
) sin(2𝑥), 

𝑢′(0) = 1, 𝑢′ (
𝜋

2
) = 0, 
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      (9) 

where the prime denotes differentiation with respect 𝑥, and the 
exact solution is 𝑢(𝑥) = sin(𝑥). 
          We derive successively (9), resulting  
 

𝑢′′ = −𝑢𝑢′ − 𝑢 + (
1

2
) sin(2𝑥), 

 

𝑢′′′ = −𝑢′2  − 𝑢𝑢′′ − 𝑢′ + cos(2𝑥), 
 

𝑢(4) = −𝑢𝑢′′′ + (−3𝑢′ − 1)𝑢′′ − 2 sin(2𝑥), 
⋮ 

       (10) 
 
Now, the boundary conditions of (9) are replacing by 𝑢(0) =
𝑐, 𝑢′(0) = 1  

 

𝑢′′(0) = −2𝑐,      𝑢′′′(0) = 2𝑐2 − 1, 

𝑢(4)(0) = 2𝑐3 + 9𝑐, 𝑢(5)(0) = 2𝑐4 − 31𝑐2 + 1,   

𝑢(6)(0) = −2𝑐5 + 83𝑐3 − 75c ,    

       (11) 
 
    Finally, using (11) and (3) (considering 𝑥0 = 0). We obtain 
the following power series 
 

𝑢(𝑥) = (−
1

360
𝑐5 +

83

720
𝑐3 −

5

48
𝑐) 𝑥6 + 

(
1

60
𝑐4 −

31

120
𝑐2 +

1

120
) 𝑥5 + 

(−
1

12
𝑐3 +

3

8
𝑐) 𝑥4 + 

(
1

3
𝑐2 −

1

6
) 𝑥3 + 

−𝑐𝑥2 + 𝑥, 

0 ≤ 𝑥 ≤
𝜋

2
. 

 
       (12) 
 
    Finally, if we substitute the second boundary condition 

𝑢′ (
𝜋

2
) = 0 into (12) and solve for the shooting constant, it 

results that 𝑐 = 0.00598416801101. 
 
 

3.3 Fifth order BVP equation 

 

    Let us the following problem [23] 

𝑢(5) = 𝑢2exp(−𝑥),   

𝑢(0) = 𝑢′(0) = 𝑢′′(0) = 1,  

𝑢(1) = 𝑢′(1) = exp(1),  

      (13) 

where the prime denotes differentiation with respect to 𝑥, and 

the exact solution is 𝑢(𝑥) = exp(𝑥). 
As aforementioned procedure for the first two case studies, 

we replace the boundary conditions (13) by their Dirichlet 

equivalent 𝑢(0) =  𝑢′(0) = 𝑢′′(0) = 1, 𝑢′′′(0) =  𝑐1,   

 𝑢(4)(0) = 𝑐2 to obtain the coefficients of the following ninth-

order Taylor series 
 𝑢(𝑥) = 1 + 𝑥 +

1

2
𝑥2 +

1

6
𝑐1𝑥3 +

1

24
𝑐2𝑥4 +

1

120
𝑥5 +

 1

720
𝑥6 +

1

5040
𝑥7 +

1

4030
(−1 + 2𝑐1)𝑥8 +

 
+

1

362880
(−1 + 2𝑐2)𝑥9, 0 ≤ 𝑥 ≤ 1.

 

      

(14)

 

 

 

 
 

 

 
  

 
 

 

 

 

 

 

 
        
 

    Finally, if we choose as a particular case 𝑛 = 3
 
and 𝜑 = 0.7

 

and substituting 𝑢(1) = 1
 
into (16), it results that the shooting 

constants that fulfil the boundary condition is 𝑐 =
0.7987274733.

 
 

IV. NUMERICAL SIMULATION AND DISCUSSION  

    From figures 1-3, we observe the high accuracy for the 

STSM approximations for the first three case studies. The 

exact solution was used por comparison purposes. The last 

case study does not possess a known solution for 𝑛 = 3; the, 

we employed as reference the built-in numerical routine for 

BVPs from Maple 17. The command was configured to use a 

tolerance of absolute error of 10−12. There upon, the high 

accuracy of STSM approximation is depicted on figure 4.  

    The power of coupling a shooting method [17,18,16,19,20] 

with the TSM method was exhibited by the solution of two 

highly nonlinear problems with Neumann boundary 

conditions, a fifth order nonlinear BVP problem with 

exponential term and a second order nonlinear BVP with cubic 

non-linearity. What is more, due to the straightforward 

procedure for the application of STSM method and the high 
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Finally, if we substitute the boundary conditions  𝑢(1) =
 𝑢′(1) = exp (1)  into (14) and solve the system of linear 
equations, it results that the shooting constants are 𝑐1 =
0.999889130, 𝑐2 = 1.000051624.

3.4 Steady diffusion-reaction regime in a porous slab with 
parallel plane boundaries 

    The governing equation of the steady diffusion-reaction 
regime in a porous slab with parallel plane boundaries [24] cam 

be expressed as 

𝜑′′ = 𝜑𝑛, 𝑢′(0) = 0, 𝑢(1) = 1,
0 ≤ 𝑥 ≤ 1,                                                                              (15)

Where 𝑢 is the dimensionless concentration of the reactant, the 
primes denote differentiation with respect to the dimensionless 
transverse coordinate 𝑥, 𝜑 stands for the Thiele modulus, and 𝑛
is the reaction order with range 𝑛 ≥ −1.
    As aforementioned, we replace the boundary conditions of 
(15) by Dirichlet equivalent 𝑢(0) = 𝑐, 𝑢′(0) = 0 to obtain the 
coeficients of the following eight-order Taylor series

𝑢(𝑥) =
1

40320𝑐
(34𝜑4𝑛3𝑐4𝑛−2 + 30𝜑4𝑛𝑐4𝑛−2 −

63𝜑4𝑛2𝑐4𝑛−2)𝑥8 +
1

40320𝑐
(224𝑐−1+3𝑛𝜑3𝑛2

−168𝑐−1+3𝑛𝜑3𝑛)𝑥6 +
1

24𝑐
(𝜑2𝑐2𝑛𝑛)𝑥4 +

+
1

2𝑐
(𝜑𝑐𝑛+1𝑛)𝑥2 + 𝑐,

0 ≤ 𝑥 ≤ 1. (16)

www.ijert.org
www.ijert.org
www.ijert.org


accurate handy approximations obtained, it can be an attractive 

math tool for engineers interested in the field of modelling. 
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Figure 2. (a) Exact solution for (9) (solid circles) and its approximate STSM 

solution (12) (solid circles). (b) Absolute error of approximation with respect 

to exact solution.

Figure 3. (a) Exact solution for (13) (solid circles) and its approximate STSM 

solution (14) (solid circles). (b) Absolute error of approximation with respect 
to exact solution.

a)

b)

Figure 1. (a) Exact solution for (4) (solid line) and its approximate STSM 

solution (8) (solid circles). (b) Absolute error of approximation with respect to 

exact solution.

b)
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a) 

 

 

 
b) 

 

  

 

 

 V1. CONCLUSION  

 

This work introduced the shooting Taylor method STSM as a 

powerful tool to solve boundary problems (BVPs) in nonlinear 

differential equations. We were able to obtain accurate and 

handy approximations for different types of highly non-linear 

BVP problems due to the shooting constants strategy. 

Therefore work can be addressed to employ STSM for the 

approximation of  Robin boundary conditions problems, 

among others. 
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Figure 4. (a) Numerical solution for (15) (solid line) and its approximate STSM 
solution (16) (solid circles). (b) Absolute error of approximation with respect 

to numerical solution.
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