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Abstract— In this work, we propose the Taylor series method
(TSM) coupled with a shooting technique to obtain solutions of
boundary value problems (BVP). In order to assess the benefits of
this proposal, four different kinds of nonlinear BVP problems of
different kind are proximately solved and compared versus their
numerical solutions: two Neumann boundary condition
problems, a fifth order mixed boundary conditions equation with
an exponential term and the governing equation of the steady
diffusion-reaction regime in a porous slab with parallel plane
boundaries. The obtained results show that TSM generates highly
accurate handy approximations, requiring only a few steps.
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. INTRODUCTION

Nonlinear differential equations are applied to model a
wide scope of phenomena in almost all branches of sciences.
Unfortunately, it is not common to find the exact solution of
such  equations.  Therefore, approximative methods
[1,2,3,4,5,6,7,8,9] are a good alternative when it is required to
know more about the nature of the phenomenon and the
influence of its parameters.

Among the approximative methods highlights the series
method [10,11,12,13] or its equivalent Taylor series method
(TSM) [14,15,16] due to its simplicity and power. Such
methods are mathematical tools applied to obtain power series
approximations of linear and nonlinear equations. Although
both methods can generate equivalent results, TSM can be
easier to implement due to its capability to obtain the
coefficients of the power series by a straight forward procedure
that involves derivatives of the differential equation. Besides,
both methods are designed to solve problems governed by
Dirichlet conditions. Nonetheless,

the boundary valued problems (BVP) are very common and
important in all the branches of sciences, from
thermodynamics to biology and many more. Therefore, we
propose the apply the combination of the TSM method with a
shooting technique [16,17,18] to solve BVP problems as
reported in [16,19,20]. The shooting technique aids to
circumvent the issue of TSM method with boundary conditions
by converting the BVP problem into a Dirichlet type problem.
In this work, we will denote this procedure as

shooting Taylor series method (STSM). The main idea behind
the proposed technique is:

1. First, the boundary conditions are substituted for
the equivalent Dirichlet conditions. During this
procedure the Dirichlet conditions not provided by
the boundary conditions are replaced by shooting
constants to be determined later by the STSM
method.

2. Next, we apply the TSM method to obtain the
coefficients of the series solution using derivatives.
The derivatives are obtained from the nonlinear
differential equation.

3. Then, the approximate solution is obtained by
substituting the calculated coefficients from last step
into the Taylor series expression.

4. Finally, the values of the shooting constants are
obtained by evaluating the approximate solutions at
the boundary conditions and solving the resulting
system of equations.

In order to show the potential of the proposed procedure,
four nonlinear BVP problems are solved and compared versus
numerical methods: two Neumann boundary condition
problems [21,22], a fifth order equation [23] and the governing
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equation of the steady diffusion-reaction regime in a porous
slab with parallel plane boundaries [24].

This paper is organized as follows. In Section II, we
introduce the basic concept of STSM method. In Section I,
we find the approximated solutions of four BVP problems of
different kind. Numerical simulations and a discussion about
the results are provided in Section IV. Finally, a concluding
remark is given in Section V.

Il.  INTRODUCTION OF STSM METHOD

We consider a nonlinear differential equation of the
following form

u™=Nw)-f(kx) x€Qq
@)
with the boundary conditions
B(u,du/on) = 0, x €T,
)

where n is the order of the differential equation, N is a
general operator, f(x) a known analytical function, B is a
boundary operator, T' is the boundary of domain , and
du/on denotes differentiation along the normal drawn
outwards from Q.

In order to apply STSM, we express the solution of (1) as
a Taylor series

u=u(xy) + u,(lj'CO) (x—x)' + u”;co) (x — %)% +
ull’g(!xo) (x _ x0)3 + .

®

where (x,) is the expansion point and derivatives u® (x,), (i =
0,1,2,---) are expressed in terms of the parameters and
boundary conditions of (1) .

As we require to solve BVP problems, the boundary
conditions not located at the expansion point (x,) will be
replaced by shooting constants giving as result traditional
Dirichlet conditions. Next, in order to obtain the coefficients of
(3) u¥(xy), (i = 0,1,2,-+-), STSM requires (1) calculate the
successive derivatives of (1) and (I1) evaluate each derivative
using the Dirichlet Conditions.

Finally, in order to fulfil the boundary conditions originally
replaced by the shotting constants, it is necessary to evaluate
(3) at such boundary conditions; then, the resulting system of
equations is solved to obtain the values of the shooting
constants.

I1l.  CASE STUDIES

In the present section, we will solve four case studies to
show the accuracy and usefulness of the approximated
solutions obtained by STSM.

3.1 Bratu's problem with Newmann boundary conditions

Bratu's differential equation [21,22] arises in problems to
fuel ignition in thermal combustions theory and also in the

Chandrasekhar model of the expansion of the universe. Now,

let’s consider the following Bratu's equations with Newman

boundary conditions

u'(1) = 2tan(1),
(4)

u'" — 2exp(u) =0, u'(0) =0,
where the exact solution is u(x) = —2log(cos(x)).

Considering the expansion point x, = 0, it yields to the
following Taylor series.

u(x) = u(0) + #(0)1 + #(0)2 + -

()

where derivatives u™ , (m = 0,1,2,---) are unknowns to be
determined by Taylor series method.

Next, we derive successively (4), resulting
u" = 2exp(u),
u"" = 2u'exp(u),
u® = 2exp(w)(u'? +u'"),
u® = 2exp(w)(u® + 3u"u’ +u'"),
(6)

Now, the boundary conditions of (4) are transformed into
[u(0) = c,u’(0) = 0], and replaced it into (6) to obtain

u'’(0) = 2exp(c), u'"'(0)=0,
u®(0) = 4exp(2c), u®(0) =0,
u®(0) = 32exp(30), u?(0) =0,
u®(0) = 544exp(4c), u®(0) =0,
u19(0) = 15872exp(5c¢), u19(0) = 0,

@)
Finally, substituting (7) into (5), yields the series

1
u(x) = exp(c)x? + gexp(Zc)x4 +

7
exp(4c)x® +

2
-~ 6
" exp(3¢c)x® + 1260

exp(5¢)x1?, 0<x<xl.

14175
(8)

Finally, if we substitute the second boundary condition
u'(1) = 2tan(1) into (8) and solve for the shooting constants,
it results that c = 0.006190945532.

3.2 Nonlinear Burguers’ equation
Now, we consider the following Newmann boundary
conditions Burguers’ equations [21]

1
u’' =—-uu' —u+ (E) sin(2x),

v()=o

W (0) = 1,
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©)

where the prime denotes differentiation with respect x, and the
exact solution is u(x) = sin(x).
We derive successively (9), resulting

1
u’ =—-uu' —u+ (E) sin(2x),

nr

u" =—-u'? —uu’ —u' + cos(2x),
u® = —yu'" + (=30 — Du” — 2sin(2x),
(10)

Now, the boundary conditions of (9) are replacing by u(0) =
cu'(0)=1

u”(0) = —-2¢, u"(0)=2c%*-1,
u®(0)=2c3+9c, u®(0) =2c* —31c2 +1,
u®(0) = —2¢° +83¢® — 75¢,

(11)

Finally, using (11) and (3) (considering x, = 0). We obtain
the following power series

()_( 15_|_833 5)6+
wx _1 360;1 7zoc1 48°)”*
Y ) - 5
(60C 120° +120)x +

1 3
- 3.2 4
( 112C +180)x +
2 2_2\.3
<3C 6)x *
—cx? + x,
()<x<E
sSx=o.

(12)

Finally, if we substitute the second boundary condition
T

u’ (E) =0 into (12) and solve for the shooting constant, it
results that c = 0.00598416801101.

3.3 Fifth order BVP equation

Let us the following problem [23]
u® = u2exp(—x),
u(0) =u'(0) =u"(0) =1,
u(1) = u'(1) = exp(1),
(13)
where the prime denotes differentiation with respect to x, and
the exact solution is u(x) = exp(x).

As aforementioned procedure for the first two case studies,
we replace the boundary conditions (13) by their Dirichlet

u®(0) = c, to obtain the coefficients of the following ninth-
order Taylor series

ux)=1l+x+-x*+—-c x3+ic x4+ix5+
2 6 247 120

! 6+ ! 7+ ! 14 2¢c)x® +

720* T5040% T2030" €1)x
- 9 <x<l.

+362880( 1+ 2¢,)x°, 0<x<1

(14)

Finally, if we substitute the boundary conditions u(1) =
u'(1) =exp (1) into (14) and solve the system of linear
equations, it results that the shooting constants are c¢; =
0.999889130, ¢, = 1.000051624.

3.4 Steady diffusion-reaction regime in a porous slab with
parallel plane boundaries

The governing equation of the steady diffusion-reaction
regime in a porous slab with parallel plane boundaries [24] cam
be expressed as

" =" u'(0)=0,u(l) =1,
0<x<1, (15)
Where u is the dimensionless concentration of the reactant, the
primes denote differentiation with respect to the dimensionless
transverse coordinate x, ¢ stands for the Thiele modulus, and n
is the reaction order with range n > —1.

As aforementioned, we replace the boundary conditions of
(15) by Dirichlet equivalent u(0) = ¢,u’(0) = 0 to obtain the
coeficients of the following eight-order Taylor series

(34¢*n3c* 2 + 30¢*nci"2 —

ul) = 753200

63p*n%c*?)x8 +

—-143n,,3.,2
20320; (P24 e

1
—168c13"p3n)x® + Tae (p2c?™n)x* +

1
+Z(<pc”+1n)x2 +c,

Finally, if we choose as a particular case n = 3 and ¢ = 0.7
and substituting u(1) = 1 into (16), it results that the shooting
constants that fulfil the boundary condition is ¢ =
0.7987274733.

IV. NUMERICAL SIMULATION AND DISCUSSION

From figures 1-3, we observe the high accuracy for the
STSM approximations for the first three case studies. The
exact solution was used por comparison purposes. The last
case study does not possess a known solution for n = 3; the,
we employed as reference the built-in numerical routine for
BVPs from Maple 17. The command was configured to use a
tolerance of absolute error of 10712, There upon, the high
accuracy of STSM approximation is depicted on figure 4.

The power of coupling a shooting method [17,18,16,19,20]
with the TSM method was exhibited by the solution of two
highly nonlinear problems with Neumann boundary
conditions, a fifth order nonlinear BVP problem with
exponential term and a second order nonlinear BVP with cubic

equivalent  u(0) = u'(0)=u"(0) =1, u'"'(0)= ¢, non-linearity. What is more, due to the straightforward
procedure for the application of STSM method and the high
IJERTV 10l S100104 www.ijert.org 419
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accurate handy approximations obtained, it can be an attractive

math tool for engineers interested in the field of modelling. -
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Figure 3. (a) Exact solution for (13) (solid circles) and its approximate STSM
solution (14) (solid circles). (b) Absolute error of approximation with respect

to exact solution.
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Figure 4. (a) Numerical solution for (15) (solid line) and its approximate STSM
solution (16) (solid circles). (b) Absolute error of approximation with respect
to numerical solution.

V1. CONCLUSION

This work introduced the shooting Taylor method STSM as a
powerful tool to solve boundary problems (BVPSs) in nonlinear
differential equations. We were able to obtain accurate and
handy approximations for different types of highly non-linear
BVP problems due to the shooting constants strategy.
Therefore work can be addressed to employ STSM for the
approximation of Robin boundary conditions problems,
among others.
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