
Task Scheduling in Cloud Computing using ATM

Approach

Raja Manish Singh

Abhishek Kumar

Priyanka Karn
ME Research Scholar

BIT Mesra, Ranchi, India

Dr. Sanchita Paul

Abstract— Cloud computing is a pool of large, inter-related

and virtualized resources that can be accessed over internet on

demand by the user. Users get charged according to their use of

cloud services. When we perform scheduling of tasks we must

have to know about how much time a particular task spend for

getting its desired resource from the pool of resources from the

point of their submission for execution. In this paper we

proposed an algorithm that not only calculates the total

execution cost, total execution time as well as the time for

respective tasks for finding their cost efficient resources.

Keywords— Scheduling; Task; ATM

I. INTRODUCTION

Cloud computing in present time is one of the well-known
facts for all the peoples as every people in world are somehow
related to cloud. The reason behind its popularity is that it
provides a simplest way for their users to use the services of
cloud. We can say that cloud computing provides service that
has no limitations. Users use the cloud services according to
their need and also pay accordingly to use.

Cloud computing provides scalable service over internet
by using the concept of virtualization, distribution etc.
Virtualization means that users do not aware from where it is
getting services. Hardware as well as software is virtualized
for providing cloud services. It gives users a variety of
storage, networking and computing resources in the cloud
computing environment via Internet, users put a lot of
information and accesses a lot of computing power with the
help of its own computer.

Clouds provide a very large number of resources,
including platforms for computation, data centers, storages,
Networks, firewalls and software in form of services. At the
same time it also provides the ways of managing these
resources such that users of cloud can access them without
facing any kind of performance related problems.

When we talk about of scheduling tasks to various
available resources from the pool of resources we talk about a
lot of constraint that we have to follow when we develop an
approach. Some users want the services cost must be as
minimum as possible, some wants reliable services and some
wants the services in quick time.

In this paper we proposed an algorithm that schedules the
tasks to their cost efficient resources and also at the same time
measures the time at which tasks find their cost efficient
resources. So, we can get a clear view for all the tasks that

how much time they take to find their desire resources from
their submission for execution. The remaining paper is
organizes as follows: the proposed algorithm is discussed in
section II. Section III contains the evaluation of the proposed
algorithm and section IV concludes the paper.

II. ACTUAL TIME OF MAPPING ALGORITHM (ATM)

Scheduling of tasks has to be considered under various
conditions as there are lots of factor that can affect the
scheduling ex: availability of resources, communication
between the tasks, and arrival of tasks. The proposed
algorithm considers the fact that a task can be completed by
various resources but the cost at different resources differs
with each other. We keep in mind the fact that whenever a
task is ready for execution the availability of resources will
change i.e. it gets a new sequence as compare to previous one.
Each task has some requirements and cost of execution over
resources is completely depending on the fact that how fast a
resource provides the service.

 Algorithm is developed under the scenario that each tasks
are independent to each other, a resource can completely
fulfill the requirement of each tasks and batch mode
processing. The task when arrives it goes to the task queue
and when the space of task queue completely exhausted then
the tasks are submitted for execution according to their arrival.
When a task is assigned is assign with a resource for
execution, the resource will available for that task until the
task complete its execution over it.

 The ATM algorithm measure the total execution time of
executing all the tasks on available resources, total execution
cost and most importantly the time at which a task gets its
desired resource for its execution i.e. actual task-resource
mapping time for each tasks.

2.1 Algorithm for finding the Actual time of mapping
tasks to resources:

 Step 1. Initialize a global time variable at the starting of
code by creating a java calendar instance. (Say calendar is the
current object)

 Step 2. Get current time in milli-seconds by using
calendar.getTimeInMillis(); method call.

 Step 3. Store this variable in a Long variable [say
‘now’].

Assistant Professor

BIT Mesra, Ranchi

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041059

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1201

 Step 4. Run the task scheduling algorithm as mentioned
in section 2.2.

 4.1 If cbest is reached, get current time in milli-
seconds by using calendar.getTimeInMillis() method call.

 4.2 Store this variable in a Long variable [say
‘mid’]

 4.3 Calculate difference of (mid-now) which
represents the actual timing of getting cBest (best cost for a
cloudlet among virtual machines.)

 4.4 Add these cost and node id of cloudlet and
virtual machines to cloudLet_cBest hashmap.

2.2 Overall algorithm for calculation of Total Execution
time and total Execution cost:

Algorithm (cloudlet_list, vm_list)

{

 Step 1 Initialization:

 vm_list: virtual machines list.

 vid: virtual machine id.

 vmac: represents single virtual machine among vm_list.

 cloudlet_list: cloudlet list.

 cid: current cloudlet Id

 cloudlet: represents single cloudlet machine among
cloudlet_list.

 costPath: represents cost path for current node CiVi.

 cloudLet_cBest: is Hashmap which contains mapping of
node CiVi and its cost cBest(initially this map is empty).

 cTotal: total cost of a cloudlet which zero at initial
condition. // initially it is 0(zero) //

 cbest: best cost for a cloudlet among virtual machines. //
initially it’s a very large value like 12354.//

 Step 2. Initialize a global time variable at the starting of
code by creating a java calendar instance (say calendar is the
current object)

Step 3. Get current time in milli-seconds by using
calendar.getTimeInMillis(); method call.

Step 4. Store this variable in a Long variable [say ‘now’].

Step 5. Generate a random number and on the basis of that
random number fetch one cloudlet from the cloudlet_list.

Step 6. Start For Each (cloudlet: cloudlet_list) Loop // this
loop iterates over whole cloudlet_List.

 6.1 get the cloudlet ID of current cloudlet [say it
‘cid’].

 6.2 start For Each (vmac: vm_list) Loop choose a
random virtual machine vmac among the vm_list. // this loop
iterates over whole vm_list randomly.//

 6.2.1 Create the cost path for current cloudlet Ci and
current virtual machine Vi [say it costPath].

 6.2.2 Fetch the current cost for CiVi from
task_mat.get(costPath) method call [say it currcost].

// task_mat.get(costPath) returns the current cost of node
CiVi.//

 6.2.3 Compare currcost with cbest by (currcost > cbest)?
cbest: currCost method .//this comparison provide minimum
cost //

 6.2.4 Add cBest to a list [say list1].

 6.2.5 Get the time in milli-seconds as from algorithm 2.1
[say t= ‘mid-now’ is time taken to achieve current best cost].

 6.2.6 Map CiVi and ‘t’ to HashMap cloudLet_cBest.//this
map holds current mapping of best cost and node CiVi.

End For Each. ///end of inner virtual machines loop

 6.3 create new time variable and update ‘now’ by
now=Calendar.getInstance().getTimeInMillis() method call.

End For Each. //end of outer cloudlet list loop//

Step 7.

 7.1 Calculate the Total Time of execution by
traversing the list by creating new time variable ‘end’.
//end=Calendar.getInstance().getTimeInMillis() method call.//

 7.2. Calculate difference of (end-now) which represents
the actual timing of total code execution time (time at which
all virtual machines and cloudlets gets exhausted.)

 7.3 cloudLet_cBest represents actual mapping of CiVi
with bestCost.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041059

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1202

III. FLOW CHAT OF ATM ALGORITHM

IV. PERFORMANCE EVALUATION

In this section, we are showing the metric, the
experimental setup and the result analysis.

4.1 Performance metric

 For measuring performance we used cost as well as time as

metrics. We compute the total execution cost, total execution

time and time of actual mapping of tasks to their cost efficient

resources by using the proposed algorithm.

4.2 Data and Implementation

 Table: the values shown in the table are an example of the

experiment run.

 The values in different field signifies that the cost of

complete execution of a task on that virtual machine. We take

different values by keeping in mind the fact that each vm

differs in their MIPS and time for completing their jobs.

TABLE I. TASK-VM COST ASSUMPTION TABLE

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
9

v
1
0

T
ask

 1

5

1
3

2

7

6

1
1

8

1
0

9

4

T
ask

 2

1
0

5

4

1
4

7

8

6

1
3

1
2

9

T
ask

 3

7

6

1
5

8

1
6

1
0

9

2
0

4

5

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041059

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1203

4.3 Experiments and results

 For our experiment we have developed a simulation

program in java that is coded in java for a cloud computing

environment which consists of a data center. Data center

consists of ten resources, differs in their processing speed so,

prices also differ. We evaluated our scheduling algorithm in

different scenario. We keep on changing the sequence the list

of tasks and also the sequence of resources over which a task

has to be executed. As different vms cost differs for each task

we get the total execution time of executing all tasks and also

execution time of each tasks from a number of tasks.

Figure 1: Actual time of mapping of Task to desired Vm

Sequence of cloudlet list in different Simulations [2,3,1],
[2,1,3], [3,1,2]

Simulation 01:- C1V3 913, C2V3 900, C3V9 911

Sequence of vms for different tasks according to their arrival:

For C2, sequence is [3,8,1,4,6,9,10,2,5,7]

For C3, sequence is [6,4,5,3,7,2,1,10,8,9]

For C1, sequence is [8,6,1,3,7,2,10,5,4,9]

 Simulation 02:- C1V3 731, C2V3 723, C3V9 732

 Sequence of vms for different tasks according to their arrival:

For C2, sequence is [4,5,8,10,2,3,9,6,7,1]

For C1, sequence is [8,6,10,4,2,1,7,9,5,3]

For C3, sequence is [4,6,3,5,1,7,2,9,8,10]

 Simulation 03:- C1V3 644, C2V3 650, C3V9 630

 Sequence of vms for different tasks according to their
arrival:

For C3, sequence is [6,4,3,1,2,8,9,7,5,10]

For C1, sequence is [2,5,6,8,7,9,1,10,4,3]

For C2, sequence is [2,6,7,10,9,4,3,1,5,8]

The figure signifies the fact that the times at which
different tasks find the desired cost efficient resources for their
execution. The time we are calculating in form of millisecond.
If we consider the simulation 01, C1V3 913 signifies the fact
that task number 1 finds its cost efficient resource after 913
milliseconds prior to start of the working of algorithm. We are
using the different sequence of resources for different-
different tasks by keeping the fact in mind that when a new
task starts its execution the availability of different resources
will change.

Figure 2: Simulation 01 Result

 Figure 2 depicts the fact for one simulation run that

shows the time in millisecond how for tasks they reach

different-different resources for their execution and after

we choose one time of mapping for one task for that

particular vm that is most cost-efficient to that tasks for its

execution. Table 2 shows the details of graph for our

understanding. The field in tables shows the fact that the

time in millisecond when the tasks actually reach the

resources for their execution from this table we can easily

say that when a task actually finds its cost-efficient

resource.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041059

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1204

TABLE II. ACTUAL MAPPING TIME

V. CONCLUSION AND FUTURE WORK

 In this paper, we have presented Actual Time of Mapping

algorithm for scheduling tasks to various resources in cloud

computing environment for finding the time at which a task

finds its cost-efficient resources. We also calculate the total

cost of execution for executing all tasks to resources. The

proposed algorithm is developed under strict boundary

conditions: tasks are independent to each other, execution of

tasks on resources is in non-preemptive manner and we also

consider that a resource can completely execute a task when

task has been submitted to them for execution. In future we

intend to improve our work by considering the fact of

dependency between the tasks and the task need more than

one resource for their complete execution.

REFERENCES

[1] Zhao, Chenhong, et al. "Independent tasks scheduling based on genetic

algorithm in cloud computing." Wireless Communications, Networking
and Mobile Computing, 2009. WiCom'09. 5th InternationaConference
on. IEEE, 2009.

[2] Guo-ning, Gan, Huang Ting-lei, and Gao Shuai. "Genetic simulated
annealing algorithm for task scheduling based on cloud computing
environment." 2010 International Conference on Intelligent Computing
and Integrated Systems. 2010.

[3] Xu, Yuming, et al. "A multiple priority queueing genetic algorithm for
task scheduling on heterogeneous computing systems." High
Performance Computing and Communication & 2012 IEEE 9th
International Conference on Embedded Software and Systems (HPCC-
ICESS), 2012 IEEE 14th International Conference on. IEEE, 2012.

[4] Pandey, Suraj, et al. "A particle swarm optimization-based heuristic for
scheduling workflow applications in cloud computing
environments." Advanced Information Networking and Applications
(AINA), 2010 24th IEEE International Conference on. IEEE, 2010.

[5] Guo, Lizheng, Guojin Shao, and Shuguang Zhao. "Multi-Objective
Task Assignment in Cloud Computing by Particle Swarm
Optimization." Wireless Communications, Networking and Mobile
Computing (WiCOM), 2012 8th International Conference on. IEEE,
2012.

[6] Verma, A., & Kaushal, S. (2014, March). Bi-Criteria Priority based
Particle Swarm Optimization workflow scheduling algorithm for cloud.
In Engineering and Computational Sciences (RAECS), 2014 Recent
Advances in (pp. 1-6). IEEE.

[7] Raja Manish Singh, Sanchita Paul, and Abhishek Kumar. "Task
Scheduling in Cloud Computing: Review." (IJCSIT) International
Journal of Computer Science and Information Technologies, Vol. 5 (6)
, 2014, 7940-7944

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
1

0

C
1

9
1
2

9
5
5

9
1
3

9
5
6

9
5
5

9
1
2

9
1
3

9
1
1

9
5
6

9
5
5

C
2

9
0
2

9
0
4

9
0
0

9
0
2

9
0
5

9
0
3

9
0
5

9
0
1

9
0
3

9
0
3

C
3

9
0
9

9
0
9

9
0
8

9
0
6

9
0
7

9
0
6

9
0
8

9
1
0

9
1
1

9
1
0

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS041059

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 04, April-2015

1205

