
  

  
 

Task Graph Scheduling on Multiprocessor System using Genetic Algorithm 
 

    Amit Bansal                    Ravreet Kaur 

    M.Tech student               Asst. Professor 

    DCSE, G.N.D.U.            DCSE, G.N.D.U. 

    Amritsar, India               Amritsar, India 

Abstract  
 

Task Graph Scheduling is an important issue in the 

distribution of programs on the processors of a parallel 

system. Because task graph scheduling is an NP-

Complete problem, methods of random search are 

utilized for finding the nearly optimal schedule. 

Recently, Genetic algorithms have received much 

awareness as they are robust and guarantee for a good 

solution. In this paper a new genetic algorithm is 

proposed based on Object Migration Automaton and is 

evaluated in comparison with FCFS and MET 

scheduling. The proposed algorithm begins with an 

initial population of randomly generated chromosomes 

and after some stages, each chromosome maps to an 

automaton. 

 

Keywords: Genetic algorithms, FCFS (first come- first 

serve), MET (minimum execution time) 

 

1. Introduction  
 

Multiprocessing scheduling has been a source of 

challenging problems for researchers in the area of 

computer engineering[2]. The general problem of 

multiprocessor scheduling can be stated as scheduling a 

set of partially ordered computational tasks onto a 

multiprocessor system so that a set of performance 

criteria will be optimized. The task scheduling problem 

with precedence relations and data communications 

among tasks is known as an NP-complete problem for 

general cases. This paper presents a GA which is robust 

for the various models. The GA presented in this paper 

is implemented and optimal schedule is found using the 

then proposed GA.  

The paper has been organized as following. The next 

section describes problem under consideration. Section 

3 and 4 define genetic algorithms and Object Migration 

Automaton respectively. Section 5 is devoted to the 

proposed genetic algorithm. Experimental results and 

conclusions are included in section 6 and 7. References 

are in section 8.  

 

2. Definition of the problem 
 

Let a (homogeneous) multiprocessor system be a set of 

m identical processors, m > 1. Additionally, let a 

parallel program be a set of communicating tasks to be 

executed under a number of precedence constraints. To 

each task is associated a cost, representing its execution 

time. A weighted acyclic task digraph[5] can be used to 

represent the tasks (vertices of the task digraph) and the 

precedence constraints (arcs of the task digraph). In 

order to be executed, each task of a given parallel 

program must be scheduled to some processor of a 

given multiprocessor system. Consequently, tasks that 

communicate in the parallel program may be scheduled 

to different processors, so as to minimize the execution 

time of the program.  

Considering these communications and the precedence 

constraints between tasks, it follows that different 

schedule of each task satisfying the precedence 

constraints lead to different execution times of the 

parallel program. The purpose is finding permutation of 

tasks, so that the considered permutation cost is the 

least. 

In the proposed algorithm each chromosome is equal to 

an automaton and each gene equal to an action of an 

Object Migration Automaton[4]. The assumed parallel 

computational model in the paper is described below: 

 
 

Figure 1: Directed Acyclic Graph 
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Figure 2: A fully connected Multiprocessor system 

 

Table 1: Computation time for each task 

 

Task Time 

T0 4 

T1 15 

T2 4 

T3 13 

T4 10 

T5 7 

T6 8 

T7 4 

T8 12 

T9 6 

T10 9 

 

3. Genetic Algorithm 
 

A genetic Algorithm is an iterative procedure 

maintaining a population of structures that are 

candidate solutions to specific domain challenges[1]. 

They combine survival of the fittest among string 

structures with a structured yet randomized information 

exchange to form a search algorithm with some of the 

innovative flair of human search[7]. In every 

generation the fittest of that generation selected and 

after reproduction produce a new set of children. In this 

process the fittest individuals will survive more 

probably to the next generations.  

The most advantages of this algorithm compared with 

common methods are: parallel search instead of serial 

search, not requiring any additional information such as 

problem solving method, in-deterministic of algorithm, 

easy implementation and reaching to several choices.  

 

4. Object Migration Automata  
 

In [4,9], B.J.Oommen gave us a detailed description 

about OMA. The object migrating automaton (OMA) is 

defined as a quintuple in which there are only R 

actions, each action representing a certain class. 

Furthermore, for each action, there are a fixed number 

of states N[8]. In this paper, the OMA is used to secure 

the position the position of genes obtained after 

applying top and bottom level precedence relations. 

Figure 3 shows an example of the Object Migration 

Automaton (OMA) with three arms, nine objects and 

four states in each arm. 

 

 
 

Figure 3: Example of an Object Migration Automaton 

 

5. The Proposed Algorithm 
 

The algorithm is described in four parts as follows and 

then pseudo-code for proposed genetic algorithm is 

presented:  

 

I. Initial Population IP ()  
 
The first step in the genetic algorithm is the creation of 

the initial population. Number of processors, number of 

tasks and population size are needed to generate initial 

population. Each individual of the initial population is 

generated through a min-min heuristic[6] along with 

bottom-level or top-level precedence resolution to 

avoid the problem of same execution time or 

completion time and same precedence.  

The task to be scheduled for each iteration is 

determined by the following rules:  

1. Calculate the bottom-level precedence relation of 

each task.  

2. Sort the tasks with the precedence relation according 

to their bottom-level in descending order.  

3. Assign the tasks to the processors in the order of 

their bottom-level.  

OR 

1. Calculate the top-level precedence relation of each 

task.  

2. Sort the tasks with the precedence relation according 

to their top-level in descending order.  

3. Assign the tasks to the processors in the order of 

their top-level. 

The bottom-level and top-level precedence relations for 

DAG in Figure 1 are shown as follows: 
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Table 2: Bottom Level and Top Level Precedence 

Relations 

 

Task Number Bottom Level Top Level 

0 49 0 

1 59 0 

2 29 19 

3 50 9 

4 30 29 

5 14 18 

6 27 22 

7 11 32 

8 32 27 

9 6 53 

10 9 50 

 

 
 

Figure 4: Chromosome created by Bottom-Level 

Precedence Relations 

 

II. Fitness Function for ith chromosome.  

    
  

 

 

 

 

 

 

 
Figure 5: Fitness function 

 

III. Crossover Operator  
 

  Procedure Crossover ( , )  

To do this operator one of methods which is 

appropriate to work with permutations can be used: 

Partially Mapped Crossover, Ordered Crossover, Cycle 

Crossover, and New Crossover. In this paper only the 

proposed method namely New Crossover[3] is 

explained. 

The two parent chromosome are chosen first and genes 

i, j are selected randomly in one of these chromosomes. 

Then these two genes are selected in another parent 

chromosome. The set of genes with number between i 

and j is called the crossover set. Then the genes with 

the same number are replaced with one another in two 

crossover set. (for example gene number i from the first 

crossover set with gene number i from the second 

crossover set, gene number i+1 from the first crossover 

set with gene number i+1 from the second crossover 

set, …). The result of this process is two chromosomes 

which are called the two parent automata's children. 

 

 
 

Figure 6: New Crossover Operator 

 

IV: Mutation 
 

   

 

 

 

 

 

 

 

 

Figure 7: Mutation Operator 

 

The proposed Genetic Algorithm pseudo-code is as 

follows:  

 

 

   

Procedure FitnessFunc ()  

  Begin  
         for i = 1 to n do // OMA = Object Migration 

             Automata  

   f ( ) = 1 / (Length of Permutation of 

                             )  

   End Procedure 

 

Procedure Mutation (OMA)  

  Begin  
    i = Random *n; // n = total no. of chromosomes 

    j = Random *n;  

Swap    OMA.Object(OMA.Action(i)),  

             OMA.Object(OMA.Action(j));  

  End Procedure 
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Figure 8: Proposed Genetic Algorithm pseudo-code 

 

6. Experimental Results 
 

The final best schedule of directed acyclic graph of 

Figure 1 obtained after applying proposed Genetic 

Algorithm is represented in Figure 11. The completion 

time obtained by proposed Genetic Algorithm is 49 

time units. The result was compared with FCFS (First 

Come First Serve) scheduling method on 

multiprocessor system shown in Figure 9 and also MET 

scheduling method on same multiprocessor system. 

 

 
 

Figure 9: A Gantt chart of FCFS scheduler 

 

 
 

Figure 10: A Gantt chart of MET Scheduler 

 

 

 

 
 

Figure 11: A Gantt chart of Proposed Genetic 

Algorithm 

 

6.1. Performance Analysis 
 

Speedup: It is defined as the completion time on a 

uniprocessor divided by completion time on a 

multiprocessor system. 

 

Proposed Advance GA: 

The speedup achieved for the illustrative example is: 

Speedup = 92/49 = 1.877 

Efficiency = (Speedup*100)/m where m = number of 

processors. 

Efficiency = 1.877*100/2 = 93.87% 

 

FCFS Scheduler: 

Speedup = 92/79 = 1.164 

Efficiency = 1.164*100/2 = 58.22% 

 

MET Scheduler: 

Speedup = 92/62 = 1.483 

Efficiency = 1.483*100/2 = 74.19% 

 

 
 

Figure 12: Performance Analysis of schedulers for 

given DAG 

 

The proposed Genetic Algorithm is implemented on 

four different graphs with different number of nodes. 

The numbers of nodes taken in different graphs were 7, 

11, 15 and 19. Then the results are compared with 

FCFS scheduling, MET scheduling and Uniprocessor 

scheduling. 

 

Function GA (DAG):  

  Begin  
    Create the initial population IP ();   

      // Select chromosomes based on their fitness 

         from the current population.  

    FitnessFunc ();  

     // Apply crossover and mutation to generate 

        offspring to form a new population 

        ( ).  

     = Crossover ( , )  

    // Replace the current population with a new 

       population.  

    = Mutation ( )  

    Select the best final solution.  

  End 
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Figure 13: Experimental results for different graphs 

 

 
 

Figure 14: Performace Analysis of different graphs 

 

The performance of proposed algorithm is calculated 

with different number of processors. Figure 13 shows 

the makespan of proposed GA of two different graphs 

having nodes 7 and 10 when executed on n=2 and n=3 

processors. 

 

 
 

Figure 15: Makespan of Proposed GA on different 

processors on two graphs 

 

 

 

7. Conclusions and further work 

 

In this paper, a new genetic algorithm is proposed for 

task scheduling in parallel multi-processor system 

including the communication delays to reduce the 

completion time and to increase the throughput of the 

system. By analyzing the performance results, it has 

been verified that the proposed algorithm works well 

and reduces the overall completion time in comparison 

to other algorithms. In proposed technique, the initial 

population was generated on the basis of bottom-level 

and top-level heuristics with the help of which it was 

easy to amalgamate the overall procedure with Object 

Migration Automata and thus crossover operator was 

applied easily. The performance study is based on the 

best randomly generated schedule of the suggested GA. 

In future, OMA can be used with full functionality 

including its reward and penalize operations. 
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