

Task Graph Scheduling on Multiprocessor System using Genetic Algorithm

 Amit Bansal Ravreet Kaur

 M.Tech student Asst. Professor

 DCSE, G.N.D.U. DCSE, G.N.D.U.

 Amritsar, India Amritsar, India

Abstract

Task Graph Scheduling is an important issue in the

distribution of programs on the processors of a parallel

system. Because task graph scheduling is an NP-

Complete problem, methods of random search are

utilized for finding the nearly optimal schedule.

Recently, Genetic algorithms have received much

awareness as they are robust and guarantee for a good

solution. In this paper a new genetic algorithm is

proposed based on Object Migration Automaton and is

evaluated in comparison with FCFS and MET

scheduling. The proposed algorithm begins with an

initial population of randomly generated chromosomes

and after some stages, each chromosome maps to an

automaton.

Keywords: Genetic algorithms, FCFS (first come- first

serve), MET (minimum execution time)

1. Introduction

Multiprocessing scheduling has been a source of

challenging problems for researchers in the area of

computer engineering[2]. The general problem of

multiprocessor scheduling can be stated as scheduling a

set of partially ordered computational tasks onto a

multiprocessor system so that a set of performance

criteria will be optimized. The task scheduling problem

with precedence relations and data communications

among tasks is known as an NP-complete problem for

general cases. This paper presents a GA which is robust

for the various models. The GA presented in this paper

is implemented and optimal schedule is found using the

then proposed GA.

The paper has been organized as following. The next

section describes problem under consideration. Section

3 and 4 define genetic algorithms and Object Migration

Automaton respectively. Section 5 is devoted to the

proposed genetic algorithm. Experimental results and

conclusions are included in section 6 and 7. References

are in section 8.

2. Definition of the problem

Let a (homogeneous) multiprocessor system be a set of

m identical processors, m > 1. Additionally, let a

parallel program be a set of communicating tasks to be

executed under a number of precedence constraints. To

each task is associated a cost, representing its execution

time. A weighted acyclic task digraph[5] can be used to

represent the tasks (vertices of the task digraph) and the

precedence constraints (arcs of the task digraph). In

order to be executed, each task of a given parallel

program must be scheduled to some processor of a

given multiprocessor system. Consequently, tasks that

communicate in the parallel program may be scheduled

to different processors, so as to minimize the execution

time of the program.

Considering these communications and the precedence

constraints between tasks, it follows that different

schedule of each task satisfying the precedence

constraints lead to different execution times of the

parallel program. The purpose is finding permutation of

tasks, so that the considered permutation cost is the

least.

In the proposed algorithm each chromosome is equal to

an automaton and each gene equal to an action of an

Object Migration Automaton[4]. The assumed parallel

computational model in the paper is described below:

Figure 1: Directed Acyclic Graph

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

1www.ijert.org

Figure 2: A fully connected Multiprocessor system

Table 1: Computation time for each task

Task Time

T0 4

T1 15

T2 4

T3 13

T4 10

T5 7

T6 8

T7 4

T8 12

T9 6

T10 9

3. Genetic Algorithm

A genetic Algorithm is an iterative procedure

maintaining a population of structures that are

candidate solutions to specific domain challenges[1].

They combine survival of the fittest among string

structures with a structured yet randomized information

exchange to form a search algorithm with some of the

innovative flair of human search[7]. In every

generation the fittest of that generation selected and

after reproduction produce a new set of children. In this

process the fittest individuals will survive more

probably to the next generations.

The most advantages of this algorithm compared with

common methods are: parallel search instead of serial

search, not requiring any additional information such as

problem solving method, in-deterministic of algorithm,

easy implementation and reaching to several choices.

4. Object Migration Automata

In [4,9], B.J.Oommen gave us a detailed description

about OMA. The object migrating automaton (OMA) is

defined as a quintuple in which there are only R

actions, each action representing a certain class.

Furthermore, for each action, there are a fixed number

of states N[8]. In this paper, the OMA is used to secure

the position the position of genes obtained after

applying top and bottom level precedence relations.

Figure 3 shows an example of the Object Migration

Automaton (OMA) with three arms, nine objects and

four states in each arm.

Figure 3: Example of an Object Migration Automaton

5. The Proposed Algorithm

The algorithm is described in four parts as follows and

then pseudo-code for proposed genetic algorithm is

presented:

I. Initial Population IP ()

The first step in the genetic algorithm is the creation of

the initial population. Number of processors, number of

tasks and population size are needed to generate initial

population. Each individual of the initial population is

generated through a min-min heuristic[6] along with

bottom-level or top-level precedence resolution to

avoid the problem of same execution time or

completion time and same precedence.

The task to be scheduled for each iteration is

determined by the following rules:

1. Calculate the bottom-level precedence relation of

each task.

2. Sort the tasks with the precedence relation according

to their bottom-level in descending order.

3. Assign the tasks to the processors in the order of

their bottom-level.

OR

1. Calculate the top-level precedence relation of each

task.

2. Sort the tasks with the precedence relation according

to their top-level in descending order.

3. Assign the tasks to the processors in the order of

their top-level.

The bottom-level and top-level precedence relations for

DAG in Figure 1 are shown as follows:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

2www.ijert.org

Table 2: Bottom Level and Top Level Precedence

Relations

Task Number Bottom Level Top Level

0 49 0

1 59 0

2 29 19

3 50 9

4 30 29

5 14 18

6 27 22

7 11 32

8 32 27

9 6 53

10 9 50

Figure 4: Chromosome created by Bottom-Level

Precedence Relations

II. Fitness Function for ith chromosome.

Figure 5: Fitness function

III. Crossover Operator

 Procedure Crossover (,)

To do this operator one of methods which is

appropriate to work with permutations can be used:

Partially Mapped Crossover, Ordered Crossover, Cycle

Crossover, and New Crossover. In this paper only the

proposed method namely New Crossover[3] is

explained.

The two parent chromosome are chosen first and genes

i, j are selected randomly in one of these chromosomes.

Then these two genes are selected in another parent

chromosome. The set of genes with number between i

and j is called the crossover set. Then the genes with

the same number are replaced with one another in two

crossover set. (for example gene number i from the first

crossover set with gene number i from the second

crossover set, gene number i+1 from the first crossover

set with gene number i+1 from the second crossover

set, …). The result of this process is two chromosomes

which are called the two parent automata's children.

Figure 6: New Crossover Operator

IV: Mutation

Figure 7: Mutation Operator

The proposed Genetic Algorithm pseudo-code is as

follows:

Procedure FitnessFunc ()

 Begin
 for i = 1 to n do // OMA = Object Migration

 Automata

 f () = 1 / (Length of Permutation of

)

 End Procedure

Procedure Mutation (OMA)

 Begin
 i = Random *n; // n = total no. of chromosomes

 j = Random *n;

Swap OMA.Object(OMA.Action(i)),

 OMA.Object(OMA.Action(j));

 End Procedure

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

3www.ijert.org

Figure 8: Proposed Genetic Algorithm pseudo-code

6. Experimental Results

The final best schedule of directed acyclic graph of

Figure 1 obtained after applying proposed Genetic

Algorithm is represented in Figure 11. The completion

time obtained by proposed Genetic Algorithm is 49

time units. The result was compared with FCFS (First

Come First Serve) scheduling method on

multiprocessor system shown in Figure 9 and also MET

scheduling method on same multiprocessor system.

Figure 9: A Gantt chart of FCFS scheduler

Figure 10: A Gantt chart of MET Scheduler

Figure 11: A Gantt chart of Proposed Genetic

Algorithm

6.1. Performance Analysis

Speedup: It is defined as the completion time on a

uniprocessor divided by completion time on a

multiprocessor system.

Proposed Advance GA:

The speedup achieved for the illustrative example is:

Speedup = 92/49 = 1.877

Efficiency = (Speedup*100)/m where m = number of

processors.

Efficiency = 1.877*100/2 = 93.87%

FCFS Scheduler:

Speedup = 92/79 = 1.164

Efficiency = 1.164*100/2 = 58.22%

MET Scheduler:

Speedup = 92/62 = 1.483

Efficiency = 1.483*100/2 = 74.19%

Figure 12: Performance Analysis of schedulers for

given DAG

The proposed Genetic Algorithm is implemented on

four different graphs with different number of nodes.

The numbers of nodes taken in different graphs were 7,

11, 15 and 19. Then the results are compared with

FCFS scheduling, MET scheduling and Uniprocessor

scheduling.

Function GA (DAG):

 Begin
 Create the initial population IP ();

 // Select chromosomes based on their fitness

 from the current population.

 FitnessFunc ();

 // Apply crossover and mutation to generate

 offspring to form a new population

 ().

 = Crossover (,)

 // Replace the current population with a new

 population.

 = Mutation ()

 Select the best final solution.

 End

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

4www.ijert.org

Figure 13: Experimental results for different graphs

Figure 14: Performace Analysis of different graphs

The performance of proposed algorithm is calculated

with different number of processors. Figure 13 shows

the makespan of proposed GA of two different graphs

having nodes 7 and 10 when executed on n=2 and n=3

processors.

Figure 15: Makespan of Proposed GA on different

processors on two graphs

7. Conclusions and further work

In this paper, a new genetic algorithm is proposed for

task scheduling in parallel multi-processor system

including the communication delays to reduce the

completion time and to increase the throughput of the

system. By analyzing the performance results, it has

been verified that the proposed algorithm works well

and reduces the overall completion time in comparison

to other algorithms. In proposed technique, the initial

population was generated on the basis of bottom-level

and top-level heuristics with the help of which it was

easy to amalgamate the overall procedure with Object

Migration Automata and thus crossover operator was

applied easily. The performance study is based on the

best randomly generated schedule of the suggested GA.

In future, OMA can be used with full functionality

including its reward and penalize operations.

8. References

1. J. Grefenstette, "Optimization of Control Parameters for

Genetic Algorithms", IEEE Transactions on System, Man and

Cybernetics, pp. 122-128, 1986.
2. Edwin S. H. Hou and N. Ansari, “A Genetic Algorithm for

Multiprocessor Scheduling”, IEEE Trans. Parallel and

Distributed Systems, vol. 5, no. 2, pp. 113 – 120, 1994.

3. Bager Zarei and M.R. Meybodi, “A Hybrid method for

Solving Traveling Salesman Problem”, ICIS 2007, pp. 394-

399, 2007.

4. B. J. Oommen and D. C. Y. Ma, "Deterministic Learning

Automata Solution to the Keyboard Optimization Problem",

IEEE Trans. On Computers, Vol. 37, No. 1, pp. 2-3, 1988.

5. Ricardo C. Correa and Afonso Ferreira , “Scheduling

Multiprocessor Tasks with Genetic Algorithms” IEEE Trans.

Parallel and Distributed Systems, vol. 10, no. 8, pp. 825 –

837, 1999.

6. Kamaljit Kaur, Amit Chhabra and Gurvinder Singh,

“Heuristics Based Genetic Algorithm for Scheduling Static

Tasks in Homogeneous Parallel System” International

Journal of Computer Science and Security 2010.

7. D. E. Goldberg, Genetic Algorithms in Search,

Optimization and Machine Learning. Addison-Wesley

Longman Publishing Co., Inc., 1989.

8. K. S. Narendra and M. A. L. Thathachar, “Learning

Automata: An Introduction”, Prentice-hall, Englewood cliffs,

1989.

9. B. J. Oommen, R. S. Valiveti, and, J. R. Zgierski, “An

Adaptive Learning Solution to the Keyboard Optimization

Problem”, IEEE Trans. On Systems. Man. And Cybernetics,

Vol. 21, No. 6, pp. 1608-1618, 1991.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 5, July - 2012

ISSN: 2278-0181

5www.ijert.org

