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Abstract— Marine radar data has been applied to the
detection algorithm and signal preprocessing. Analyzing the
statistical output where the signal to clutter ratio has been
reduced by using the Maximum likelihood estimation (MLE)
algorithm. Some other estimation methods have been applied
to the marine radar row data.
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I. INTRODUCTION

An X-band radar Marine radar is a reliable and durable
kind of radar. It is the over-shelf radar at a low cost. Marine
radar is a high-power radar with variable pulse width.
These types of radars contain magnetron to generate a
sequence of high-power pulses. These pulses are random
phases, which constrain the radar to generate a high-
resolution image. The whole coherent process is describing
in detail in [1].

Phases unwrap method (coarse to fine or C2F) proposed
in [2] — [6] which transform the shorter baseline data to
longest baseline data. The advantage of C2F methods is to
sustain the signal information keeping the longest baseline
unwrapped phase, and the other baseline information will
be ignored.

The Maximum-likelihood [7] — [10] method computes
the phase of the marine radar data, which is a single look
complex (SLC) based on the model. By computing the
phase, the noise and reliability level will be improved from
the radar data. Weighted least squares [11] — [16] and least
squares and other methods are helpful to compute the
unwrapped phase.

The main purpose of this article is to improve the radar
data by reducing the noise level using the Maximum-
likelihood method. Real radar data has been processed
using MATLAB in a high-performance computer.

II. MEASUREMENT SETUP

The rotating antenna has been replaced by a fixed
antenna at the top of the radar. The antenna pointed to the
target, which is one steel rod. The target in the turntable
rotating 360 degrees. Each rotates the radar sends a
transmitter signal and receives it back. The received signal
will be down-converting using an RF component. The RF
components are connected to a high-performance computer
to process the data and record it. The data needs a high-
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capacity storage system. The radar system parameter is
showing in table 1.

TABLE 1. MARINE RADAR SYSTEM PARAMETER

Marine Radar Parameters

Parameters Values
Opereating Frequency 9.14 GHz
PRF 3000 Hz
Bandwidth 50 KHz
Dutiy Cycle 12%
CPI 9.12s
Transmitter Power 25 kW

III. SIGNAL PREPROCESSING
After receiving the signal by the monostatic marine
radar, the signal down-converted from 9.14 GHz to 100 Hz
by RF component (Mixer). Then the 3D data matrix is
created by MATLAB for further processes. Transmit signal
acquired from signal leakage to perform the cross-
correlation process between the transmit and receive signal.

Figure 1 depicts the result of the cross-correlation
between the transmit and received signal without any
filtering process. Then to reduce the clutter from the
antenna we averaged the 3D radar data cube.

A low pass filter is applied to each signal to reduce the
high-frequency component from the signal. The
characteristic of the low pass filter is the cut-off frequency
at 100 Hz. So, it will pass what is below 100 Hz and block
what is above 100 Hz.

Before storing the data, the data has been tested using
Signatech analog-to-digital converter (ADC) and then the
output of the ADC which is a digital signal is the input of a
high-performance Keysight digital oscilloscope. the
connection between the ADC and the oscilloscope was a
long highly sensitive coaxial cable. So, between each
coaxial cable, we add an amplifier to reduce or eliminate
the signal losses or distortion.

IV. DETECTION USING (MLE) ALGORITHM
The Marine radar data has been tested in two situations:
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First: the data acquired for noise and clutter only and the
absence of the target.
Second: the data acquired the target, noise, and clutter.

The MLE algorithm is to estimate the content of the
noise covariance and mean clutter for both situations as seen
in figures 14, 15, and 16. We used the first situation, in
which the target is not present, as reference data see figure
4.

V. STATISTICAL ANALYSIS OF THE LOG-MLE
DECISION VARIABLE PROPERTIES
The analysis of the real marine radar data
demonstrates that the probability density function (pdf) is
aligned with the variable of the decision history see figure
2.

While a number of the trial goes to infinite, the
histogram looks like Gaussian and the curve is going to be
smoother, and maximum likelihood estimate converge to
the linear line. The estimate converges in probability-
variance is inversely proportional to N. The Max-
Likelihood Estimate is consistent as depicted in figures 9,
10, and 11.

It can be seen from figure 13, variance is inversely
proportional to N, where N is the sample number, and the
Variance of the estimate is decreasing when N is increased.
The mean of radar data can be seen in figures 7, 8, and 12.

Figures 3and 5 shows the estimated value for A and
B is very close to the real value of A and B. They are
unbiased. There is a gap Maximum likelihood estimate and
Cramer Rao Bound (CRB). The variance of an unbiased
estimate is greater than the maximum likelihood estimate.

The CRB of the estimate of the variance
corresponding to the probability density function for a
sample of N independent identically distributed normal
random variables.

The log-likelihood function associated with the
MLE for the variance MLE is corresponding to the
probability density function for a sample of N independent
identically distributed normal random variables. MLE
parameter estimation for the slope can be applied using
vector parameter estimation and the Fisher information
matrix.

CRB for the variance associated with the maximum-
likelihood estimated by using a noise variance of 100.
Figure 6 shows the performance for various values of N
from 2 to 200 and the results for each as a function of N.
MLE of the parameters turn out to be the same as the least
square solution (assuming the errors are Gaussian). Under
Gaussian distribution assumption for the noise and the
clutter could be driven theoretically when N is a small
number.

Then after applying the theoretical part for the
Gaussian assumption with different thresholds and different
false alarm rates to the experimental data, the target
detection can be seen in our data as portrayed in Figure 17.

VI. CONCLUSION

The maximum-likelihood algorithm is used to
improve the detection of the target. There are two situations
of acquiring the radar data in this experiment. The purpose
of these situations is to compute the mean clutter and the
noise covariance. The probability of detection was
computed to check the radar receiver operating
characteristics (ROC).

The analysis of the pdf for the radar data describes
that there is a huge difference in the histograms. The
histograms spikes in the plot assumed to be the signal of
the target is present in the examination history.

The result shows the difference between the
maximum likelihood estimate and Cramer Rao Bound.
There is improving in the results as we can see it in the
figures of the real marine radar data.
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Fig. 17. Cross-correlation after applying the Maximum Likelihood algorithm.
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