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Abstract:- Lately, there has been a tremendous improvement
in in- novation and the rise of new ones. This is joined by an
ex- pansion in inquiries on sites, for example, Stack-
Overflow. These inquiries should be ordered in view of labels.
The issue of label proposition arises when the client gives no
labels, or the client showed labels are inconsequential to the
request. Our venture plans to determine this issue via auto-
labeling questions utilizing directed Al procedures.
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1. INTRODUCTION

Tagging gives a helpful means to benefit out distinguishing
proof tokens to explore papers, articles, or questions,
which work with the recommendation, search, and attitude
cycle of inquiries. It gives a way to deal with sharing and
partner applicable watch- words or tags. The issue of label
recommendation emerges when the client gives no tags, or
client indicated tags are insignificant to the archive. These
sorts of client focused approaches are not ex- ceptionally
functional for label recommendation. In tagging sys- tems,
manual tagging becomes blunder inclined and tedious when
there are an excessive number of papers or questions. This
venture will move toward the auto-tagging of StackOverflow
questions uti- lizing supervised machine learning techniques
and will return pre- cise tags connected with the inquiry.
One of the critical pieces of the review is separating and
pre-processing the dataset to extricate the most pertinent
tags and catchphrases. The methodology de- pends on
removing catchphrases utilizing the TF-IDF vectorizer
weighted score [1] and afterward applying supervised
machine learning calculations to prepare the machine
learning model.

We explored different datasets such arxiv library dataset
and the 10% StackOverflow QA dataset [2]. We chose the
StackOver- flow database as it matches our exploration of
other research pa- pers, and we can more efficiently apply
supervised machine learn- ing algorithms to this dataset.
The dataset contains four relevant columns: the title,
question, answer, and tags. We consolidate this data and
remove irrelevant columns and tags. Then we fur- ther
classify tags based on the most frequently seen tags. We
then vectorize the data and title and consolidate it in a
single column. Further, we apply necessary pre-processing
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for various algorithms, namely, Multinomial Naive Bayes
Algorithm, Logistic Regression Algorithm [3], Support
Vector Machine (SVM) Algorithm [4], and Stochastic
Gradient Descent (SGD) Classifier. Further, we com- pare
the algorithms® results and represent outcomes by
comparing them on parameters such as Hamming score and
Precision.
2. LITERATURE REVIEW

Paper 1:

In the paper titled Supervised ML-based approach for auto-
tagging of scientific literature [5],The paper explores
supervised Machine Learning approaches to provide tags
for documents related to scientific domain. They approach
the solution using natural Language Processing(NLP) by
extracting keywords and applying appropriate text
classification Techniques.in this paper they have taken
arxiv dataset, which is a dataset of library of Cornell
university which have data of more than millions of docu-
ments.This dataset is based on the ACM Computing
Classification System. In this paper main feature extraction
techinques that is used includes word embeddings and text
vectorization. The paper concludes by giving best result
using tf-idf wvectorization and using Support Vector
Classifier as the algorithm for training.

Paper 2:

In the paper named Natural Language Processing for
Information Extraction [6] This examination paper is about
Natural Lan- guage Processing (NLP) for information
extraction. With the as- cent of the digital age, there is a
blast of information in news, arti- cles, web-based
entertainment, etc. Quite a bit of this information lies in
nebulous structure, and physically overseeing and really uti-
lizing it is drawn-out, dull, and work concentrated. This
blast of information and the requirement for more refined and
proficient in- formation dealing with apparatuses brings
about Information Ex- traction (IE) and Information
Retrieval (IR) innovation. Informa- tion Extraction systems
accept natural language text as informa- tion and produce
organized information indicated by unambigu- ous rules
pertinent to a specific application. Different sub-errands of
IE, for example, Named Entity Recognition, Coreference
Res- olution, Named Entity Linking, Relation Extraction,
and Knowl- edge Base thinking structure the structure
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blocks of different very good quality Natural Language
Processing (NLP) assignments, for example, Machine
Translation,  Question-Answering  System,  Natural
Language Understanding, Text Summarization and Dig-
ital Assistants like Siri, Cortana and Google Now. This
paper presents Information Extraction innovation, and its
different sub- undertakings feature best in class research in
various |IE subtasks, momentum difficulties, and future
examination headings.

Paper 3:

In the paper named Automatically Labeling Low
Quality Con-tent on Wikipedia By Leveraging Patterns in
Editing Behaviors [7] creators start by spreading out A
methodology in light of meta- physics for auto-tagging is
proposed in.Ontology is an informa- tion model in which
terms are addressed as an ordered progres- sion. It
incorporates characterization and tag-choice. Term-
weight matrix and cosine-similarity is utilized for the
characterization cy- cle. Label choice interaction relies
upon metaphysics weight. A contribution of a huge train
dataset comprising of title, unique is utilized and TF-IDF
is utilized for building term weight matrix. In this work,
labels are positioned in terms of recurrence as well as in
terms of similarity moreover. A cross breed approach is
uti- lized for removing the header information which can
be utilized for investigating the elements in the
examination region among research networks. Data
integration and validation utilizing extri- cated header
information assets like GROBID, Parsit are utilized as it
is contended that any a single instrument can’t give
effectiveoutcomes on all example research articles.

3. METHODOLOGY

. We choose the 10% StackOverflow questions
dataset and use the Python Pandas library to import the
dataset from the CSV file. Then we create two files,
i.e., the questions.csv file and the Tags.csv file, in
which we get the title body and tags related to the
question.

xrd Tag
o S0 Tlex
1 80 actionscript-3
2 80 air
3 Q0 Swm
<1 [0 tortoiseswn

3ITS5S50989 40143360 javascript

3ITS5S0990 40143360 wue . js
ITS5S0991 40143380 [al=lag!
3ITFS0992 401433830 mocha
3ITFS0993 40143380 babel

BITFTH509949 rowvws > 2 ocolurmns

« The first step of pre-processing involves consol-
idating the questions and tags into single data
from the input dataset and mapping the labels ac-
cording to the question id given in the dataset.
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+ The next step involved the grouping of tags and
removal of repeated tags.

« Then we filtered the data in the questions data
frame, and we dropped the columns such as
>ownerUserld’, ’CreationDate’, ’ClosedDate’.

[11] 1 question df.drop(columns=[ 'OunerUserld', 'Creationdate’, 'Closedate’], inplace=True)
2 question df = question df merge(grouped tags final, on="Td")
3 question df

« Then we further disregarded the rows having
scores less than 5. The score is the sum of up-votes
and negative downvotes for a question.
' ° 1 #now we filter as per the scores

2 print(f"Minimum Score: {question_df['Score'].min()}")

3 print(f"Maximum Score: {question_df['Score'].max()}")

4 #deleting queries with score less than 5

5 new_question df = question_df[question df['Score'] > 5]

> Minimum Score: -73
Maximum Score: 5190

. After filtering based on id and score, we dropped
these columns because they are not needed for model
training.

] 1

luns=[ 1", "Score'], inplace=True)

Title Body Tags /

0 SQLStatement executef) - maiple queriesino..  <pIve writien a databese generafion serpt fiex acionsorpl-3 ar

1 Good branching and merging tuoriis for Tor. <A tere any really good futorials explain i lorioiseswn branch branching-and-merging

. Then we processed the tags and filtered unique tags;
we ran frequency distribution using NLTK and found that
more than 14000+ tags occurred more than 220000+ times.
So, using this data, we extracted the top 100 tags in the
dataset, which came out to be primarily related to the
tech stack.
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[15] 1 ned_question df[ 'Tags'] = ne question df[ ‘Tags'].aoply(Lanbda x: x.split())
2 unique tags = List{set([Item for sublist In new question f[ ‘Tags'].values for item In sublist]))
3 l2n(unique tags)

14883

[16] 1flat list = [Item for sublist in new question of[ 'Tags'].values for item in sublist]
2 keywords = nltk.FreqDist{flat 1ist)
3 keywords = nltk.FreqDist (kepords)
£ sum(keyards.values())

i

° 1 flat _list = [iten for sublist in new question df'Tags'|.values for item in sublist]
1 keyiords = nltk, FregDist (flat List)
3 frequencies words = Keyaords.nost_comen(106])
4 tags features = [word[8] for word in frequencies words]

6 pri{Len{tags features))
9 tags features

18

['e,
e,
“avascript,
“android’,
‘python’,
‘!,
‘o',
ey,
N
s,
‘il
s,
)
“iphane’,
“thjective-c’,
ruby-on-rails’,
sl
"wnet’,
wl
e’

. The next task was to filter the content, body,
and title column data. We need to remove

HTML tags and unnecessary elements from the
text,and we used the bs4 library for this purpose.

13 Comerting ftl in the body
2 new question 0] 'Body"] = new auestion o 'Sody ], apply(Lambda x: BeautifulSoup(x).get tet()
3new guestion f
Tite W o )
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. Then we do the essential part of the project, which is
pro- cessing the ’body’ column. Here, we first clean the
data, i.e., remove the redundant spaces between the words,
and then we clean the punctuation in which we removed
the special characters, if any, present in the data.

. Then we perform lemmatization on the data.
Lemmatization refers to reduce the word to simplest form ,
such that its vo-cabulary and morphological analysis

. Then we applied StopWords removal using Natural
Language Toolkit, where the stopwords in NLTK refers
to word in documents which occur frequently. Also
stopwords are the word which do not define the con-
text to the document so it is essential to remove them.

© 1 def clean_text(text):

2 text = text.lower()
text = text.strip(' ')
4 return text

5

6 token = ToktokTokenizer()

7 punct = 'I"#$%&\' ()*+,./15<=>2@[\\]~_"{|}~"
& lemma = WordNetLemmatizer()

9 stop_words = set(stopwords.words("english"))

10

11 def strip_list_noempty(mylist):

12 newlist = (item.strip() if hasattr(item, 'strip') else item for item in mylist)
13 return [item for item in newlist if item != '']

14

15 def clean_punct(text):

16 words = token.tokenize(text)

17 punctuation_filtered = []

18 regex = re.compile('[¥s]® % re.escape(punct))

19 remove_punctuation = str.maketrans(' ', ' ', punct)
20 for w in words:

21 if w in tags_features:

22 punctuation_filtered.append(u)

23 else:

24 punctuation_filtered.append(regex.sub('', w))
25 filtered_list = strip_list_noempty(punctuation_filtered)
26 return ' '.join(map(str, filtered list))

27

28 def lemmatizewWords(text):

29 words = token.tokenize(text)

30 listlemma = []

31 for w in words:

32 x = lemma.lemmatize(w, pos="v")

33 1listLemma.append(x)

34 return * '.join(map(str, listLemma))

35

36 def stophordsRemove(text):

37 stop_words = set(stopwords.words("english"))

38 words = token.tokenize(text)

39 filtered = [w for w in words if not w in stop_words]
40 return ' '.join(map(str, filtered))

2 new_question
3 new question df
4 new_question df]
5 new question df|'Body’)

2] 1

Title fody s
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. Then we used Mulilabe! binarizer to convert the
tags into binary data. The step is also called
Bucketization.

[25] 1 X1 = new_question df[ 'Body’]
2 X2 = new question df['Title']
3y = new_question_df['Tags']
4
5 multilabel binarizer = multilLabelBinarizer()
6 y_bin = multilabel binarizer.fit_transform(y)

7 y_bin

array([[0, &, @, ..., 8, 0, 8],
[6, 8, 8, ..., 0, 8, B],
[6, 8, 1, ..., 0, 8, B],

[91 eJ e) e e, e’ e],
[91 eJ e) e e, e’ e],
[@, 8, 0, ..., 0, 8, 2]])

. Then we used the TF-IDF vectorizer to
obtain scores of different words in the documents,
and then we applied the vectorization to the dataset.

1 ° 1 vectorizer X1 = TfidfVectorizer(analyzer = “word®,

2 min_df=8.8,
max_df = 1.8,
4 strip_accents = None,
5 encoding = 'utf-8',
6 preprocessor=None,
7 token_pattern=r"(2u)\5\5+",
8 max_features=1008)

18 vectorizer X2 = TFidfVectorizer(analyzer = 'word',

11 min_df=0.9,

12 max_df = 1.8,

13 strip_accents = None,

14 encoding = 'utf-8',

15 preprocessor=fone,

16 token_pattern=r"{u)\5\5+",
17 max_features=1008)

18

19 X1_tfidf = vectorizer X1.fit_transform(X1)

20 X2_tfidf = vectorizer X2.fit_transform(X2)

2

20 X_tFAOF = hstack([X1_tFidf,X2_tidf])

23 X_train, X_test, y_train, y_test = train_test_split(¥_tfidf, y_bin, test_size = 6.2, random_state = 8)
21

25 print(X_train)

(e, 3) 0.4161643844276208
(2, 86) 0.46193627545848687
(e, 112) 0.39314534058953204
(e, 515) 0.444552202 74309476
(a, 522) 0.4439478500451894

(e, 761) 0.25315956070731845
(2, 10a1) .45713585982738367
(@, 1052) .5926728680752641
(9, 1526) 0.5067923041014708
(o, 1777) 0.427696732268936

(1, 10) 0.14231854988768894
(1, 41) 0.95733791191604865
(1, 77) .95571315062805313

(1, 143) 0.0748621971517445
(1, 174) 0.,058856462638483636
(1, 181) 0.966365768 38907754

. After processing the dataset, we train the model on
80% of the dataset and then test it on the remaining
20%. Then, we compare the results given by different
models based on hamming loss and Precision.

4., RESULTS AND ANALYSIS
After training and testing the model on four different algo-
rithms separately, we compared them based on hamming
loss and Precision. The result is shown in the following
figures:

Hamming Loss

Model Used

Precision of Various Models

7
!f ra

Model Used

G
7

The best model is the SGDClassifier model because it has
the lowest hamming loss (0.0096) and highest Precision
(82.7%). Based on hamming loss alone, the LinearSVC and
SGDClassifier model gives the best result with the
lowest score of 0.0096.

Classifier: sSGDClassifier

Hamming Loss: ©.009573273436757954
Precision: B.8259963120377815
Recall: P.45016870624968525

Classifier: LogisticRegression
Hamming Loss: ©.809717429159411112
Precision: ©.8049235356334973
Recall: ©.4724278591932316

Classifier: MultinomialnB

Hamming Loss: ©.011764286845021371
Precision: B.7166434546737002
Recall: B.4353124842624767

Classifier: Linearsvc

Hamming Loss: ©.809545676841317881
Precision: B.7737568537670041
Recall: B.5249030568565242

The SGDClassifier model gives the best result with
thehighest Precision of 82.6% based on Precision alone.

5. CONCLUSION

« our solution provides an efficient as well as effecion
way of tagging stackoverflow question using relevant
tags.

« The imported dataset is processed to perform tagging,
and noisy data is removed.

« Our project also generates reports showing the
influence of different models and their behavior.
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(1]

[2]
(3]

[4]

[5]

[6]

[7]
(8]

The max Precision of the ML model came to be around
80% which suggest we can use it in genuine life
software to au- tomate tagging of question to help
readers reach the most relevant search results.

The algorithm can also be improved with time with an
in- creasing database of websites like stack overflow,
and algo- rithms can also be enhanced with newer deep
learning tech-niques.

This project can be used to recommend and analyze
ques- tions based on a specific tag.

REFERENCES
“sklearn.feature extraction.text. TfidfVectorizer.” [Online].
Available: - https://scikit-learn/stable/modules/generated/

sklearn.feature extraction.text. Tfidf\VVectorizer.html 1
“StackSample: 10% of Stack Overflow Q&A.” [On- line].
Available: https://www.kaggle.com/stackoverflow/ stacksample 1
“Logistic Regression in Machine Learning -  Javat- point.”
[Online].  Available:  https://www.javatpoint.com/  logistic-
regression-in-machine-learning 1

“Support Vector Machine (SVM) Algorithm - Javat- point.”
[Online].  Available:  https://www.javatpoint.com/  machine-
learning-support-vector-machine-algorithm 1

M. Zdravkovi¢, “Supervised ml-based approach for auto-
tagging of scientific literature,” in 2021 20th International
Symposium INFOTEH-JAHORINA (INFOTEH), 2021, pp. 1-5. 1
S. Singh, “Natural language processing for information ex-
traction,” arXiv preprint arXiv:1807.02383, 2018. 2

S. Asthana, S. Tobar Thommel, A. L. Halfaker, and

N. Banovic, “Automatically labeling low quality content on
wikipedia by leveraging patterns in editing behaviors,” Proc. ACM
Hum.-Comput. Interact., vol. 5, no. CSCW2, oct 2021. [Online].
Auvailable: https://doi.org/10.1145/3479503 2

IJERTV111S050235

www.ijert.org 661

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org
www.ijert.org

