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Abstract 
 

Image Enhancement is found to be a very effective 

technique useful in today’s digital image processing 

applications. Generating novel photo-realistic imagery 

from smaller examples has been widely recognized as 

significant in computer graphics. A wide number of 

applications require realistic textures to be synthesized 

for object decoration in virtual scenes. Basically, 

Texture synthesis is used to create large non-repetitive 

background images and expand small pictures by 

removing noise and also to fill in holes in images. We 

present a simple image-based method of generating 

novel visual appearance in which a new image is 

synthesized by stitching together small patches of 

existing images. We call this process image quilting. 

First, we use quilting as a fast and very simple texture 

synthesis algorithm which produces surprisingly good 

results for a wide range of textures. Second, we extend 

the algorithm to perform texture transfer – rendering 

an object with a texture taken from a different object. 

More generally, we demonstrate how an image can be 

re-rendered in the style of a different image. The 

method works directly on the images and does not 

require 3D information. 

  

Keywords - Texture Synthesis, Texture Mapping, 

Image-based Rendering, Image enhancement 

 

1. Introduction  
Texture synthesis from example is the process of taking 

an input texture chip and using it as a basis for 

generating an arbitrary quantity of ’similar’ texture, 

without obvious repetition. One way this can be 

accomplished is by copying parts (pixels or patches) 

from the input and pasting them together as an output 

image. Though many methods have been developed 

using a combination of pixel and patch-based 

approaches, there remains much active research in this 

area. In the past decade computer graphics experienced 

a wave of activity in the area of image-based rendering 

as researchers explored the idea of capturing samples of 

the real world as images and using them to synthesize 

novel views rather than recreating the entire physical 

world from scratch. This, in turn, fueled interest in 

image based texture synthesis algorithms. Such an 

algorithm should be able to take a sample of texture 

and generate an unlimited amount of image data which, 

while not exactly like the original, will be perceived by 

humans to be the same texture. Furthermore, it would 

be useful to be able to transfer texture from one object 

to anther (e.g. the ability to cut and paste material 

properties on arbitrary objects). 

In this paper we present an extremely simple algorithm 

to address the texture synthesis problem. The main idea 

is to synthesize new texture by taking patches of 

existing texture and stitching them together in a 

consistent way. We then present a simple 

generalization of the method that can be used for 

texture. Texture analysis and synthesis has had a long 

history in psychology, statistics and computer vision. In 

1950 Gibson pointed out the importance of texture for 

visual perception, but it was the pioneering work of 

Bela Julesz on texture discrimination that paved the 

way for the development of the field. Julesz suggested   

transfer that two texture images will be perceived by 

human observers to be the same if some appropriate 

statistics of these images match. 

This suggests that the two main tasks in statistical 

texture synthesis are (1) picking the right set of 

statistics to match, (2) finding an algorithm that 

matches them. Motivated by psychophysical and 

computational models of human texture discrimination 

Heeger and Bergen proposed to analyze texture in 

terms of histograms of filter responses at multiple 

scales and orientations. Matching these histograms 

iteratively was sufficient to produce impressive 

synthesis results for stochastic textures. However, since 

the histograms measure marginal, not joint, statistics 

they do not capture important relationships across 

scales and orientations, thus the algorithm fails for 

more structured textures. By also matching these pair 

wise statistics, Portilla and Simoncelli were able to 

substantially improve synthesis results for structured 
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textures at the cost of a more complicated optimization 

procedure. 

In the above approaches, texture is synthesized by 

taking a random noise image and coercing it to have 

the same relevant statistics as in the input image. An 

opposite approach is to start with an input image and 

randomize it in such a way that only the statistics to be 

matched are preserved. De Bonet scrambles the input in 

a coarse-to-fine fashion, preserving the conditional 

distribution of filter outputs over multiple scales (jets). 

Xuel.al. inspired by the Clone Tool in PHOTOSHOP, 

propose a much simpler approach yielding similar or 

better results. The idea is to take random square blocks 

from the input texture and place them randomly onto 

the synthesized texture (with alpha blending to avoid 

edge artifacts). 

 
Figure 1: Image Quilting (left) and Improved Image 
Quilting (right). 
 

 
 
Figure 2: Quilting texture. Square blocks from the input 
texture are patched together to synthesize a new 
texture sample: (a) blocks are chosen randomly (b) the 
blocks overlap and each new block is chosen so as to 
“agree” with its neighbors in the region of overlap, (c) to 
reduce blockiness the boundary between blocks is 
computed as a minimum cost path through the error 
surface at the overlap. 
 

The statistics being preserved here are simply the 

arrangement of pixels within each block. While this 

technique will fail for highly structured patterns (e.g. a 

chess board) due to boundary inconsistencies, for many 

stochastic textures it works remarkably well. A related 

method was successfully used by Praun et.al.For 

semiautomatic texturing of non-developable objects. 

Enforcing statistics globally is a difficult task and none 

of the above algorithms provide a completely 

satisfactory solution. An easier problem is to enforce 

statistics locally, one pixel at a time. Efros and Leung 

developed a simple method of “growing” texture using 

non-parametric sampling. The conditional distribution 

of each pixel given all its neighbors synthesized so far 

is estimated by searching the sample image and finding 

all similar neighborhoods.(We have recently learned 

that a nearly identical algorithm was proposed in 1981 

by Garber but discarded due to its then computational 

intractability.) The algorithm produces good results for 

a wide range of textures, but is excruciatingly slow (a 

full search of the input image is required to synthesize 

every pixel!). 

 Several researchers have proposed optimizations to the 

basic method including Wei and Levoy (based on 

earlier work by Popat and Picard), Harrison [9], and 

Ashikhmin [1]. However, all these improvements still 

operate within the greedy single-pixel-at-a-time 

paradigm and as such are susceptible to falling into the 

wrong part of the search space and starting to “grow 

garbage” [6]. 

Methods have been developed in particular rendering 

domains which capture the spirit of our goals in texture 

transfer. Our goal is like that of work in non-

photorealistic rendering. A key distinction is that we 

seek to characterize the output rendering style by 

sampling from the real world. This allows for a 

richness of rendering styles, characterized by samples 

from photographs or drawings. 

A number of papers to be published this year, all 

developed independently, are closely related to our 

work. The idea of texture transfer based on variations 

of [6] has been proposed by several authors [9, 1, and 

11] (in particular, see the elegant paper by Hertzmann 

et.al. [11] In these proceedings). Liang et.al. [13] 

propose a real-time patch-based texture synthesis 

method very similar to ours. The reader is urged to 

review these works for a more complete picture of the 

field. 

 

1.1 Motivation 
One curious fact about one-pixel-at-a-time synthesis 

algorithms such as Efros and Leung [6] is that for most 

complex textures very few pixels actually have a choice 

of values that can be assigned to them. That is, during 

the synthesis process most pixels have their values 

totally determined by what has been synthesized so far. 

As a simple example, let us take a pattern of circles on 

a plane. Once the algorithm has started synthesizing a 

particular circle, all the remaining pixels of that circle 

(plus some surrounding ones) are completely 

determined! In this extreme case, the circle would be 

called the texture element (texel), but this same effect 

persists to a lesser extent even when the texture is more 
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stochastic and there are no obvious texels. This means 

that a lot of searching work is wasted on pixels that 

already “know their fate”. It seems then, that the unit of 

synthesis should be something more than a single pixel, 

a “patch” perhaps. Then the process of texture synthesis 

would be akin to putting together a jigsaw puzzle, 

quilting together the patches, making sure they all fit 

together. Determining precisely what are the patches 

for a given texture and how they are put together is still 

an open problem. Here we will present an very naïve 

version of stitching together patches of texture to form 

the output image. We call this method “image 

quilting”. 

 

2 Quilting 
In this section we will develop our patch-based texture 

synthesis procedure. Let us define the unit of synthesis 

Bi to be a square block of user-specified size from the 

set SB of all such overlapping blocks in the input 

texture image. To synthesize a new texture image, as a 

first step let us simply tile it with blocks taken 

randomly from SB. The result shown on Figure 2(a) 

already looks somewhat reasonable and for some 

textures will perform no worse than many previous 

complicated algorithms.  

Still, the result is not satisfying, for no matter how 

much smoothing is done across the edges, for most 

structured textures it will be quite obvious that the 

blocks do not match. As the next step, let us introduce 

some overlap in the placement of blocks onto the new 

image. Now, instead of picking a random block, we 

will search SB for such a block that by some measure  

 

 

 
Figure 3: Image quilting synthesis results for a wide 
range of textures. The resulting texture (right side of 
each pair) is synthesized at twice the size of the original 
(left). 
 

agrees with its neighbors along the region of overlap. 

Figure 2(b) shows a clear improvement in the structure 

of the resulting texture; however the edges between the 

blocks are still quite noticeable. 

Once again, smoothing across the edges will lessen this 

problem but we will attempt to solve it in a more 

principled way. Finally, we will let the blocks have 

ragged edges which will allow them to better 

approximate the features in the texture. Now, before 

placing a chosen block into the texture we will look at 

the error in the overlap region between it and the other 

blocks. We find a minimum cost path through that error 

surface and declare that to be the boundary of the new 

block. Figure 2(c) shows the results of this simple 

modification. 

 

2.1 Minimum Error Boundary Cut 
 

We want to make the cut between two overlapping 

blocks on the pixels where the two textures match best 

(that is, where the overlap error is low). This can easily 

be done with dynamic programming (Dijkstra’s 

algorithm can also be used [5]). 

The minimal cost path through the error surface is 

computed in the following manner. If B1 and B2 are 

two blocks that overlap along their vertical edge 

(Figure 2c) with the regions of overlap 

 respectively, then the error surface 

is defined as e =  

 To find the minimal vertical cut through this surface 

we traverse e (i = 2..N) and compute the cumulative 

minimum error E for all paths: 

 
In the end, the minimum value of the last row in E will 

indicate the end of the minimal vertical path though the 

surface and one can trace back and find the path of the 

best cut. Similar procedure can be applied to horizontal 

overlaps. When there is both a vertical and a horizontal 

overlap, the minimal paths meet in the middle and the 

overall minimum is chosen for the cut. 

 

2.2 The Image Quilting Algorithm 

 
The complete quilting algorithm is as follows: 

1. Go through the image to be synthesized in raster 

scan order in steps of one block (minus the overlap). 

2.  For every location, search the input texture for a set 

of blocks that satisfy the overlap constraints (above and 

left) within some error tolerance. Randomly pick one 

such block. 

3 Compute the error surface between the newly chosen 

block and the old blocks at the overlap region. Find the 

minimum cost path along this surface and make that the 

boundary of the new block. Paste the block onto the 

texture. Repeat. 

The size of the block is the only parameter controlled 

by the user and it depends on the properties of a given 

texture; the block must be big enough to capture the 

relevant structures in the texture, but small enough so 

that the interaction between these structures is left up to 
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the algorithm. In all of our experiments the width of the 

overlap edge (on one side) was 1/6 of the size of the 

block. The error was computed using the L2 norm on 

pixel values. The error tolerance was set to be within 

0.1 times the error of the best matching block. 

 

2.3 Synthesis Results 
The results of the synthesis process for a wide range of 

input textures are shown on Figures 3 and 4. While the 

algorithm is particularly effective for semi-structured 

textures (which were always the 

 

 
Figure 4: More image quilting synthesis results (for each 
pair, left is original, right is synthesized) 
 

 

 
 

 
 
Figure 5: Texture transfer: here, we take the texture 
from the orange and the Picasso drawing and transfer it 
onto different objects. The result has the texture of the 
source image and the correspondence map values of 
the target image 
Hardest for statistical texture synthesis), the 

performance is quite good on stochastic textures as 

well. The two most typical problems are excessive 

repetition (e.g. the berries image), and mismatched or 

distorted boundaries (e.g. the mutant olives image). 

Both are mostly due to the input texture not containing 

enough variability. Figure 6 shows a comparison of 

quilting with other texture synthesis algorithms. 

The algorithm is not only trivial to implement but is 

also quite fast: the unoptimized MATLAB code used to 

generate these results ran for between 15 seconds and 

several minutes per image depending on the sizes of the 

input and output and the block size used. Because the 

constraint region is always the same it’s very easy to 

optimize the search process without compromising the 

quality of the results (see also Liang et.al. [13] who 

report real-time performance using a very similar 

approach). 

 

3 Texture Transfer 
 

Because the image quilting algorithm selects output 

patches based on local image information, it is 

particularly well suited for texture transfer. We 

augment the synthesis algorithm by requiring that each 

patch satisfy a desired correspondence map, ~C, as well 

as satisfy the texture synthesis requirements. The 

correspondence map is a spatial map of some 

corresponding quantity over both the texture source 

image and a controlling target image. That quantity 

could include image intensity, blurred image intensity, 

local image orientation angles, or other derived 

quantities. An example of texture transfer is shown in 

Figure 6. 

 
Figure 6: Demonstration of quilting for texture synthesis 
and texture transfer. Using the rice texture image (upper 
left), we can synthesize more such texture (upper right). 
We can also transfer the rice texture onto another 
image (lower left) for a strikingly different result. 
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 Here, the correspondence maps are the (luminance) 

image intensities of the man’s face. That is, bright 

patches of face and bright patches of rice are defined to 

have a low correspondence error. The synthesized rice 

texture conforms to this second constraint, yielding a 

rendered image where the face image appears to be 

rendered in rice. 

For texture transfer, image being synthesized must 

respect two independent constraints: (a) the output is 

legitimate, synthesized examples of the source texture, 

and (b) that the correspondence image mapping is 

respected. We modify the error term of the image 

quilting algorithm to be the weighted sum, α times the 

block overlap matching error plus (1-α) times the 

squared error between the correspondence map pixels 

within the source texture block and those at the current 

target image position. The parameter α determines the 

tradeoff between the texture synthesis and the fidelity 

to the target image correspondence map. 

Because of the added constraint, sometimes one 

synthesis pass through the image is not enough to 

produce a visually pleasing result. In such cases, we 

iterate over the synthesized image several times, 

reducing the block size with each iteration. The only 

change from the non-iterative version is that in 

satisfying the local texture constraint the blocks are 

matched not just with their neighbor blocks on the 

overlap regions, but also with whatever was 

synthesized at this block in the previous iteration. This 

iterative scheme works surprisingly well: it starts out 

using large blocks to roughly assign where everything 

will go and then uses smaller blocks to make sure the 

different textures fit well together. In our tests, we used 

N = 3 to N = 5 iterations, reducing the block size by a 

third each time, and setting α  at the ith iteration to be 

αi =  

 

Our texture transfer method can be applied to render a 

photograph using the line drawing texture of a 

particular source drawing; or to transfer material 

surface texture onto a new image. For the orange 

texture the correspondence maps are the source and 

target image luminance values; for Picasso the 

correspondence maps are the blurred luminance values. 

 

 
input texture  Portilla & Simoncelli   Xu et.al. Wei & 
Levoy  Image Quilting 
Figure 7: Comparison of various texture synthesis 
methods on structured textures. Our results are virtually 
the same as Efros & Leung (not shown) but at a much 
smaller computational cost. 

 

4. Conclusion 
In this paper we have introduced image quilting, a 

method of synthesizing a new image by stitching 

together small patches of existing images. Despite its 

simplicity, this method works remarkably well when 

applied to texture synthesis, producing results that are 

equal or better than the Efros& Leung family of 

algorithms but with improved stability (less chance of 

“growing garbage”) and at a fraction of the 

computational cost. We have also extended our method 

to texture transfer in a general setting with some very 

promising results. 
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