

Synthesisation A Way To Enhance Image Using Texture Synthesis

Amruta G. Chakkarwar
Computer Science & Engg Department

Sipna C.O.E.T, Amravati.

Prof. V. K. Shandilya
Computer Science & Engg Department

Sipna C.O.E.T, Amravati.

Abstract

Image Enhancement is found to be a very effective

technique useful in today’s digital image processing

applications. Generating novel photo-realistic imagery

from smaller examples has been widely recognized as

significant in computer graphics. A wide number of

applications require realistic textures to be synthesized

for object decoration in virtual scenes. Basically,

Texture synthesis is used to create large non-repetitive

background images and expand small pictures by

removing noise and also to fill in holes in images. We

present a simple image-based method of generating

novel visual appearance in which a new image is

synthesized by stitching together small patches of

existing images. We call this process image quilting.

First, we use quilting as a fast and very simple texture

synthesis algorithm which produces surprisingly good

results for a wide range of textures. Second, we extend

the algorithm to perform texture transfer – rendering

an object with a texture taken from a different object.

More generally, we demonstrate how an image can be

re-rendered in the style of a different image. The

method works directly on the images and does not

require 3D information.

Keywords - Texture Synthesis, Texture Mapping,

Image-based Rendering, Image enhancement

1. Introduction
Texture synthesis from example is the process of taking

an input texture chip and using it as a basis for

generating an arbitrary quantity of ’similar’ texture,

without obvious repetition. One way this can be

accomplished is by copying parts (pixels or patches)

from the input and pasting them together as an output

image. Though many methods have been developed

using a combination of pixel and patch-based

approaches, there remains much active research in this

area. In the past decade computer graphics experienced

a wave of activity in the area of image-based rendering

as researchers explored the idea of capturing samples of

the real world as images and using them to synthesize

novel views rather than recreating the entire physical

world from scratch. This, in turn, fueled interest in

image based texture synthesis algorithms. Such an

algorithm should be able to take a sample of texture

and generate an unlimited amount of image data which,

while not exactly like the original, will be perceived by

humans to be the same texture. Furthermore, it would

be useful to be able to transfer texture from one object

to anther (e.g. the ability to cut and paste material

properties on arbitrary objects).

In this paper we present an extremely simple algorithm

to address the texture synthesis problem. The main idea

is to synthesize new texture by taking patches of

existing texture and stitching them together in a

consistent way. We then present a simple

generalization of the method that can be used for

texture. Texture analysis and synthesis has had a long

history in psychology, statistics and computer vision. In

1950 Gibson pointed out the importance of texture for

visual perception, but it was the pioneering work of

Bela Julesz on texture discrimination that paved the

way for the development of the field. Julesz suggested

transfer that two texture images will be perceived by

human observers to be the same if some appropriate

statistics of these images match.

This suggests that the two main tasks in statistical

texture synthesis are (1) picking the right set of

statistics to match, (2) finding an algorithm that

matches them. Motivated by psychophysical and

computational models of human texture discrimination

Heeger and Bergen proposed to analyze texture in

terms of histograms of filter responses at multiple

scales and orientations. Matching these histograms

iteratively was sufficient to produce impressive

synthesis results for stochastic textures. However, since

the histograms measure marginal, not joint, statistics

they do not capture important relationships across

scales and orientations, thus the algorithm fails for

more structured textures. By also matching these pair

wise statistics, Portilla and Simoncelli were able to

substantially improve synthesis results for structured

122

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

textures at the cost of a more complicated optimization

procedure.

In the above approaches, texture is synthesized by

taking a random noise image and coercing it to have

the same relevant statistics as in the input image. An

opposite approach is to start with an input image and

randomize it in such a way that only the statistics to be

matched are preserved. De Bonet scrambles the input in

a coarse-to-fine fashion, preserving the conditional

distribution of filter outputs over multiple scales (jets).

Xuel.al. inspired by the Clone Tool in PHOTOSHOP,

propose a much simpler approach yielding similar or

better results. The idea is to take random square blocks

from the input texture and place them randomly onto

the synthesized texture (with alpha blending to avoid

edge artifacts).

Figure 1: Image Quilting (left) and Improved Image
Quilting (right).

Figure 2: Quilting texture. Square blocks from the input
texture are patched together to synthesize a new
texture sample: (a) blocks are chosen randomly (b) the
blocks overlap and each new block is chosen so as to
“agree” with its neighbors in the region of overlap, (c) to
reduce blockiness the boundary between blocks is
computed as a minimum cost path through the error
surface at the overlap.

The statistics being preserved here are simply the

arrangement of pixels within each block. While this

technique will fail for highly structured patterns (e.g. a

chess board) due to boundary inconsistencies, for many

stochastic textures it works remarkably well. A related

method was successfully used by Praun et.al.For

semiautomatic texturing of non-developable objects.

Enforcing statistics globally is a difficult task and none

of the above algorithms provide a completely

satisfactory solution. An easier problem is to enforce

statistics locally, one pixel at a time. Efros and Leung

developed a simple method of “growing” texture using

non-parametric sampling. The conditional distribution

of each pixel given all its neighbors synthesized so far

is estimated by searching the sample image and finding

all similar neighborhoods.(We have recently learned

that a nearly identical algorithm was proposed in 1981

by Garber but discarded due to its then computational

intractability.) The algorithm produces good results for

a wide range of textures, but is excruciatingly slow (a

full search of the input image is required to synthesize

every pixel!).

 Several researchers have proposed optimizations to the

basic method including Wei and Levoy (based on

earlier work by Popat and Picard), Harrison [9], and

Ashikhmin [1]. However, all these improvements still

operate within the greedy single-pixel-at-a-time

paradigm and as such are susceptible to falling into the

wrong part of the search space and starting to “grow

garbage” [6].

Methods have been developed in particular rendering

domains which capture the spirit of our goals in texture

transfer. Our goal is like that of work in non-

photorealistic rendering. A key distinction is that we

seek to characterize the output rendering style by

sampling from the real world. This allows for a

richness of rendering styles, characterized by samples

from photographs or drawings.

A number of papers to be published this year, all

developed independently, are closely related to our

work. The idea of texture transfer based on variations

of [6] has been proposed by several authors [9, 1, and

11] (in particular, see the elegant paper by Hertzmann

et.al. [11] In these proceedings). Liang et.al. [13]

propose a real-time patch-based texture synthesis

method very similar to ours. The reader is urged to

review these works for a more complete picture of the

field.

1.1 Motivation
One curious fact about one-pixel-at-a-time synthesis

algorithms such as Efros and Leung [6] is that for most

complex textures very few pixels actually have a choice

of values that can be assigned to them. That is, during

the synthesis process most pixels have their values

totally determined by what has been synthesized so far.

As a simple example, let us take a pattern of circles on

a plane. Once the algorithm has started synthesizing a

particular circle, all the remaining pixels of that circle

(plus some surrounding ones) are completely

determined! In this extreme case, the circle would be

called the texture element (texel), but this same effect

persists to a lesser extent even when the texture is more

123

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

stochastic and there are no obvious texels. This means

that a lot of searching work is wasted on pixels that

already “know their fate”. It seems then, that the unit of

synthesis should be something more than a single pixel,

a “patch” perhaps. Then the process of texture synthesis

would be akin to putting together a jigsaw puzzle,

quilting together the patches, making sure they all fit

together. Determining precisely what are the patches

for a given texture and how they are put together is still

an open problem. Here we will present an very naïve

version of stitching together patches of texture to form

the output image. We call this method “image

quilting”.

2 Quilting
In this section we will develop our patch-based texture

synthesis procedure. Let us define the unit of synthesis

Bi to be a square block of user-specified size from the

set SB of all such overlapping blocks in the input

texture image. To synthesize a new texture image, as a

first step let us simply tile it with blocks taken

randomly from SB. The result shown on Figure 2(a)

already looks somewhat reasonable and for some

textures will perform no worse than many previous

complicated algorithms.

Still, the result is not satisfying, for no matter how

much smoothing is done across the edges, for most

structured textures it will be quite obvious that the

blocks do not match. As the next step, let us introduce

some overlap in the placement of blocks onto the new

image. Now, instead of picking a random block, we

will search SB for such a block that by some measure

Figure 3: Image quilting synthesis results for a wide
range of textures. The resulting texture (right side of
each pair) is synthesized at twice the size of the original
(left).

agrees with its neighbors along the region of overlap.

Figure 2(b) shows a clear improvement in the structure

of the resulting texture; however the edges between the

blocks are still quite noticeable.

Once again, smoothing across the edges will lessen this

problem but we will attempt to solve it in a more

principled way. Finally, we will let the blocks have

ragged edges which will allow them to better

approximate the features in the texture. Now, before

placing a chosen block into the texture we will look at

the error in the overlap region between it and the other

blocks. We find a minimum cost path through that error

surface and declare that to be the boundary of the new

block. Figure 2(c) shows the results of this simple

modification.

2.1 Minimum Error Boundary Cut

We want to make the cut between two overlapping

blocks on the pixels where the two textures match best

(that is, where the overlap error is low). This can easily

be done with dynamic programming (Dijkstra’s

algorithm can also be used [5]).

The minimal cost path through the error surface is

computed in the following manner. If B1 and B2 are

two blocks that overlap along their vertical edge

(Figure 2c) with the regions of overlap

 respectively, then the error surface

is defined as e =

 To find the minimal vertical cut through this surface

we traverse e (i = 2..N) and compute the cumulative

minimum error E for all paths:

In the end, the minimum value of the last row in E will

indicate the end of the minimal vertical path though the

surface and one can trace back and find the path of the

best cut. Similar procedure can be applied to horizontal

overlaps. When there is both a vertical and a horizontal

overlap, the minimal paths meet in the middle and the

overall minimum is chosen for the cut.

2.2 The Image Quilting Algorithm

The complete quilting algorithm is as follows:

1. Go through the image to be synthesized in raster

scan order in steps of one block (minus the overlap).

2. For every location, search the input texture for a set

of blocks that satisfy the overlap constraints (above and

left) within some error tolerance. Randomly pick one

such block.

3 Compute the error surface between the newly chosen

block and the old blocks at the overlap region. Find the

minimum cost path along this surface and make that the

boundary of the new block. Paste the block onto the

texture. Repeat.

The size of the block is the only parameter controlled

by the user and it depends on the properties of a given

texture; the block must be big enough to capture the

relevant structures in the texture, but small enough so

that the interaction between these structures is left up to

124

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

the algorithm. In all of our experiments the width of the

overlap edge (on one side) was 1/6 of the size of the

block. The error was computed using the L2 norm on

pixel values. The error tolerance was set to be within

0.1 times the error of the best matching block.

2.3 Synthesis Results
The results of the synthesis process for a wide range of

input textures are shown on Figures 3 and 4. While the

algorithm is particularly effective for semi-structured

textures (which were always the

Figure 4: More image quilting synthesis results (for each
pair, left is original, right is synthesized)

Figure 5: Texture transfer: here, we take the texture
from the orange and the Picasso drawing and transfer it
onto different objects. The result has the texture of the
source image and the correspondence map values of
the target image
Hardest for statistical texture synthesis), the

performance is quite good on stochastic textures as

well. The two most typical problems are excessive

repetition (e.g. the berries image), and mismatched or

distorted boundaries (e.g. the mutant olives image).

Both are mostly due to the input texture not containing

enough variability. Figure 6 shows a comparison of

quilting with other texture synthesis algorithms.

The algorithm is not only trivial to implement but is

also quite fast: the unoptimized MATLAB code used to

generate these results ran for between 15 seconds and

several minutes per image depending on the sizes of the

input and output and the block size used. Because the

constraint region is always the same it’s very easy to

optimize the search process without compromising the

quality of the results (see also Liang et.al. [13] who

report real-time performance using a very similar

approach).

3 Texture Transfer

Because the image quilting algorithm selects output

patches based on local image information, it is

particularly well suited for texture transfer. We

augment the synthesis algorithm by requiring that each

patch satisfy a desired correspondence map, ~C, as well

as satisfy the texture synthesis requirements. The

correspondence map is a spatial map of some

corresponding quantity over both the texture source

image and a controlling target image. That quantity

could include image intensity, blurred image intensity,

local image orientation angles, or other derived

quantities. An example of texture transfer is shown in

Figure 6.

Figure 6: Demonstration of quilting for texture synthesis
and texture transfer. Using the rice texture image (upper
left), we can synthesize more such texture (upper right).
We can also transfer the rice texture onto another
image (lower left) for a strikingly different result.

125

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

 Here, the correspondence maps are the (luminance)

image intensities of the man’s face. That is, bright

patches of face and bright patches of rice are defined to

have a low correspondence error. The synthesized rice

texture conforms to this second constraint, yielding a

rendered image where the face image appears to be

rendered in rice.

For texture transfer, image being synthesized must

respect two independent constraints: (a) the output is

legitimate, synthesized examples of the source texture,

and (b) that the correspondence image mapping is

respected. We modify the error term of the image

quilting algorithm to be the weighted sum, α times the

block overlap matching error plus (1-α) times the

squared error between the correspondence map pixels

within the source texture block and those at the current

target image position. The parameter α determines the

tradeoff between the texture synthesis and the fidelity

to the target image correspondence map.

Because of the added constraint, sometimes one

synthesis pass through the image is not enough to

produce a visually pleasing result. In such cases, we

iterate over the synthesized image several times,

reducing the block size with each iteration. The only

change from the non-iterative version is that in

satisfying the local texture constraint the blocks are

matched not just with their neighbor blocks on the

overlap regions, but also with whatever was

synthesized at this block in the previous iteration. This

iterative scheme works surprisingly well: it starts out

using large blocks to roughly assign where everything

will go and then uses smaller blocks to make sure the

different textures fit well together. In our tests, we used

N = 3 to N = 5 iterations, reducing the block size by a

third each time, and setting α at the ith iteration to be

αi =

Our texture transfer method can be applied to render a

photograph using the line drawing texture of a

particular source drawing; or to transfer material

surface texture onto a new image. For the orange

texture the correspondence maps are the source and

target image luminance values; for Picasso the

correspondence maps are the blurred luminance values.

input texture Portilla & Simoncelli Xu et.al. Wei &
Levoy Image Quilting
Figure 7: Comparison of various texture synthesis
methods on structured textures. Our results are virtually
the same as Efros & Leung (not shown) but at a much
smaller computational cost.

4. Conclusion
In this paper we have introduced image quilting, a

method of synthesizing a new image by stitching

together small patches of existing images. Despite its

simplicity, this method works remarkably well when

applied to texture synthesis, producing results that are

equal or better than the Efros& Leung family of

algorithms but with improved stability (less chance of

“growing garbage”) and at a fraction of the

computational cost. We have also extended our method

to texture transfer in a general setting with some very

promising results.

5. Acknowledgement
The author is thankful for providing facilities during

the work. Author is indebted by the useful suggestion

and constant motivation and help received from his

colleagues for the preparation and improvement of

manuscript. Author also expresses his country for the

images and information from respective websites:

1) www.google.com

2) www.generation5.org

3) www.wikipedia.org

4) IEEE Journals

6. References

[1] M. Ashikhmin. Synthesizing natural textures. In

Symposium on Interactive 3D Graphics, 2001.

[2] J. Bergen and E. Adelson. Early vision and texture

perception. Nature, 333:363– 364, 1988.

[3] J. S. De Bonet. Multiresolution sampling procedure

for analysis and synthesis of texture images. In

SIGGRAPH 97, pages 361–368, 1997.

[4] C. J. Curtis, S. E. Anderson, J. E. Seims, Kurt W.

Fleisher, and D. H. Salsin. Computer-generated

watercolor. In SIGGRAPH 97, pages 421–430, 1997.

[5] J. Davis. Mosaics of scenes with moving objects. In

Proc. IEEE Conf. on Comp. Vision and Patt. Recog.,

1998.

[6] A. A. Efros and T. K. Leung. Texture synthesis by

non-parametric sampling. In International Conference

on Computer Vision, pages 1033–1038, Corfu, Greece,

September 1999.

[7] D. D. Garber. Computational Models for Texture

Analysis and Texture Synthesis. PhD thesis, University

of Southern California, Image Processing Institute,

1981.

126

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

[8] J. J. Gibson. The Perception of the Visual World.

Houghton Mifflin, Boston, Massachusetts, 1950.

[9] P. Harrison. A non-hierarchical procedure for re-

synthesis of complex textures. In WSCG ’2001

Conference proceedings, pages 190–197, 2001. See

also

http://www.csse.monash.edu.au/˜pfh/resynthesizer/.

[10] David J. Heeger and James R. Bergen. Pyramid-

based texture analysis/synthesis. In SIGGRAPH 95,

pages 229–238, 1995.

[11] A. Hertzmann, C.E. Jacobs, N. Oliver, B. Curless,

and D.H. Salesin. Image analogies. In SIGGRAPH 01,

2001.

[12] Bela Julesz. Visual pattern discrimination. IRE

Transactions on Information Theory, 8(2):84–92, 1962.

[13] L. Liang, C. Liu, Y.Xu, B. Guo, and H.-Y. Shum.

Real-time texture synthesis by patch-based sampling.

TechnicalReportMSR-TR-2001-40, Microsoft research,

March 2001.

[14] J. Malik and P. Perona. Preattentive texture

discrimination with early vision mechanism. JOSA-A,

5(5):923–932, May 1990.

[15] V. Ostromoukhov and R. D. Hersch. Multi-color

and artistic dithering. In SIGGRAPH 99, pages 425–

432, 1999.

[16] J. Portilla and E. P. Simoncelli. A parametric

texture model based on joint statistics of complex

wavelet coefficients. International Journal of

Computer Vision, 40(1):49–71, December 2000.

[17] Emil Praun, Adam Finkelstein, and Hugues

Hoppe. Lapped textures. In SIGGRAPH 00, pages 465–

470, 2000.

127

International Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 5, May - 2013

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

