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Abstract—Springs are elastic machine elements that exert 

forces or torques and store energy. Torsion springs are loaded by 

torques about spring axis. Spiral springs belong to torsion 

springs and are characterized by the requirements that their coils 

have zero pitch and do not contact each other during operation. 

Nonlinear spiral springs have nonlinear torque-rotation 

relationships and are difficult to design because of their 

customized nonlinear features. A method is introduced in this 

paper for synthesizing nonlinear spiral springs. The center curve 

of a spiral spring is defined by an Archimedean spiral curve. Its 

nonlinear spring rate is realized by the nonumiform in-plane 

thickness of the Archimedean spiral curve. The smooth 

nonuniform in-plane thickness of the entire spiral spring comes 

from the spline interpolation on a set of in-plane thickness values 

on the center spiral curve. The arc length of the center spiral 

curve is used as interpolation parameter. The synthesis of 

nonlinear spiral springs is systematized as optimizing the 

independent design variables for the in-plane thickness 

interpolation. The presented method is demonstrated by the 

synthesis of a nonlinear stiffening spiral spring in the paper.  

Keywords—spiral spring; spring rate; spiral curve; synthesis; 

spline interpolation; interpolation parameter. 

I.  INTRODUCTION 

A spring is a flexible machine element used to exert a force 
or a torque, and store energy at the same time. Energy is stored 
in the spring that is bent, twisted, stretched or compressed. The 
stored energy is recoverable by the elastic return of the 
distorted spring material [1]. Springs can be divided into four 
general categories based on their primary functions: push, pull, 
twist or energy storage [2]. Within each category, there are 
many possible configurations. Helical compression and tension 
springs are commonly made of round or rectangular wire 
wound with constant coil diameter and uniform pitch. Pitch is 
the distance that is measured along the coil axis and from the 
center of one coil to the center of the adjacent coil. A torsion 
spring performs a twist function and supports a torsional load. 
Torsion springs are of two main types: helical and spiral [3]. 
The coils in a helical torsion spring are usually closely wound 
like an extension spring, but do not have any initial tension. 
The coil ends (that can have different shapes such as straight 
torsion, straight offset or short hook) provide lever arms to 
apply torsion to the coil body. The transmitted torque is applied 
about the axis of the helix. Spiral springs consist essentially of 
flat spring materials wound on themselves (zero pitch) with 
open space between coils. They are characterized by the 
requirement that their coils do not contact each other during 
operation [4-5]. Spiral springs have low hysteresis and are used 
in meters, instruments, timing mechanisms and rehabilitation 
devices. The inner end of a spiral spring is usually attached to 
an arbor and its outer end is often clamped or hinged. This 

paper is focused on synthesizing spiral springs with nonlinear 
features. 

The performance of a spring is characterized by the force or 
torque (F or T) applied to it and the translational or angular 
deflection (D or θ) which the applied force or torque results in. 
The slope of the T-θ curve of a spiral spring is its spring rate or 
stiffness denoted by k. If the relationship between torque and 
angular deflection is represented by a general function 

)(TT  , spring rate can then be defined as follows. 
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If the slope of a spring is constant, the spring is linear. 
Otherwise, it is nonlinear. Linear springs obey the Hooke's 
Law, kT  . Conventional spring designs are mainly for 

linear springs. The design of linear springs has been 
systematized. The spring rate of a linear spiral spring can be 
calculated by the following equation [5]. 
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In (2), b is the out-of-plane width of the rectangular section 
of the flat strip of a spiral spring, t is the in-plane thickness, L is 
the active length of the strip, and E is the modulus of elasticity 
of the spring material. Equation (2) applies when both ends of a 
spiral spring are rigidly mounted. If the outer end is hinged, 
deflection for a given torque will be about 25% larger than that 
calculated by using equation (2) [5]. Fig. 1 shows a spiral 
spring with clamped outer end and constant out-of-plane width 
b and uniform in-plane thickness t. Its inner end is rigidly 
connected to the extension of an arbor. The torque delivered by 
the spring is proportional to the rotational angle of the arbor. 
Spiral springs of this type are usually used for applications that 
require rotation of less than 360 degrees. The strip in a spiral 
spring is mainly in bending like a curved beam in contrast to 
the torsion experienced in helical compression and tension 
springs. The torque applied to a spiral spring should always 
close the coils rather open them because the residual stresses 
from coil-winding are favourable against closing torque. 

Vol. 3 Issue 6, June - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS060011

International Journal of Engineering Research & Technology (IJERT)

4



 

Fig. 1 A spiral spring with clamped outer end. 

The applied torque in a nonlinear spiral spring is not 
linearly related to its angular deflection. A nonlinear stiffening 
spring (which is also called nonlinear progressive spring) is a 
spring that gradually increases its spring rate as the spring 
deflection progresses [6], which provides a progressively 
hardening reaction as the spring gets deflected. Fig. 2 shows 
the T-θ curve of a nonlinear stiffening spiral spring.   

In contrast to a nonlinear stiffening spring, a nonlinear 
softening spring (which is also called nonlinear degressive 
spring) gradually decreases its spring rate as the spring 
deflection increases and provides a softening reaction [6]. The 
T-θ curve of a nonlinear softening spiral spring  is shown in 
Fig. 3. 

The T-θ relationship of a nonlinear spiral spring is based on 
its particular application and has its unique feature [7]. The 
design methods for linear springs are not applicable because of 
the individual nonlinear characteristics. Designing nonlinear 
spiral springs is more challenging and difficult than linear 
springs. The objective of this paper is to provide a systematic 
design method for nonlinear spiral springs. 

The popular configuration of a spiral spring has center 
curve of Archimedean spiral curve with constant out-of-plane 
width (b) and uniform in-plane thickness (t) as shown in Fig. 1. 
To make the T-θ relationship of a spiral spring nonlinear, its in-
plane thickness or out-of-plane width or both can be varied. 
Equation (2) points out that k has a cubic relationship with t 
and linear relationship with b, so changing t has higher impact 
on k than changing b. The t value of a synthesized spiral spring 
in this paper is nonuniform and optimized to make it have the 
desired nonlinear spring rate.  

 

 

Fig. 2 The T-θ curve of a nonlinear stiffening spring. 

 

Fig. 3 The T-θ curve of a nonlinear softening spring. 

The remainder of the paper is organized as follows. The 
synthesis formulation on nonlinear spiral springs are presented 
in section II. The optimization approach of spring parameters is 
provided in section III. Section IV is on the synthesis of a 
nonlinear stiffening spring using the method introduced in this 
paper. Conclusions are drawn in section V. 

II. SYNTHESIS FORMULATION OF SPIRAL SPRINGS  

Spiral springs are commonly made of rectangular wires 
wound on themselves. They are also called flat spiral springs 
because of their zero pitch. The center curves of spiral springs 
are usually Archimedean (also known as arithmetic) spiral 
curves [8]. There is a unique property in Archimedean spiral 
curves that the distance between two successive intersections 
of any ray from the origin and an spiral curve is constant. 
Because of this unique property, Archimedean spiral curves are 
widely used for spiral springs. 

In a polar coordinate system, an Archimedean spiral curve 
can be described by the following function. 

 brr  0)(    (3) 

In (3), r0 is the radius of the starting point of the spiral 
curve, θ is the rotation angle from the starting point to the 
current point on the spiral curve. 2πb is the distance between 
two successive turnings along any ray from the origin. If the 
orientation angle of the starting point (θ0) is taken as 0, θ is 
then the orientation angle of the current point. An Archimedean 
spiral curve can be considered as the locus of a moving point 
that moves along a ray at a constant speed (v) and the ray itself 
also rotates with respect to the origin at a constant angular 

velocity (ω). In that case, vb  . If the radius and rotation 

angle of the ending point of a spiral curve are denoted by (re, 

θe), the function of the Archimedean spiral curve becomes: 
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Fig. 4 shows an Archimedean spiral curve in which the ray 
(on which the moving point is located) rotates counter-
clockwise. If the ray rotates clockwise, θ becomes negative. 
Equation (4) has to be changed into: 


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e
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rr
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)( 0

0


    (5) 

Fig. 5 shows an Archimedean spiral curve in which the ray 
rotates clockwise. It is a mirror image of the spiral curve in Fig. 
4 with respect to x-axis. 
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Fig. 4 An Archimedean spiral curve with positive θ . 

 

Fig. 5 An Archimedean spiral curve with negative θ . 

From Figs. 4 and 5, it can be seen that an Archimedean 
spiral curve can have two potential rotation directions, either 
counter-clockwise ( 0 ) or clockwise ( 0 ). The two 

spiral curves form mirror images each other and are often 
called the two arms of the Archimedean spiral curve. 

To simplify the calculation of the arc length of an 
Archimedean spiral curve, intermediate parameters p and q are 
introduced and equation (4) can be represented as follows. 

 qpr )(    (6) 

0rp   
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The arc length )(s  is then given by the following 

equation. 
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The curvature radius )(R  can be calculated as follows. 
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When both the in-plane thickness (t) and out-of-plane width 
(b) of a spiral spring are uniform, the spring is linear. To make 
the spiral spring have the desired nonlinear spring rate, the in-
plane thickness is made nonuniform in this paper. To optimally 
design the nonuniform in-plane thickness of a nonlinear spiral 
spring, a set of interpolation points are selected on the center 
Archimedean spiral curve of the spiral spring. At each 
interpolation point, an independent design variable on the in-
plane thickness at the point is introduced. The entire spiral 
spring has then smooth nonuniform in-plane thickness through 
the interpolation of in-plane thickness design variables. The arc 
length of the center Archimedean spiral curve is used as the 
interpolation parameter. 

There are several popular interpolation approaches such as 
Lagrange and spline interpolation. The individual Lagrange 
polynomials depend on the locations of the parameter values 
and all of them have to be recalculated when a parameter value 
is changed. Besides, the degree of Lagrange polynomials 
becomes very high when there are many interpolation points 
since the Lagrange polynomial degree is the total number of 
interpolation points minus 1. High degree polynomials are 
prone to oscillate [9]. Because of these disadvantages, 
Lagrange interpolation is not used in this paper.  

In the synthesis of spiral springs, it is undesirable for the in-
plane thickness to change suddenly or sharply. Synthesizers are 
more interested in smooth interpolation of the in-plane 
thickness and tight interpolation curves that path through all the 
interpolation points in order. These needs can be met by spline 
interpolation. A set of polynomials of degree 3 that are 
smoothly connected at given interpolation points form a cubic 
spline interpolation curve. The slope and curvature at internal 
points are continuous between any two adjacent polynomials. 
At the two end points, their conditions can be chosen 
differently which include natural end conditions (two end 
curvatures are set as zero), not-a-knot end conditions (the third 
derivative is continuous at both the first and last internal nodes) 
or clamped end conditions (two end slopes are specified). 

If there are n+1 in-plane thickness values (t0, t1, , tn) to 
be interpolated for a spiral spring and their corresponding arc 
length values on the center Archimedean spiral curve are  
(s0, s1, , sn). Then, the piecewise cubic spline interpolation is 
given by n cubic polynomials between each successive pair of 
points [10]. Here is an interpolation example. Suppose 9 
thickness values to be interpolated, which are  
(0.5, 0.7, 1.0, 1.5, 2.3, 1.5, 1.0, 0.7, 0.5). The corresponding arc 
lengths are (0, 2, 4, 6, 8, 10, 12, 14, 16). The spline 
interpolation is shown in Fig. 6 in which the horizontal axis 
represents arc length and the vertical axis is for thickness. The 
9 thickness values are smoothly interpolated by the spline 
curve. If the 9 thickness values are interpolated by Lagrange 
interpolation, its result is shown in Fig. 7. The interpolation 
curve swings a lot. The interpolated thickness value even 
becomes negative, which does not make any sense. 
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Fig. 6 A spline interpolation. 

 

 

Fig. 7 A Lagrange interpolation. 

To ensure against the existence of any cusp in a spiral 
spring, the curvature radius of the center Archimedean spiral 
curve at any point has to be greater than half of the in-plane 
thickness at that point [11]. Cusp can be avoided through the 
following constraint. 

)(5.0)(  tR     (9) 

In (9), R(θ)  is the curvature radius calculated by (8) and 
t(θ) is the in-plane thickness at point θ on the center 
Archimedean spiral curve. 

III. OPTIMIZATION OF SPRING PARAMETERS 

The center curve of a spiral spring is an Archimedean spiral 
curve. The nonlinear spring rate of the spiral spring is realized 
by the nonuniform in-place thickness in this paper. The smooth 
nonuniform in-plane thickness of the entire spiral spring comes 
from the spline interpolation on a set of in-plane thickness 
values on the center spiral curve. The arc length of the center 
spiral curve is used as the interpolation parameter. The 
synthesis of a nonlinear spiral spring is systematized as 
optimizing the independent design variables for the in-plane 
thickness interpolation. The values of the independent design 
variables of a synthesized nonlinear spiral spring are optimized 
in this paper by using the Global Optimization Toolbox of 
MATLAB [12-13]. Global Optimization Toolbox provides 
methods that find optimal solutions to synthesis problems with 
multiple local optima. Global Search Solver in MATLAB’s 
Global Optimization Toolbox is used in the paper to search for 
the optimal spring design parameters. 

Finite element analysis software ANSYS is used in the 
paper to evaluate the performance of a synthesized nonlinear 
spiral spring [14-15]. Given the parameters for the in-plane 
thickness interpolation, the torque, deflection and stress of the 
related nonlinear spiral spring are analyzed by ANSYS. An 
ANSYS batch file is first generated in MATLAB on elements, 
material properties, boundary conditions and input information. 
ANSYS is then called from MATLAB to execute the batch 
file. After going through preprocessor, processor and 
postprocessor processes, ANSYS creates an output file on the 
performance information of the synthesized nonlinear spiral 
spring. MATLAB reads the ANSYS output file and computes 
the objective and constraint functions for optimization. ANSYS 
Parametric Design Language is employed in the paper as a data 

transfer bridge between MATLAB optimization and ANSYS 
finite element analysis. 

IV. SYNTHESIS OF A STIFFENING SPIRAL SPRING 

A stiffening spiral spring is a nonlinear spiral spring that 
gradually increases its spring rate as the spring deflection 
progresses. The torque (T) and angular deflection (θ) ranges of 
the synthesized spiral spring are from 0 to 75 N mm and from 0 
to 60 degrees, respectively. The T-θ relationship is defined by 5 
desired (T, θ) target points: (T0, θ0), (T1, θ1), (T2, θ2), (T3, θ3) 
and (T4, θ4). The deflection range of 60 degrees is divided into 
5 equal-distance points, i.e. θj = 15j, j = 0, 1, 2, 3, 4. T0 and T4 
correspond to the two end points of the torque range, so that  
T0 = 0 and T4 = 75 N mm. The 3 internal torque points are set 
to T1 = 0.10T4, T2 = 0.27T4 and T3 = 0.55T4. The spline curve 
that interpolates the 5 desired target points is shown in Fig. 8. 

The design domain is a circle with radius of 50 mm which 
is shown Fig. 9. The inner end of the spiral spring is rigidly 
connected to the extension of an arbor while its outer end is 
clamped. When the arbor rotates through 60 degrees, the torque 
on the arbor from the spiral spring is required to meet the 
desired T-θ relationship. The center curve of the spiral spring is 
an Archimedean spiral curve described by equation (6), 

 qpr )( . The starting point of the spiral curve is set at 

100  pr  mm. The radius of the ending point is set at 

45 ee qpr   mm based on the radius of the design 

domain of 50 mm. The rotation angle ( e ) of the ending point 

is a design variable. The material for the spring is engineering 
plastic with yield strength of 71 MPa and modulus of elasticity 
of 2200 MPa. The out-of-plane width of the spring is of 
constant value of 10 mm. The in-place thickness is nonuniform 
and interpolated by 7 thickness values (t0 to t6 that are marked 
in Fig. 9). tj's (j= 0, 1, 2, 3, 4, 5, 6) are independent design 
variables and vary from 1.0 mm to 4.0 mm. They are evenly 
distributed along the center curve of the spiral spring. As 
shown in Fig. 9, the arc lengths between any two consecutive 

tj's  are equal. Design variables to be optimized are e  and the 

7 thickness values. Thus, there are totally 8 independent 
parameters to be optimized, which can be represented as a 
design variable vector X. 

 6543210 tttttttX e   (10) 

 

 

Fig. 8 The desired T-θ curve of the synthesized spiral spring. 
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Fig. 9 The design domain of the synthesized spiral spring. 

The spring is synthesized to minimize the error between the 
actual torque from the spring and the desired torque when a 
certain deflection is input to the spring. This error is measured 
by the average deviation at the 4 target deflections (θ1 to θ4) as 
follows. 





n

j
jdja TT

n
TE

1
,,

1
    (11) 

TE is the average torque error. Ta, j is the actual torque 
generated by the spring when the target deflection θj is input to 
the spring while Td, j is the desired spring torque and equals the 
target torque Tj. The maximum stress in the spiral spring is 
constrained to be below its allowable value. Cusp and coil 
contact are not allowed to happen to the synthesized spiral 
spring. 

The synthesis result is shown in Fig. 10. The design 
variable vector X for this solution is 


05.136.100.498.2

00.176.393.305.7X
 (12) 

The unit of e  with value of 7.05 in (12) is radian. In this 

solution, the desired and actual spring torques at 5 targets are: 

(0, 0), (7.50, 10.80), (20.25, 24.41), (41.25, 44.52) and (75, 

74.55). The spline curves that interpolate the two sets of 

spring torques are shown in Fig. 11. The red spline is from the 

desired target torques while the blue one interpolates the 

actual spring torques. Except the starting and ending points, 

the actual spring torque is a little bit above the desired torque. 

The maximum stress in the spring is 34.28 MPa, which occurs 

when the spiral spring has deflection of 60 degrees. 

Fig. 12 shows the undeformed and deformed beam 
elements of the spiral spring, which is from ANSYS with the 
input angular deflection of 60 degrees. 

When the torque, deflection and stress of the spiral spring 
are analyzed in ANSYS, the input angular deflection of 60 
degrees is divided into 4 even load steps and geometric 
nonlinearity command “NLGEOM” is turned on. The spiral 
spring is discretized into beam elements and modeled by 
BEAM188 that allows tapered beam cross-sections. 

 

 

Fig. 10 The synthesized spiral spring. 

 

 

Fig. 11 The desired and actual T-θ curves of the spring. 

 

 

Fig. 12 The deformed spiral spring. 

 

V. CONCLUSIONS 

A synthesis method of nonlinear spiral springs is introduced 
in the paper. The nonlinear spring rate of a spiral spring is 
realized by its nonuniform in-plane thickness. The desired 
nonlinear torque-rotation relationship comes from the 
optimization of the design variables for the in-plane thickness 
interpolation. The center curve of a synthesized nonlinear spiral 
spring is an Archimedean spiral curve with constant out-of-
plane width. The nonuniform in-plane thickness is interpolated 
by using cubic splines. A set of in-plane thickness values are 
employed for interpolation. They are evenly distributed along 
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the arc length of the center spiral curve. The interpolation 
parameter is the arc length of the center spiral curve. The 

rotation angle ( e ) of the ending point of the spiral curve and 

the set of in-plane thickness values form the independent 
design variables. The synthesis of nonlinear spiral springs is 
systematized as optimizing the independent design variables 
for nonuniform in-plane thickness interpolation. 

The optimization of the independent design variables for 
the nonuniform in-plane thickness interpolation is conducted in 
the paper by using MATLAB’s Global Optimization Toolbox. 
The deviation between the desired torque- rotation relationship 
and the actual torque- rotation relationship is minimized. The 
deviation is measured by the average difference between the 
desired spring torques and the actual spring torques under 
certain spring deflections. The maximum stress in the spiral 
spring is constrained to be below the yield strength of the 
spring material. Cusp and coil contact are not allowed to 
happen to the synthesized spiral spring. The deflection, torque 
and stress of the synthesized spring are analyzed by using 
ANSYS. The communication between MATLAB and ANSYS 
is based on ANSYS Parametric Design Language. A nonlinear 
stiffening spiral spring is synthesized in the paper to 
demonstrate the synthesis procedure and verify the 
effectiveness of the introduced synthesis method. 
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