Special Issue- 2017

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICCCS- 2017 Conference Proceedings

Swarm Intelligence

Aditya Alok Jha
CSE (3 Year)
HMR Institute of Technology and Management
Hamidpur, New Delhi, India

Abstract— Swarms are systems that consist of many individuals
that are organized and coordinated by principles of
decentralized control, indirect communication, and self-
organization. In this paper some of the real life problems that
can be (or are being) solved with swarm intelligence have been
discussed. Types and applications of Swarm Intelligence have
also been discussed briefly. Swarm Robotics, which may be
simply defined as an approach to the coordination of multi-
robots systems which consist of large numbers of mostly simple
physical robots to coordinate in order to perform some task that
requires accuracy, precision, efficiency, and demands a higher
rate of success with lesser effort, has been described and a
minimalist flocking algorithm has been discussed for the
implementation of the same as well. To conclude, the future
aspects of Swarm Robotics has also been brought into the
limelight.

Keywords—Swarm; ACO; PCO; TSP; 0-1Knapsack; Crowd
Control; PSSD; Bee ColonyOptimization; Bat Algorithm; Cuckoo
search; Swarm Robotics; Flocking

I. INTRODUCTION TO SWARM INTELLIGENCE

Swarm Intelligence is the collective behavior of decentralized,
self-organized systems, natural or artificial. The concept is
employed in work on artificial intelligence. The expression
was introduced by Gerardo Beni and Jing Wang in 1989, in
the context of cellular robotic systems.

Il. TYPES OF SWARM INTELLIGENCE

A. Ant Colony Optimization(ACO):

Ant Colony Optimization was initially proposed by Marco
Doringo in 1992 in his PhD thesis, and has been originally
used to solve discrete optimization problems in the late
1980s. ACO draws inspiration from the social behavior of ant
colonies. It is natural observation that ants seek a shortest
path between their colony and a source of food. The
following section presents some details about ants in nature,
and shows how these relatively unsophisticated insects can
cooperatively interact together to perform complex tasks
necessary for their survival. Most ants live on the ground and
make use of the soil surface to leave pheromone trails, which
can be followed by other ants on their way to search for food
sources. Ants that happened to pick the shortest route to food
will be the fastest to return to the nest, and will reinforce this
shortest route by depositing food trail pheromone on their
way back to the nest. This route will gradually attract other
ants to follow, and as more ants follow the route, it becomes
more attractive to other ants. The overall result is that when
one ant finds a good (i.e., short) path from the colony to a
food Source, other ants are more likely to follow that path,
and positive feedback eventually leads to all the ants

Romi Chaudhary
CSE (3 Year)
HMR Institute of Technology and Management
Hamidpur, New Delhi, India

following a single path. The idea of the ant colony algorithm
is to mimic this behavior with "simulated ants" walking
around the graph representing the problem to solve.

MNesat

Food

B. Particle Swarm Optimization(PCO):

Particle swarm optimization or PSO is a global optimization
algorithm for dealing with problems in which a best solution
can be represented as a point or surface in an n-dimensional
space. Particle swarm optimization (PSO) is a population
based stochastic optimization technique developed by
Eberhart and Kennedy inspired by the emergent motion of a
flock of birds that is flying around to search for food. The
motion of each single bird in the flock is influenced by
potential for aging places the bird itself has seen so far and
also by the behavior of other birds in the flock. Similarly, in a
PSO algorithm, a swarm of individuals, that are referred to as
particles, tries to find the global minimum (or maximum) of a
given function. It solves a problem by having a population of
candidate solutions, here dubbed particle, and moving these
particles around in the search space according to simple
mathematical formula over the particle's position and
velocity.

Volume5, I ssue 10

Published by, www.ijert.org 1

Special Issue- 2017

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICCCS- 2017 Conference Proceedings

Each particle's movement is influenced by its local best
known position, but is also guided toward the best known
positions in the search-space, which are updated as better
positions are found by other particles. This is expected to
move the swarm toward the best solutions.

The Algorithm for the PSO can be defined as:

for each particlei=1, ..., Sdo

Initialize the particle's position with a uniformly distributed
random vector: Xi ~ U(Blo, Bup)

Initialize the particle's best known position to its initial
position: Pi « Xi

if f(pi) < f(g) then

update the swarm's best known position: g < Pi

Initialize the particle's velocity: vi ~ U(-|Bup-Blo|, |Bup-Blo|)
while a termination criterion is not met do:

for each particlei=1, ..., Sdo

for each dimensiond =1, ..., ndo

Pick random numbers: Ap, Ag ~ U(0,1)

Update the particle's velocity: vi,d <« o vi,d + ¢p Ap (pi,d-
xi,d) + g Ag (gd-Xi,d)

Update the particle's position: Xi «<— xi + vi

if f(xi) < f(pi) then

Update the particle's best known position: pi «— xi

if f(pi) < f(g) then

Update the swarm's best known position: g « pi.

Initialize i and the
particle position (Xi)
forito S

Initialize the parfical

best known position

1o its inifial posifion
Pi=Xi

if fPi)<g)

update the
swarm's best
known position
g=Pi
and inifialize the
particle’s velocity
(vi)

Update the |True
particle’s
velocity and
position

While(termination’
ondition not met)

if flxi) < fipi)&
if fipi} <fig)

Update particle best

known position and

swarms best known
position

I11. APPLICATIONS OF SWARM INTELLIGENCE

A. ACO Applications:
1) Traveling Salesman Problem:

The traveling salesman problem (TSP) can be stated very
simply: a salesman spends his time visiting n cities (or nodes)
cyclically. In one tour he visits each city just once, and
finishes up where he started. The question is: in what order
should he visit the cities to minimize the distance traveled?
The idea was published in the early 90s for the first time. The
base of this simulation was two artificial connections between
the ant hill and a food source. For practical use of ACO, it
was necessary to project virtual ants. It was important to set
their properties. These properties help virtual ants to scan the
graph and find the shortest tour. Virtual ants do not move
continuously; they move in jumps, which means that, after a

time unit, they will always be in another graph node. The
absolved path is saved in ant memory. The created cycles are
detected in ant memory. In the next tour, the ant decides on
the base of pheromones power. Just because the property of
pheromone evaporation, pheromones on shortest edges are
stronger, because of the fact that the ant goes across these
edges faster. Based on these facts we can mathematically
describe the behavior of the virtual ants by, the algorithm for
the ACO can be defined as:

Start

Set parameters, initialize pheromone trails
while (termination condition not met) do
Construct_Solutions
Apply_Local_Search (% optional)
Update_Trails

end while

end

Set parameters mitialize
pheromones

G hile(condition ar>,_FalSe

true)

Construct solutions, Apply
local search update trails

2) 0-1 Knapsack problem:
Many optimization problems in decision-making can be
presented as the 0-1 Knapsack Problem (KP). The 0-1
Knapsack Problem consists of loading objects in to a
knapsack in such a way that the obtained total profit of all
objects included in the knapsack is maximum and the sum of
the weights of all packed objects does not exceed the total
knapsack load capacity. Each object can be loaded or not
loaded into the knapsack; this is the 0-1 decision concerning
object loading. There are also other versions of this problem
such as the Multi-dimensional 0-1 Knapsack Problem or the
Multiple 0-1 Knapsack Problem. In ant algorithms a colony
of artificial ants is looking for a good solution to the
investigated problem. The pseudo-code of the ACO algorithm
is presented as procedure 1. Each artificial ant constructs an
entire solution to the problem in a certain number of steps; at
each step there is an intermediate solution, a partial solution
or a state. In each step, each ant k goes from one state i to
another state j and thus constructs a new intermediate
solution. At the end, the entire solution will have been
obtained in a certain number of steps. At each step, each ant k
takes into consideration a set of feasible expansions to its
current state and moves to one of these in probability. This

Volume5, I ssue 10

Published by, www.ijert.org 2

Special Issue- 2017

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICCCS- 2017 Conference Proceedings

set of feasible expansions is called a neighborhood. At each
state i there is a partial solution Si of the Knapsack Problem;
each ant selects the next object Oi from the set Ni of
available objects, goes to the next state j and adds this
selected object to a partial solution Sj in order to construct, at
the end of the algorithm operation, the set of objects S
constitutes a solution to the 0-1 Knapsack Problem.

begin
while (a cycle exists) do
while (an ant k, which has not yet worked, exists) do
while (7, 2 0) do L
. P PN
select anext objecto, from N with probability p, = Zﬂ wi N

0, for je N,

for jeN,

add a selected object to a partial solution =5 + {0 }
update the current knapsack load capacity ¥, =¥, - w,
update the profit Z=Z + 3
update the neighbourhood of the current state V.= {o,- w, £ 7}
end
remember the best solution if a better solution has been found
end
remember a global best solution if a better solution has been found
use an evaporation mechanism 1 = pt
update pheromone trails T=1+ At
end

end.

B. PCO Applications:
1) Crowd Control:
Crowd control focuses on creating a realistic smooth and
flexible motion for virtual human beings by utilizing the
computational facilities provided in Particle swarm
optimization (PSO). A person can be considered as a particle,
which would like to find a way to reach the best solution.
Although PSO does possess some characteristics of the crowd
behavior, it is still incompatible with the use for crowd
control. Firstly, the particle in PSO is absolutely free to fly
through everywhere in the given multidimensional space.
However, the environment for a crowd may have obstacles,
and the pedestrians in the crowd must avoid collisions,
including the collision with the given obstacles and the
collision with the fellow pedestrians, where other pedestrians
can be considered as dynamic obstacles. These dynamic
obstacles are not predictable and may appear and disappear in
the environment at any moment.
Steps followed by Particle swarm optimization:
e Initialize the position and the velocity of each
particle.
e Compute the objective value by the objective
function.
e Update the particle's best local solution of each
particle by its objective value.
e Update the particle's global solution in the swarm
e Update the velocity and the position of each particle

9

nitialize the positio
nd velocity of eact
particle

N
Compute objective
walue by objective

function

For any
ondition

update the particle's best
local solution of each
particle by its objective
wvalue

Update particle's
global position in
swarm

Update the welocity
and position of each
particle

G

Particle swarm optimization (PSO) is an optimization
paradigm proposed in the field of evolutionary computation
for finding the global optimum in the search space. The
concept of PSO is easy to comprehend, and the mechanism is
easy to implement. The ability of PSO to reach the position of
the optimum creates the possibility to automatically generate
non-deterministic paths of virtual human beings from one
specified position to another. On the other hand, if the target
is the best position, the movement of a person is a process to
find a walk-able path to the destination. For these essential
reasons, we propose the model to work with the original PSO
for path creation.

2) PSSD (Particle Swarm Inspired Underwater Sensor
Deployment) :

PSO is a centralized intelligent searching method. Inspired by
the operation mechanism of particle swarm systems, There is
a distributively realizable underwater sensor deployment
algorithm. Sensors correspond to the particles of PSO.
Sensors moving and covering events is similar to particles
searching for solutions .

S «— Randomly deploy sensors in the monitoring space;
for step <1 to I do

N event(sj) < detect1(sj)

/* detect the number of the events covered by sj itself */;

N neighbor(sj) « detect2(sj)
/* detect the number of the adjacent sensors */;
N near(sj) « detect3(sj)
/* detect the number of the near sensors */;

if N neighbor(sj) > 0 then

find the best adjacent sensor s*;

if N event(s*) > N event(sj) and N near(s*) < 3 (s*) then
/* follow the gbest */;

move towards s*;

end

else find the best position of sj during its moving (X" j);
ifx"j ! =xj(t) then

/*follow the pbest */;

move towards X" j;

else

move randomly;

end

end

end

Volume5, I ssue 10

Published by, www.ijert.org 3

Special Issue- 2017

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICCCS- 2017 Conference Proceedings

3) Bee colony optimization:

A honeybee colony typically consists of about 20,000 to
80,000 bees with one queen and a few hundred male bees or
drones, with the rest being female worker bees. The workers
can be scouts, onlookers, guards, or nectar collectors. A scout
communicates to other workers through a waggle dance that
it has found a new nectar source. An algorithm that mimics
the main characteristics of the bees’ foraging behavior—the
artificial bee colony algorithm—was developed in 2005.The
algorithm divides bees into employed, scout, and onlooker
bees; codes the nectar source’s location as a solution vector;
and links the nectar amount with the landscape of objectives.
Although this description is somewhat simplistic, it captures
the main characteristics of foraging behavior. It has been used
to solve unconstrained numerical optimization problems and
constrained optimization problems as well as to train neural
networks.

4) Bat algorithm:

Most of the 800+ micro bat species use echolocation for
navigation, which involves emitting about 10 to 20 ultra sonic
bursts per second. Each burst lasts only a few thousandths of
a second, has a frequency of 20 to 200 kHz (humans can hear
at most a 20-kHz burst), and can be as loud as 120 dB (the
noise level of a jumbo jet taking off). When a bat finds an
insect and is homing in on its prey, the pulse emission rate
can accelerate to 200 pulses per second with a higher
frequency. Echolocation allows the bats to more accurately
gauge a flying insect’s size, position, range, speed, and
direction. The bat algorithm, developed in 2010, uses
characteristics of pulse emission and frequency tuning16 and
considers the bat’s location as a solution vector in the search
space. The frequency tuning lets the bat explore the search
space on a larger scale, while the speedup of the pulse
emission focuses on the neighborhood of local promising
solutions. Among the whole bat group, there is a global best
solution, and other bats tend to swarm toward it.
Consequently, convergence is relatively rapid, controlled by
frequency tuning, pulse emission, and loudness. The bat
algorithm has been applied in many real-world applications
such as engineering optimization, training neural networks,
image processing, and solving the TSP.

5) Cuckoo search:
Some cuckoo species, such as Old world cuckoos, engage in
brooding parasitism, in which the cuckoo lays eggs in the
nest of a host bird such as a warbler. The eggs then hatch and
the host bird raises the cuckoo chicks. Because cuckoos are
adept at mimicry, the texture, color, and size of the cuckoo’s
eggs look very similar to those of the host birds’ eggs. Even
s0, some host birds can recognize cuckoo eggs and then get
rid of them or abandon the nest, creating a kind of
evolutionary arms race between the two species. The cuckoo
search algorithm, developed in 2009, considers a cuckoo’s
egg as a solution vector and the nesting field as the search
space. There is some evidence that both the cuckoo’s and
host bird’s flight paths can obey Lévy flights—flights with
occasional long jumps followed by many local random
steps—which makes the search more effective over a large
region. The similarity of eggs can be converted into the

similarity of solutions, which helps the iterative search
process reach convergence, and the discovery probability aids
in global exploration. The cuckoo search algorithm has been
successfully applied to engineering optimization and image
processing problems.

IV. SWARM INTELLIGENCE AND ROBOTICS

In nature, vast groups of individuals cooperate and assemble
to create highly complex global behavior through local
interactions -- from multi-cellular organisms to complex
animal structures such as army ants, bivouacs and flocks of
birds. Swarm robotics is an approach to the coordination of
multi-robots systems which consist of large numbers of
mostly simple physical robots. It is supposed that a desired
collective behavior emerges from the interactions between
the robots and interactions of robots with the environment.
This approach emerged on the grounds of artificial swarm
intelligence as well as the biological studies of insects, ants
and other fields in nature, where swarm behavior occurs.
Researchers have designed tiny robots, inspired by ants, bees,
and cells, envisioned to work together in large swarms or as
programmable materials. Nevertheless, there still exists a
substantial gap between the conceptual designs and the
realized systems. Creating engineered systems with similar
abilities poses challenges in the design of both algorithm and
physical systems that can co-operate at such scale. There is a
vast body of work on algorithms meant to control collectives
of hundreds or even thousands of robots, however, for
reasons such as cost, time, or complexity, they are validated
in simulation only, or on a group of a few 10s of robots. The
research of swarm robotics is to study the design of robots,
their physical body and their controlling behavior. It is
inspired but not limited by the emergent behavior observed in
social insects called swarm intelligence. Relatively simple
individual rules can produce a large set of complex swarm
behavior. A key-component is the communication between
the members of the group that build a system of constant
feedback. The swarm behavior involves constant change of
individuals in cooperation with others, as well as the behavior
of the whole group. The two other similar fields of study
which more or less have the same team structure and almost
the same goals are multi-robot exploration and multi-robot
coverage.

Unlike distributed robotic system in general, swarm robotics
emphasizes on the large number of robots, and promotes
scalability for instance by using only local communication.
That local communication for example can be achieved by
wireless transmission systems, like radio frequency or
infrared. In the recent study of Harvard university the swarm
robots called Kobots have been designed in which 1000's of
robots can mimic the behavior of natural swarms. Each robot
has the basic capabilities required for an autonomous swarm
robot (programmable controller, basic locomotion, and local
communication), but is made with low-cost parts and is
mostly assembled by an automated process. These swarm
robots can be investigate further to do special tasks which
involves artificial intelligence. They are now only involves
collective behavior although some censors for the movements
and decentralized mechanism is also implemented on those

Volume5, I ssue 10

Published by, www.ijert.org 4

Special Issue - 2017

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICCCS- 2017 Conference Proceedings

robots. Study started with the making of termites like robots
that could build structures much larger than themselves like
the spinifex termite Nasutitermes triodiae in northern
Awustralia, which is 10m high, except they will build the
structures according to us. In the starting of the project there
were two main problems faced by the researchers first is
making even one individual that is capable of doing what a
single termite can do like build structures and move , second
problem arises is how to make those limited robots to
collaborate with each other so that they can achieve the
intelligence that a single individual can't do, the only thing
could be done as to make the robots capable of reacting to the
environmental happenings as the termites do not talk to each
other, they co-operate with each other without talking. The
task was to make the robots which might see the building
pattern and react to that and decide what to build, moreover
not only that what they build must also influence others. By
doing so the robots can communicate with each others in the
environment through a channel and they can work together to
design and construct objects and even repair the same by
looking the building patterns. The robots are made such that
they move and climb over the stairs and build stairs further
on and then climb over those stairs again and so on hence
creating a structure. Now in order to do this, different sensors
are incorporated in the robots like distance sensors, pattern
sensors, sensors of balance, touch sensors. The robots are also
made to carry objects to make structures. To do the collective
work they are programmed to make a particular pattern with
no knowledge of how many robots are working on the
structure and how much the structure is completed so that if
something is destroyed or removed the robots will
automatically build the structure again. The next step is to
make the smaller sized robots which will look like ants and
can do big things like moving the beams, creating complex
structures etc. The robots now have their own computer
systems which can be programmed to do tasks like blinking
flash light like fireflies. Moreover, the robots can synchronize
with each other to create a self-organizing structure. Other
tasks like pattern formation can be done by recreating the
programs in the robots. The plus point of these robots is that
they are programmed identically but they don't behave
identical, there are variations in their behavior like in the
natural systems. They can form the patterns with the existing
codes while at the same time, none of them knowing what the
role they are going to play, they know the goal ,they can
communicate with 10 neighboring robots ,they have no
leaders, no overhead cameras but together they can achieve
the goal. The research is going with the goal of making the
robots small making them work as a single entity
implementing them in the computer systems that can behave
like swarms. The main idea behind the development of
swarm robotics is to solve the problems which cannot be
solved by individual talent to ensure greater possibility of
solving the tasks. Apart from that some others application of
robot swarms include tasks that demand for miniaturization
(nanorobotics, microbotics) like distributed sensing tasks in
micro-machinery or the human body. One of the most
promising uses of swarm robotics is in disaster rescue
missions. Swarms of robots of different sizes could be sent to
places rescue workers can't reach safely to detect the presence

of life via infra-red sensors. On the other hand, swarm
robotics can be suited to tasks that demand cheap designs, for
instance mining tasks or agricultural foraging tasks. Also
some artists use swarm robotic techniques to realize new
forms of interactive art. More controversially, swarms can be
used in military to form an autonomous army. Recently, the
U.S. Naval forces have tested a swarm of autonomous boats
that can steer and take offensive actions by themselves. The
boats are unmanned and can be fitted with any kind of kit to
deter and destroy enemy vessels. Most efforts have focused
on relatively small groups of machines. However, a swarm
consisting of 1,024 individual robots was demonstrated by
Harvard in 2014, the largest to date. Another large set of
applications may be solved using swarms of micro aerial
vehicles, which are also broadly investigated nowadays. In
comparison with the pioneering studies of swarms of flying
robots using precise motion capture systems in laboratory
conditions, current systems enable to control teams of micro
aerial vehicles in outdoor environment using GNSS systems
(such as GPS) or even stabilize them using on-board
localization systems in GPS denied environment. Swarms of
micro aerial vehicles have been already tested in tasks of
autonomous surveillance, plume tracking, and reconnaissance
in a compact phalanx. Besides, numerous works on
cooperative swarms of unmanned ground and aerial vehicles
have been conducted with target applications of cooperative
environment monitoring, convoy protection, and moving
target localization and tracking.

V. MATERIAL & METHODS

A. Flocking Algorithm

Each robot in the swarm periodically emits IR-pulses. The
robots then react (move straight, turn left or turn right)
depending on information from their active and passive IR-
sensors. These sensors are polled periodically and the
returned values are then checked against predefined
thresholds in a simple subsumption architecture (Fig. 1A).
First, the active IR-value for the front sensor is polled to find
out whether there is an obstacle in front. If the value for the
reflected IR-light is above a certain threshold, the robot turns
away in a random direction. This is the basic collision
avoidance of our robots. If there are no objects in its way, the
robot checks the passive IR-values of all sensors. If the front,
left or right sensor is above a certain threshold, the robot
turns away from what is presumably another robot which is
too close. This rule is usually referred to as the separation
rule in flocking algorithms. If there is no other robot too
close, the robot checks the passive IR-values of its left, right
and rear sensors. For every sensor that returns a value that is
above the environmental IR-light threshold but below the
threshold which defines the maximally desired distance to
another robot in that sector, the robot performs a basic vector
addidtion and adds up all turns. It then decides to turn in a
direction depending on whether there were more left or more
right turns. Robots in the rear zone trigger a random turn
reaction. This rule is usually referred to as the cohesion rule
in flocking algorithms. The third rule in flocking algorithms is
usually the alignment rule which generates the common
direction of movement in a flock. Since we wanted our

Volume5, I ssue 10

Published by, www.ijert.org 5

Special Issue- 2017

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
ICCCS- 2017 Conference Proceedings

Fig. 1. A: Simple subsumption architecture depicting the
flocking algorithm. The first decision results in collision
avoidance, the second decision results in robot separation and
the third decision results in flock cohesion and emergent
alignment. Simplified depiction of the perceived IR-values of
other objects (reflected active IR) or flock mates (passive IR)
dependent on their distance to the robot. Thresholds and the
resulting zones for a robot with 4 IR-sensors.

algorithm to be as simple as possible we wanted to exclude
complex communication or image recognition procedures and
implemented a method which generates emergent alignment.
To achieve this we adjusted the thresholds for the cohesion
rule so that robots tend to follow other robots. This is done by
simply shifting the threshold for the rear sensor more
outwards in comparison to the thresholds for the left and right
sensors. Depending on the position and heading of two
approaching robots, one robot will be behind the other robot.
When both robots move, the robot behind will turn towards
the robot in front before the robot in front reacts and turns
around. This creates a leader robot and a follower robot,
purely by chance. These two robots will then move around in
the arena without separating. If the path of these two robots is
blocked by an obstacle or another robot joins the flock, the
arrangement can change instantly. If two robots approach
frontally, they will avoid each other, only to turn back to each
other shortly after, which can create a deadlock situation. To
prevent such situations, we implemented a random-turn
reaction which means that robots will randomly turn either
left or right when avoiding other robots in front.

Check Active Front
sensorizone 1)

Below threshold

Above threshold

Check passive front,
left, right sensors
(zone 2)

Below threshold

Above threshold

¥

Turn left/ right

Eelow threshold

Check passive left,
rightrear sensors
(zones 3 and 4))

After threshold

’ e \
|
(A)

I average robot MMM center of mass

i

1234650678 910111213 14 15 16 17 18 19 20 21 22 23 24 25
flock size [robots]

distance covered [robot.diameters]

VI. CONCLUSION AND FUTURE APPLICATIONS

Swarm Robotics has a very vast field of application in the
present day world and as per its adaptability, versatility,
efficiency in solving day to day problems, and its developing
nature is taken into considerations, it would be safe to say, in
near future Swarm Robotics would take over most of the
tasks that require accuracy, precision, efficiency, and demand
a higher rate of success with lesser effort. Some of the
obvious implementations would be in the military, rescue
operations, location and monitoring of remote areas,
development of Modular space vehicles, Disaster planning,
Risk planning and analysis, Medication and Critical
operations, and much more.

ACKNOWLEDGMENT
This work was supported partly by the mentor(s) assigned to
us by the institution itself.

REFERENCES

[1] https://fen.m.wikipedia.org/wiki/Swarm_intelligence

[2] https://suw.biblos.pk.edu.pl/downloadResource&mld=1139440

[3] http://www.ef.uns.ac.rs/mis/archive-pdf/2011%20-
%20N04/M152011_4_2.pdf

[4] https://en.wikipedia.org/wiki/Particle_swarm_optimization

[5] http://ijcsme.com/docs/papers/May2013/V215201397.pdf

[6] Xin-She Yang, Suash Deb and Simon Fong, “From Swarm Intelligence
to Metaheuristics: Nature-Inspired Optimization Algorithms”

[7]1 Christoph Moeslinger, Thomas Schmickl, and Karl Crailsheim, “A
Minimalist Flocking Algorithm for Swarm Robots”

Volume5, I ssue 10

Published by, www.ijert.org 6

