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Abstract—Along with a significant amount of work on 

benchmark datasets required by trackers, including both long-

term and short-term trackers, there has been a lot of research 

on visual object tracking in computer vision in recent years. 

Evaluation of visual object tracking has been made simpler by 

the development of benchmark datasets and toolkits. With more 

than 80 new datasets appearing in the last two years, 

researchers have access to a wide range of data to test and 

improve their tracking algorithms, leading to more accurate and 

reliable results. However, it is important to ensure that these 

datasets are diverse and representative of real-world scenarios 

to avoid overfitting and biased evaluations. /It is from the same 

view that three cutting-edge visual object tracking datasets—

TREK-150, EgoTracks, and BrackishMOT—will be briefly 

discussed in this survey. In addition, we will contrast the three 

most recent visual object datasets with earlier ones while 

outlining their unique advantages, disadvantages, and additional 

features. Finally, we'll share our expectations for upcoming 

studies. 

 

Keywords— Dataset, Computer Vision, Visual Object 

Tracking. 

I.  INTRODUCTION 

With important applications ranging from robotics [1, 2] to 

augmented and mixed reality [3, 4, 5], visual object tracking 

in computer vision aims to capture the real-world perceptual 

problems faced by AI (artificial intelligence). It has attracted 

significant recent interest as an underserved but highly 

relevant domain of vision. Visual object tracking (VOT) is a 

fundamental vision problem that has been studied for over ten 

years. It involves the task of locating a target object in 

consecutive video frames and has numerous applications in 

several fields. Despite significant progress in recent years, 

VOT remains a challenging problem due to factors such as 

occlusion, motion blur, and changes in lighting conditions. 

However, VOT remains a less exploited computer vision field 

compared to others. This lack of interest is largely caused by 

the lack of a significant tracking dataset for testing and 

training. OTB [6], TrackingNet [7], Got10k [8], and LaSOT 

[9] are a few popular tracking datasets that the community has 

proposed in recent years. However, we find that the strong 

performance that state-of-the-art trackers achieve on these 

benchmarks does not translate well to video, demonstrating 

the need for such a tracking dataset. The distinction between 

first-person views and the more conventional third-person 

views of earlier datasets is what causes this performance gap. 

Some of these include large head movements from the person 

wearing the camera, object manipulations with the hands [10], 

frequent occlusions, quick changes in scale and pose, and 

potential changes in state or appearance. Additionally, first-

person videos are frequently lengthy (sometimes depicting an 

agent or person's entire life), so the volume of the mentioned 

occlusions and transformations scales similarly. This 

significantly increases the difficulty of tracking objects in 

first-person views compared to common scenarios considered 

in previous datasets, and their absence creates a blind spot in 

evaluation. Additionally, detection within tracking becomes 

especially crucial due to frequent object disappearances and 

reappearances.  

Due to the small number and short duration of target 

object disappearances, many previous tracking datasets mainly 

concentrated on short-term tracking in third-person videos, 

which limited the ability to evaluate many of the challenges of 

long-term tracking. Short-term third-person video 

characteristics have also led to designs that rely on subtle 

changes in motion and appearance. 

Notably, re-detection, occlusions, and short-term and 

longer-term tracking have long been recognized as difficult 

for VOT as a field, leading to recent benchmark construction 

efforts [11,12,13, 14] emphasizing these aspects. VOT has 

been continuously looking for new, better solutions to those 

problems, which has paid off because new discoveries are 

constantly emerging. 

This study will focus mostly on:    

- TREK-150 [15] (TrackingEpic-Kitchens-150), which 

is obtained from the large and challenging First Person Vision 

(FPV) dataset EPIC-KITCHENS (EK) (Damen et al., 2018, 

2021); First Person Vision (FPV) is the study and 

development of computer vision techniques that consider 

photos and videos taken by a person who is known as the 

camera wearer and who has a camera mounted on their 

head.TREK-150 provides 150 video sequences, which are 

densely annotated with the bounding boxes of a single target 

object the camera wearer interacts with. 

- BrackishMOT [16] is an underwater MOT dataset 

primarily used for underwater tracking. It can be divided into 

two categories: the more difficult uncontrolled natural 

underwater environments, and controlled environments like 

aquariums [17, 18]. The development of new datasets taken in 

different and more difficult environments is essential to 

advancing research in underwater MOT, and the 

BrackishMOT dataset is a significant contribution to this area. 

- EgoTracks [19], an ameliorated version of Ego4D 

described in [5], is a large-scale, long-term egocentric, or first-

person visual object tracking dataset for training and 

evaluating long-term trackers. It is composed of unscripted, 

in-the-wild, egocentric videos of daily life activities, with 

more than 20,000 tracks from around 6,000 6-minute videos. 

It constitutes the first large-scale dataset for visual object 

tracking in egocentric videos in diverse settings, providing a 

new and significant challenge compared to previous datasets. 

 This survey discusses the three new aforementioned 

datasets. It will contain a general overview of the development 

of visual object tracking and its newly developed datasets, 
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then visual object tracking challenges, and finally eventual 

prospects. 

II. PROGRESS ON VISUAL OBJECT TRACKING 

 

Visual object tracking is the joint spatial-temporal localization 

of objects in videos. Multiple object tracking (MOT) models 

simultaneously detect, recognize, and track multiple objects. 

Without the use of detection or recognition, single object 

tracking (SOT) tracks a single object using an initial template 

that is provided. To study this significant issue, the 

community has developed several well-known benchmarks, 

including OTB [6], UAV [20], NfS [21], TC-128 [22], NUS-

PRO [23], GOT10k [8], VOT [24], TrackingNet [7], and 

most recently TREK-150 [15] BrackishMOT [16] and 

EgoTracks [19]. Long and short-term tracking has gained 

more attention recently, but it presents special difficulties 

because of significant changes in location, displacements, 

disappearances, and reappearances. Some recently discovered 

datasets were crucial for the advancement in research in the 

field of VOT. We'll review three recently proposed datasets 

in this section. 

A. TREK-150 Dataset 

A brand-new dataset called TREK-150[15] has been put 

forth for research on the visual object tracking task, 

following the standard practice in the visual object 

tracking community that suggests setting up a small but 

well-described dataset to benchmark the tracking progress.  

It consists of 150 video sequences with a single target 

object labelled with a bounding box and attributes 

describing the target and scene's visual variation. The 

bounding box localization of hands and labels for their 

state of interaction with the target object, to study the 

performance of trackers in the context of human-object 

interaction is provided. Two additional verb and noun 

attributes are also offered to specify the action taken by the 

subject and the target's class, respectively. Tables 1 and 2 

compare the dataset's key statistics to the tracker 

evaluation benchmarks currently in use.  

 

Table 1 Statistics of the proposed TREK-150 benchmark 

compared with other benchmarks designed for single visual 

object tracking evaluation part 1. 
Attribute

s 

 

Benchmarks 

OTB-

50 
[48] 

OTB-

100 
[49] 

TC-

128 
[50] 

UAV1

23 
[51] 

NUS-

PRO 
[52] 

Nfs  

[53] 

Videos 51 100 128 123 365 100 

Frames 29k 59k 55k 113k 135k 383k 

Min. 

frames 
across 

videos 

71 71 71 109 146  169  

Mean 
frame 

across 

videos 

578 590 429 915 371 3830 

Median 

frames 

across 
videos 

392 393 365 882 300 2448 

Max 3872 3872 3872 3085 5040 20665 

Attribute

s 

 

Benchmarks 

OTB-
50 

[48] 

OTB-
100 

[49] 

TC-
128 

[50] 

UAV1
23 

[51] 

NUS-
PRO 

[52] 

Nfs  
[53] 

frames 

across 
videos 

Frame 

rate 

30 

FPS 

30 FPS 30 FPS 30 FPS 30 FPS 240 

FPS 

Target 

object 

classes 

10 16 27 9 8 17 

Sequence 

attribute 

11 11 11 12 12 9 

Target 
absent 

labels 

X X X X X X 

Labels for  

the 
interaction 

with the 

target 

X X X X X X 

First 

Person 

Vision(FP
V) 

X X X X X X 

Action 

verbs 

n/a n/a n/a n/a n/a n/a 

 

 

Table 2 Statistics of the proposed TREK-150 benchmark 

compared with other benchmarks designed for single visual 

object tracking evaluation part 2 
Attributes 

 
Benchmarks 

VOT- 

[54] 

CDTB  

[55] 

TOTB 

[56] 

GOT-

10k [57] 

LaSOT 

[58] 

TREK-

150 

Videos 60 80 225 180 280 150 

Frames 20k 102k 86k 23k 685 97K 

Min. frames 

across 

videos 

41 406 126 51 1000 161 

Mean frame 

across 

videos 

332 1274 381 127 2448 649 

Median 

frames 

across 

videos 

258 1179 389 100 2102 484 

Max frames 

across 

videos 

1500 2501 500 920 9999 4640 

Frame rate 30 

FPS 

30 FPS 30 FPS 10 FPS 30 FPS 60 FPS 

Target 

object 

classes 

30 23 15 84 70 34 

Sequence 6 13 12 6 14 17 

Target 

absent labels 
✔ ✔ ✔ ✔ ✔ ✔ 

Labels for  

the 

interaction 

with the 

target 

X X X X X ✔ 

First Person 

Vision 

(FPV) 

X X X X X ✔ 

Action verbs n/a n/a n/a n/a n/a 20 

 

B. BrackishMOT Dataset 

The underwater MOT domain has not seen a significant 

increase in novel algorithms for the past decade due to a lack 

of publicly available annotated underwater datasets. This has 
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Fig.  1 Image samples from the Brackish Dataset [30]. In most of the 
sequences containing the small fish class, there are multiple specimens 

forming a school of fish 
 

 

(b) Boxplot showing the 
distribution 

of the traveled distance between 

consecutive frames measured in 

 
(a) Class distribution of the  

(b) brackishMOT 

dataset based on the number 

of bounding boxes. 

 

limited the ability of researchers to develop and test new 

methods for underwater object detection and tracking, which 

are crucial for applications such as marine biology, 

underwater exploration, and search as well as rescue 

operations. Therefore, there is a need for more effort to create 

annotated datasets that can facilitate the development of 

novel algorithms in this domain. These datasets can be 

divided into two categories: controlled environments such as 

aquariums [17, 18] and more challenging uncontrolled natural 

underwater environments. One of the earliest datasets used 

for tracking fish captured in the wild was the 

Fish4Knowledge (F4K) dataset [25].  

The F4K dataset was captured more than a decade ago in 

tropical waters off the coast of Taiwan at a low resolution and 

low frame rate. Two underwater object tracking datasets, 

UOT32[26]and UOT100[27], were published with annotated 

underwater sequences sourced from YouTube videos. A high-

resolution underwater MOT dataset, FISHTRAC [28], was 

recently proposed, but only three training videos (671 frames 

in total) with few objects and little occlusion have been 

published.  

 The BrackishMOT dataset is an important contribution to 

underwater MOT research, as it covers a diverse range of 

underwater ecosystems with less colorful fish and more 

turbid water. By expanding the scope of the research to 

include more diverse environments, the findings will have 

greater applicability and relevance to real-world scenarios, 

enabling researchers to develop more robust and effective 

underwater MOT systems that can be used in a variety of 

settings. 

 

The Brackish Dataset [29] was published in 2019 to advance 

object detection in brackish waters. It consisted of 89 

sequences of manually annotated bounding boxes of six 

coarse classes: fish, crab, shrimp, starfish, small fish, and 

jellyfish. Examples from the original dataset can be seen in 

Figure 1. In Figure 2, two charts illustrate the motion and 

class distribution for the dataset. The crab and starfish classes 

barely move compared to the rest and are well-camouflaged. 

The class distribution presented in Figure 2b shows that the 

dataset is imbalanced with few occurrences of the shrimp, 

fish, and jellyfish classes. As the small fish class exhibits 

erratic motion and appears in groups, it is deemed the most 

interesting class with respect to MOT. 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

Fig. 2 Plots describing the composition of the brackishMOT dataset with 

respect to motion and class distribution. For both plots, the data is from all 
the sequences 

C. EgoTracks Datase 

EgoTracks is a large-scale, long-term egocentric single object 

tracking dataset, consisting of a total of 22.42K tracks from 

5.9K videos. Egocentric video datasets have been introduced 

in the past decades [5]，[30，31, 32, 33, 34]. offering a host 

of interesting challenges such as activity recognition [35], 

[36], [37], [38], anticipation [39, 40, 41], video 

summarization [42], [31], [43], [44], human-object 

interaction [45], episodic memory [5], the visual query [5], 

and camera-wearer pose inference [46]. To tackle its 

challenges, tracking is leveraged in many methodologies [5], 

[47], [43], [45] yet few works have been dedicated to this 

fundamental problem on its own. However, those that have 

started to recognize the challenges of egocentric object 

tracking [15], [48] have started to recognize the challenges at 

smaller scales. 
EgoTracks is a large-scale testbed for developing tracking 

methods dedicated to egocentric videos. It is annotated on a 

subset of Ego4D [5]. Ego4D's baseline approach relies 

heavily on tracking methods such as Siam-RCNN and KYS 

for global and local tracking. It proposes many novel tasks, 

such as Episodic Memory, with tracking identified as a core 

component. EPIC-KITCHENS VISOR [13] was introduced 

concurrently, annotating short-term (12 sec on average) 

videos from EPIC-KITCHENS with instance segmentation 

masks. EgoTracks offers multiple unique values 

complementary to EPICVISOR: long-term tracking (6 min 

vs. 12 sec), significantly larger-scale (6.9k video clips vs. 

158), and more diversified video sources (80+ scenes vs. 

kitchen-only). This task is closely related to long-term 

tracking, as finding an object in a video given a visual 

template is identical to the re-detection problem in the long-

term tracking literature. In addition to a larger scale than 

previous datasets, the scenarios captured by EgoTracks 

represent a significantly harder challenge for SOTA trackers, 

suggesting room for improved tracking methodology. 
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Table 3 Object tracking datasets comparison 
Datasets   Attributes    

 Video 

Hours 

Avg. 

Length 

(s) 

Ann. FPS Ann. 

Type 

Egocentric SOTA 

(P/AO) 

ImageNet-

Vid [63] 

15.6 10.6 25 mask No  

YT-VOS 

[78] 

5.8 4.6 5 mask No -/83.6 

[30] 

DAVIS 17 

[61] 

0.125 3 24 mask No    -/86.3 

[7] 

TAO [14] 29.7 36.8 1 mask No  

UVO [74] 2.8 10 30 mask No -/73.7 

[58] 

EPIC-

KITCHENS 

VISOR [13] 

36 12 0.9 mask Yes -/74.2 

[58] 

GOT-10k 

[31] 

32.8 12.2 10 bbox No -/75.6 [9] 

OxUvA [69] 14.4 141.2 1 bbox No  

LaSOT [20] 31.92 82.1 30 bbox No 80.3/- [9] 

TrackingNet 

[57] 

125.1 14.7 28 bbox No 86/- [9] 

EgoTracks 602.9 367.9 5 bbox Yes 45/54.1 

 

III. CHALLENGE FOR PRACTICAL VISUAL TRACKING 

SYSTEM 

Visual tracking is difficult due to the complex and 

dynamic nature of real-world environments. These challenges 

can be classified into two types: robustness-related, and 

efficiency related. The robustness challenge requires a visual 

tracker to achieve high-accuracy results. However, the target's 

appearance in a video sequence can suffer from changes due 

to occlusion, deformation, fast motion, motion blur, rotation, 

being out of view, distractor effects, scale variation, and 

illumination change. Deep features can help alleviate these 

issues, but tracking performance is still poor in the presence of 

occlusion, objects out of view, and distractor objects. The 

most important details are that, in both occlusions and out of 

view, the target object may disappear, making it difficult to 

accurately relocate it. Additionally, when distractions that are 

visually similar to the target exist, the tracker may drift to the 

background distractor region. Adversarial attacks can also 

pose a threat to tracking robustness. The attack model adds 

imperceptible noise to the video frames, causing tracking 

failure. To achieve high efficiency, a diverse set of visual 

object-tracking datasets is needed. Deep-tracking approaches 

require huge computing resources, but when deployed on 

mobile devices, they may suffer from heavy time delays in 

reporting the target position, limiting their applications. To 

improve the performance and generalization of the tracker, a 

diverse set of visual objects tracking datasets is needed. The 

newly discovered datasets TREK-150, Braish MOT, and 

EgoTracks help improve tracking efficiency on mobile or 

edge devices while maintaining accuracy. The computer 

vision community has made significant progress in the 

development of algorithms capable of tracking arbitrary 

objects in unconstrained scenarios affected by those issues. 

The advancements have been possible thanks to the 

development of new and effective tracking principles (There 

are no sources in the current document.et al., 2010; Bertinetto 

et al., 2016b; Bhat et al., 2019; Dai et al., 2020; Danelljan et 

al., 2017a; Henriques et al., 2015; Guo et al., 2021; Zhang et 

al., 2020; Yan et al., 2021), and to the careful design of 

benchmark datasets (Fan et al., 2019; Galoogahi et al., 2017; 

Huang et al., 2019; Li et al., 2016; Mueller et al., 2016; Wu et 

al., 2015) and competitions (Kristan et al., 2017, 2019, 2020, 

2021) that will represent the aforementioned challenging 

situations. However, all these research endeavours have 

considered mainly the classic third-person scenario in which 

the target objects are passively observed from an external 

point of view and where they do not interact with the camera 

wearer. It is a matter of fact that the nature of images and 

videos acquired from the first-person viewpoint is inherently 

different from the type of image captured from video cameras 

set to an external point of view. 

IV. FUTURE RESEARCH DIRECTION 

Despite considerable progress in recent years, many problems 

remain unsolved in visual object tracking. In the following, 

we will discuss several potential research directions for visual 

tracking. First, one of the promising directions is to develop 

unsupervised tracking models. Currently, deep trackers 

usually require a large set of labelled videos for training. 

However, the annotation of these videos is expensive and 

time-consuming. Especially, as the model increases in the 

future, more labelled training data is desired, which may 

significantly hinder the further development of visual 

tracking. Addressing this, a potential solution is to develop 

unsupervised tracking models that can automatically learn 

from videos without human labels. Recently, several attempts 

have been made at unsupervised tracking. However, the 

performance of these unsupervised trackers falls far behind 

the supervised visual trackers. Further study is needed to 

investigate unsupervised visual tracking. Second, it is worth 

exploring an effective pre-training strategy for tracking. 

Existing tracking models often leverage the pre-trained image 

classification model for training. However, due to the domain 

gap, it may not be optimal to use the parameters of the image 

classification model. Instead, a dedicated, generic, pre-trained 

tracking model is needed. Self-supervised learning 

approaches can be borrowed to pre-train a universal large-

scale tracking model. When developing new trackers, the pre-

trained tracking model can be directly adopted for feature 

extraction without fine-tuning, simplifying the pipeline for 

new algorithm design. Third, it is crucial to exploit distractor 

information in videos for tracking (Datasets). Currently, most 

trackers aim to localize the target of interest while ignoring 

visually similar distractors in the videos (Datasets), resulting 

in drift or even failure. To alleviate this issue, a future 

direction is to simultaneously locate the target object and 

similar distractors to provide more information for 

distinguishing the target from the background. Finally, to 

improve the inference efficiency of visual trackers, a feasible 

solution is network distillation. Network distillation aims to 

transfer crucial knowledge from the large-scale teacher 

network to a small-scale student network. For visual tracking, 

given a trained teacher tracker, our goal is to train a student 

tracker that performs similarly during inference while 

running much faster. 

V. CONCLUSION 

Initially, extensive experiments were conducted to understand 

the performance of state-of-the-art trackers on the new 

datasets (TREK-150, BrackishMOT and EgoTracks datasets) 

and found that they struggled considerably. Moreover, it was 

found that the most challenging factors for trackers were the 

target being out of view, full occlusions, low resolution, and 
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the presence of similar objects or fast motion in the scene. In 

conclusion, we can say that the findings of the new visual 

object tracking datasets have significant implications for 

future research in the computer vision field in general and 

visual object tracking in particular. Thus, further 

investigations are needed to explore the long-term effects of 

these interventions and to develop more effective strategies 

for addressing this issue 
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