

Survey on Software Solution for High

Performance Packet Processing

Nanda Kishore

Computer Science and Engineering

Ramaiah Institute of Technology

Bangalore-560054

Dr. S. Rajarajeswari
Assitant Professor

Computer Science and

Engineering

Ramaiah Institute of Technology

Bangalore-560054

Dr. Anita Kanavalli
Professor

Computer Science and Engineering

Ramaiah Institute of Technology

Bangalore-560054

Abstract— With the evolution of internet, we see huge spike in

number of network users. The range of generated internet traffic

in most of the various locations is increasing rapidly. Latest

networking environment should deliver high throughput, high

speed, high bandwidth and less delay properties to cope up with

the new era of internet. The traditional data packet acquisition

and distribution operations and packet processing capabilities

may fail to agree with the new standards of faster data packet

processing, in turn leads to data loss, which is costly in packet

processing. This survey contributes on finding a faster packet

processing framework to overcome the challenges faced by

traditional network packet processing frameworks in networking

environments. This paper aims at packet acquisition and

distribution method based on Data plane development kit

(DPDK) and other traditional packet processing models, which

can productively decrease packet loss and successively enhance

the performance rate in networking environment. It can also help

in reducing resource waste in packet acquisition and distribution.

Comparison between the packet processing frameworks show

that Data plane development kit-based network data processing

has better performance compared to Netmap Netsclice and PF-

RING in faster packet processing.

Keywords—Batch processing, dpdk, netslice, netmap, pf_ring

I. INTRODUCTION

Packet processing is a collection of steps and algorithms

which are performed on an incoming or outgoing packet of

information or data which keeps moving between different

network entities. With the rapid and continuous growth of

networking environment and evolution to future internet, the

demand for the efficiency and network traffic analysis is high

priority. But traditional network traffic packet processing is

facing acute efficiency and performance fall due to platform

hardware limitations. One more cause to performance

bottleneck is due to the kernel network protocol stack low

performance. Using traditional network traffic packet

processing also leads to waste in network resources and storage

space. So, demand for high performance solutions to network

traffic processing is high.

Network communication methods have increased their

performance. However, it does not guarantee high packet

processing at high packet arrival rate. There are restrictions on

the construction of network stacks that must be used with

standard hardware. Package performance can work well by

switching network stacks and without the need for very high-

performance hardware. This led to research on how to integrate

hardware and high paced communication systems towards

package performance. 10 Gbit / s includes the highest number

of packets per second, requiring high CPU usage, as well as

support for processing at high packet rates. Current limitations

have to be understood in order to understand what strategies

can help improve the standard hardware for fast network

applications. After that, the introduction of widely suggested

strategies aimed at avoiding or minimizing the problems

caused by these factors makes sense. Two proposed strategies,

the first one is the zero-copy process, which removes more

than one copy of data between the kernel and the user's

location. Most fast package packaging frameworks are used.

The second most recent and emerging process has identified

GPU exploitation to do package processing things. Properties

aimed at enabling faster packet processing are presented and

how the offered strategies to be implemented.

Correspondingly, we study high performance network traffic

processing technologies, which focus on enhancing the

performance of network traffic processing, i.e. Netmap,

Netslice, Pf_ring and DPDK.

II. RELATED WORK

[1] On Manycore systems, it uses NAPI technique to generate

bunch hardware interrupts for batch processing. It provides an

analysis of the ability to process on a standard operating

system and identify major operational barriers in the process

of processing the Linux kernel network stack and also gives

insight to understanding of different operational and overtime

issues that need to be come across. [2] Tests performance can

be improved that can be made with the use of huge pages or

large pages within applications based on the netmap. [3] This

presents the potential impact on the realization of one-way

communication through performance tests and provides an

introductory way to one-way communication using the

Commercial Off the Shelf NIC modified device driver. After

that, to ensure the profitability of the Commercial Off The

Shelf based on a single communication method, it presented

the sample implementation using Intel 82580 NIC and

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS020266
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 02, February-2021

584

www.ijert.org
www.ijert.org
www.ijert.org

PF_RING ZC (Zero Copy). [4] This paper mainly compared

between two trends PF_RING and DPDK on processing

capabilities which focused on receiving and learning more

without referring to the pipeline model and the run to

completion model. [5] This paper reads package processing

based on the Data plane Development kit for ARM-based

systems and Xilinx Zynq and sees improvements in throughput

in packet forwarding. [6] This paper introduces analysis to

assess the capability of the two network packet processing

methods (PF_ring and Netmap) with network card models

(Intel and Chelsio). [7] This paper suggests the speed of the

NFV application can elevate using CPU and FPGA

architecture. The acceleration sotware used here is DPDK,

commonly used in network software, as a visual interface for

CPU and FPGA, by setting ring operation and table viewing to

better utilize the bus between FPGA and CPU.

III. PACKET PROCESSING IN LINUX NETWORK STACK:

MAIN STAGES

When a network interface card (NIC) first receives a data

packet, it transmits it to a circular receiving queue (RX), which

are also called as rings. The data structure, the receiver

descriptor, helps in holding those data packets, till the data

packets are copied from NIC to the main memory. The data

transfer from NIC to main memory is accomplished through the

Direct Memory Access (DMA) operations, without involving

CPU. Thereafter, there needs a mechanism which can help in

notifying the system about the new data packet received and

pass every data packet onto a specially allocated buffer called

as the sk_buff struct. This data structure is assigned for each

data packet and set off free when a packet enters from kernel

space to user space. Disadvantage of this procedure is it

consumes a lot of bus cycles. Another problem with the sk_buff

structs is, it creates overhead as it designed to contain metadata

for all the protocols so that it can be compatible with as many

protocols as possible. But that’s simply not a requisite for

processing specific data packets. Because of this additional

struct, processing performance is brought down. Context

switching is one more factor which negatively affects

performance, because it significantly consumes system

resources.

NAPI was brought in in all Linux kernels since version 2.6

and it uses polling mechanism with addition to interrupts to

overcome the receive live lock problem. NAPI disables the

interrupt and periodically checks for the poll queue for new

devices and collects data packets for packet processing. After

processing of packets are finished, the cards are deleted, and

interrupts.

A. Bottlenecks

1) More number of Bus cycles

In standard Linux kernel stack, assigning Sk_buff struct for

every data packet coming from NIC to main memory

consumes a lot of bus cycles.

2) Direct Memory Access and Memory operation

The operation of network data processing incorporates

copying from network interface card or NIC to main memory

or MM. After central processing unit or CPU access the

metadata of the data packet, it encapsulates the MAC layer and

forwards it to second layer. And the data movement from main

memory to network card is done using the bus. Moreover, CPU

cache are used more considerably because of the memory

access speed. The I/O of the input port are not familiarized and

if the resources are not utilized properly, the queue lock cost

increases and will route into the single output queue.packet

queue buffer management and memory operations

3) packet queue buffer management and memory

operations

Memory management plays a vital role in any processing

environment. In Linux, every allocation of a data structure

requires an allocation function to be executed and network

cards doesn’t use pre-allocated memory buffers to store any

data structures. Hence, formations of jitters are possible due to

recurring memory allocations. Memory management and its

operations are few of the cause.

4) Inability to parallel processing

By one, utilizing serial processing, efficiency of network

packet processing decreases. The Linux network stack

combine all the packets, this leads network traffic to be present

in the same unit and user space created threads cannot acquire

the wanted data from the queue, in turn leads to serial

processing.

IV. BRIEF DISCUSSION OF TECHNIQUES FOR FASTER

PACKET PROCESSING

A. Netmap:

Netmap is one such technology, based on zero copy, which

provides packet processing at higher speeds by reducing

processing slow down costs. Netmap is built on existing OS

features and characteristics, which is independent of hardware

and few devices. In the figure II, it depicts the Netmap

framework. The data stuctures present in Netmap are Netmap

ring and Netmap packet buffers.

1) Netmap packet buffers: The Netmap packet buffers are

pre-allocated and with predefined size. This helps in reducing

cost per packet acquisition and distribution. This data

structures are present in shared memory regions to reduce the

zero copy between kernel to user space.

2) Netmap ring: The Netmap rings are circular queues

which possess buffer related metadata, which are alike to

Network card Rings or NIC rings. The metadata carry

information related to available buffers, count of slots, that a

ring can hold.

3) Netmap_if: It is a data structure which possess all the

interface related info, like number of rings present.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS020266
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 02, February-2021

585

www.ijert.org
www.ijert.org
www.ijert.org

 Fig. 1. Netmap Data structure

When a network card runs in this Netmap specified

approach, the network card will uncouple from the protocol

stack provided by host. A Netmap ring also known as NIC ring

is created by the Netmap, which helps in copying. Netmap will

create two pair of NIC ring or Netmap ring to communicate

between the host protocol stack. The network card directly

moves the data packets onto rings referred to cache use, in the

shared space. The application running in user space will call a

Netmap API, to access the contents of data present in NIC ring

or Netmap ring can straightaway read the cache and start

writing the data packet, in turn helps in less copy between

kernel space to user space and provides zero copy

functionality. Key memory regions of the network card

register and the kernel to applications are not shared, hence

there are no kernel crash caused by the application running in

user space. Among frameworks which supports zero copy,

Netmap tends to be is more secure.

Advantages offered by Netmap are:

 a) supports multiple queue network interface cards

 b) better transmission between network stack, network

interface card and interfaces and

 c) reduced cost

B. NetSlice:

Contrary to the fast packet solutions introduced in the

preceding sections, this method, NetSlice is not taking

advantages of zero copy methods. It is an OS abstraction,

which provides faster package performance and works in the

user-land. It attempts to synchronize the advantages of

package processing systems operating in the user-land, e.g. the

separation of error and configuration. NetSlice deploy on the

advanced integration of components of hardware and software

associated with packet processing. It is based on local

architecture, rather than the temporary fragmentation of

components of computer software and hardware suitable for

package processing, namely memory, CPU cores and NICs.

By making such a distinction, NetSlice reduces the conflict of

resources shared. The working idea of NetSlice is its state of

action, called NetSlice. In figure, a queue of NetSlices are

shown. NetSlice uses a number of multi-lines NICs. To

support the same practice for many believers, multi-line NICs

maintain more than one transmission and receipt queue.

Fig. 2. NetSlice spatial partition

The context of making NetSlice consists of completely

separated resources. Even the NICs and the CPU cores are

treated as separate resources. At-least two CPU cores

contribute to one Netslice. The kernel and user mode

operations done with dividing CPU cores into u-peer and k-

peer, which are Netslice output states.The u-peer CPU helps

perform the user mode functionality. Whereas k-peer CPU is

used for in kernel network stack. The k-peer helps detect

contextual cables and also summaries the required Netslices.

The Netslice help decide which data packets to flow from NICs

to user-land and from user-land to NICs. The packets received

from NICs are lightly processed on k-peer cores and forwarded

to user-land for application use and later using pipe, packets

are processed.NetSlice uses socket’s standard API’s to read,

write and vote different streams of data for other Netslices.

Using ioctl format Netslice expands the API’s. NetSlice uses

encryption and hence reduced delay in system calls and in

number of system calls. Extended API’s can be used for setting

up the system calls. Batch processing helps reduce overhead

caused by each packet. Netslice is not taking advantages of

zero-copy operations. It does copy from kernel space to user

space. Establishing zero-copy also improve NetSlice

performance. However, it is not included in the frame, as it will

limit the load.

C. PF_RING

PF_RING is one more such framework which implements

zero-copy method between the kernel space and the user space.

It was invented by Luca. It provides fast network packet

acquisition and distribution framework. It attains fast packet

processing with the help of PF_RING buffers, which are

present in shared memory region which is common to user

space and kernel space. This PF_RING buffers are pre-

allocated, in which helps in reduce cost per network packet

memory assignment and un-assignment.

The main element present in PF_RING’S framework are:

1) kernel module: It helps in copying data from network

card to PF_RING circular queue.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS020266
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 02, February-2021

586

www.ijert.org
www.ijert.org
www.ijert.org

2) PF_Ring aware drivers: It helps in increasing the

performance by using exclusive drivers to access the network

cards.

3) PF_Ring user-space library: It helps in accessing

PF_RING module present in kernel from applications running

in user space.

The PF_RING uses exclusive device drivers, called as Direct

NIC access or DNA, for gaining fast network data packet

processing without the involvement of central processing unit

or CPU, by using system calls. PF_RING uses mapping from

NIC memory to user space memory and helps transmission

between network card and applications running in user space.

The network data packets are sent from network card to user

land, without the operations of PF_RING module or Linux

kernel. Then zero copy happens by doing Direct memory

access from the NIC Network process unit and kernel data

packet buffer is copied.

Some of the drawbacks with using PF_RING are:

a) System crash are possible due to misusing memory

addresses by NIC’s direct memory access.

b) Only one application can run at a time

Fig. 3. PF_RING with DNA driver

D. DPDK

This framework provides set of libraries, developed by Intel

under the open source to accelerate packet processing

workloads. The DPDK framework is different from Linux

kernel network stack. The DPDK framework works

excellently at user space by not entering into the Linux kernel

network protocol stack to decrease information copying and

make full dominance over provided hardware. The

applications run at user space and they use DPDK set of

libraries and poll mode drivers at user space to acquire and

distribute data packets, when new data packets enter network

card in the system, the new data packets are transferred directly

from network card to the applications running in user space

without using Linux network stack.

DPDK implements either in run to completion model or

pipeline model. With the system with many processing cores.

The idea in run to completion model is to poll the network card

and process packets and transmit from and to the same network

ports, attached to the cores. In run to completion model all the

cores work to complete a common application code. Whereas

in pipeline model, only one core is used for receiving and

transmitting the data packets from network card. It makes use

of ring queue from Librte_ring to pass this data to other cores

to process the packets and in pipeline model, cores can work

on different application codes.

1.1) Environment Abstraction Layer (EAL): EAL builds

environmental specific libraries. It acts as the abstraction

Layer, so that the applications running in the user land
have no clue on the environments it is running on. By

using the interface provided by EAL, applications can

gain access to hardware and the resources.

More specifically, services provided by EAL are

a) DPDK loading and launching.

b) Does core affinity

c) System memory allocation and reservation

d) Helps in communicating with the PCI bus

e) Interrupt handling

1.2 Core Components: The core components help in attaining

faster packet processing provided by DPDK with the help

of set of libraries offered.

a) Librte_eal: meant to hide system or OS specifics from

common upper layers.

b) Librte_ring: It is a circular buffer, which is the queue

used to pass data between threads and processes.

c) Librte_mempool: It is a memory pool manager,

which sets up pool of memory buffer and uses for

packet processing.

d) Librte_mbuf: It is the structure used to hold the

packet information.

e) Librte_pmd: It helps in adding and configuring all the

supported network cards in DPDK.

f) Librte_Timer: It is a timer manager, which uses

Hpatch timers for various routines and helps in

scheduling functions.

1.3 DPDK Strategies for high performance packet processing:

a) It uses pre-supplied memory bufferes called as mbuf.

It stores both meta-data aswell as the actual data. And it

requires only one allocation per packet.

b) Provides cores with their own cache memory and help

reduce the access to the shared pool ring memory, which can

be more efficient with the CPU.

c) It uses circular rings, used as a queue. It has more

advantages over linked list. Besides, it reduce the time required

to do more time-consuming tasks.

d) Reduces further disruption by using Poll Mode

Drivers.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS020266
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 02, February-2021

587

www.ijert.org
www.ijert.org
www.ijert.org

Fig. 4. DPDK major components

V. COMPARISON BETWEEN DIFFERENT FRAMEWORKS

VI. CONCLUSION:

In this paper, we went over the internal structure and principles

of software solution for high performance packet processing.

we discussed the main stages of Linux network protocol stack

in network packet processing. The bottlenecks of data packet

processing under traditional network packet processing were

discussed. Considering the inherent bottlenecks, DPDK, a

software solution to a high-speed and high-performance

framework is established. This framework provides significant

data processing capabilities. This study and comparison

between network data packet processing between Netmap,

NetSlice and PF_RING techniques demonstrate that Data

plane development kit is magnificent, which can be used in

network packet processing and further researching.

VII. REFERENCES

[1] Ramneek;Seung-Jun Cha;Seung Hyub Jeon;Yeon Jeong Jeong;Jin Mee

Kim;Sungin Jung “Analysis of Linux Kernel Packet Processing on

Manycore Systems”, TENCON 2018 - 2018 IEEE Region 10 Conference
[2] Aksić;Hasan Redžović;Aleksandra Smiljanić

"Application of huge pages to the netmap platform, Milutin , 2017 25th

Telecommunication Forum (TELFOR)
[3] Jin-Hong Kim;Jung-Chan Na "A study on one-

way communication using PF_RING ZC”, 2017 19th International

Conference on Advanced Communication Technology (ICACT)
[4] Haipeng Wang;Dazhong He;Huan Wang

”Comparison of highperformance packet processing frameworks on N

UMA”, 7th IEEE International Conference on Software Engineering and
Service Science (ICSESS)

[5] Jan Viktorin;Jan Korenek, “Packet Processing on FPGA SoC with

DPDK”, 2016 26th International Conference on Field Programmable
Logic and Applications (FPL)

 CPU -

Affinity

User - space or kernel space Batch - processing Zero - copy Safety Support for parallelism

Netmap Supported user space Supported,

helps decrease overheads

for large batches

Supported, it only requires

swapping of Rx and Tx buffer

indexes between those
interfaces

Supported,

Supported, without lock it spreads

load to available multiple cores by

mapping between Netmap rings
and NIC rings

Netslices supported User space, by providing

simplified path between user

space and NICs for the packets

Supported, by providing

packet send and receive

operations for bulk packets

to decrease overheads

Unsupported,It copies data

between kernel and user space

Supported Supported, it slices the incoming

traffic and provides array of

independent environment for

packet processing

PF_RING Not
supported

It uses ring buffer in the kernel
space and creates mmap to

share it with the program

running in user space

None

Unsupported, but PF_RING
ZC version uses it

Not
supported

Supported, by scaling down with
the no. of cores available

DPDK supported User-space Supported, to support bulk

operations and decrease

context switch overhead

Supported supported Yes, by using per core storage

pool to ease allocation or freeing

without the use of shared
variables

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS020266
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 02, February-2021

588

https://ieeexplore.ieee.org/author/37086518684
https://ieeexplore.ieee.org/author/37086200716
https://ieeexplore.ieee.org/author/37086200716
https://ieeexplore.ieee.org/author/37086200716
https://ieeexplore.ieee.org/author/37086202921
https://ieeexplore.ieee.org/author/37086202921
https://ieeexplore.ieee.org/author/37086202921
https://ieeexplore.ieee.org/author/37086202921
https://ieeexplore.ieee.org/author/37086202921
https://ieeexplore.ieee.org/author/37086519754
https://ieeexplore.ieee.org/author/37086519754
https://ieeexplore.ieee.org/author/37086519754
https://ieeexplore.ieee.org/author/37086519754
https://ieeexplore.ieee.org/author/37086519754
https://ieeexplore.ieee.org/author/37086519173
https://ieeexplore.ieee.org/author/37086519173
https://ieeexplore.ieee.org/author/37086519173
https://ieeexplore.ieee.org/author/37086519173
https://ieeexplore.ieee.org/author/37086519173
https://ieeexplore.ieee.org/author/37086519173
https://ieeexplore.ieee.org/author/37335319300
https://ieeexplore.ieee.org/author/37335319300
https://ieeexplore.ieee.org/xpl/conhome/8643125/proceeding
https://ieeexplore.ieee.org/author/38548472800
https://ieeexplore.ieee.org/author/37086016164
https://ieeexplore.ieee.org/author/37086016164
https://ieeexplore.ieee.org/author/37086016164
https://ieeexplore.ieee.org/author/37332833700
https://ieeexplore.ieee.org/author/37332833700
https://ieeexplore.ieee.org/author/37332833700
https://ieeexplore.ieee.org/document/8249300/
https://ieeexplore.ieee.org/document/8249300/
https://ieeexplore.ieee.org/document/8249300/
https://ieeexplore.ieee.org/author/38548472800
https://ieeexplore.ieee.org/xpl/conhome/8234842/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8234842/proceeding
https://ieeexplore.ieee.org/author/37086062443
https://ieeexplore.ieee.org/author/37086062443
https://ieeexplore.ieee.org/author/37086062443
https://ieeexplore.ieee.org/author/37286329700
https://ieeexplore.ieee.org/author/37286329700
https://ieeexplore.ieee.org/document/7890102/
https://ieeexplore.ieee.org/document/7890102/
https://ieeexplore.ieee.org/xpl/conhome/7885467/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7885467/proceeding
https://ieeexplore.ieee.org/author/37086184103
https://ieeexplore.ieee.org/author/37086184103
https://ieeexplore.ieee.org/author/37086184103
https://ieeexplore.ieee.org/author/37668967400
https://ieeexplore.ieee.org/author/37668967400
https://ieeexplore.ieee.org/author/37668967400
https://ieeexplore.ieee.org/author/37086184062
https://ieeexplore.ieee.org/author/37086184062
https://ieeexplore.ieee.org/document/7883014/
https://ieeexplore.ieee.org/document/7883014/
https://ieeexplore.ieee.org/xpl/conhome/7878273/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7878273/proceeding
https://ieeexplore.ieee.org/author/37085826506
https://ieeexplore.ieee.org/author/37085826506
https://ieeexplore.ieee.org/author/37595345800
https://ieeexplore.ieee.org/author/37595345800
https://ieeexplore.ieee.org/author/37595345800
https://ieeexplore.ieee.org/xpl/conhome/7573873/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7573873/proceeding
www.ijert.org
www.ijert.org
www.ijert.org

[6] Paulo Rocha;Thiago Pinheiro;Ricardo Macedo;Francisco Airton Silva,
“10GbE Network Card Performance Evaluation:

A Strategy Based on Sensitivity Analysis”, 2019 IEEE Latin-American

Conference on Communications (LATINCOM)
[7] Yoshikazu Watanabe;Yuki Kobayashi;Takashi Takenaka;Takeo

Hosomi;Yuichi Nakamura, “Accelerating NFV application using CPU

FPGA tightly coupled architecture”, 2017 International Conference on
Field Programmable Technology (ICFPT)

[8] Wenjun Zhu;Peng Li;Baozhou Luo;He Xu;Yujie Zhang, “Research and

Implementation of High Performance Traffic Processing based on Intel
DPDK”, 2018 9th International Symposium on Parallel Architectures,

Algorithms and Programming (PAAP)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS020266
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 02, February-2021

589

https://ieeexplore.ieee.org/author/37087226067
https://ieeexplore.ieee.org/author/37087226067
https://ieeexplore.ieee.org/author/37086609712
https://ieeexplore.ieee.org/author/37086609712
https://ieeexplore.ieee.org/author/37086609712
https://ieeexplore.ieee.org/author/37061912800
https://ieeexplore.ieee.org/author/37061912800
https://ieeexplore.ieee.org/author/37061912800
https://ieeexplore.ieee.org/author/37070387000
https://ieeexplore.ieee.org/author/37070387000
https://ieeexplore.ieee.org/document/8937974/
https://ieeexplore.ieee.org/document/8937974/
https://ieeexplore.ieee.org/xpl/conhome/8930892/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8930892/proceeding
https://ieeexplore.ieee.org/author/37086334670
https://ieeexplore.ieee.org/author/37086023302
https://ieeexplore.ieee.org/author/37894465500
https://ieeexplore.ieee.org/author/37445136700
https://ieeexplore.ieee.org/author/37445136700
https://ieeexplore.ieee.org/author/37085993999
https://ieeexplore.ieee.org/document/8280131/
https://ieeexplore.ieee.org/document/8280131/
https://ieeexplore.ieee.org/xpl/conhome/8269417/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8269417/proceeding
https://ieeexplore.ieee.org/author/37086549749
https://ieeexplore.ieee.org/author/37086828978
https://ieeexplore.ieee.org/author/37086549699
https://ieeexplore.ieee.org/author/37086826577
https://ieeexplore.ieee.org/author/37086638806
https://ieeexplore.ieee.org/xpl/conhome/8693682/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8693682/proceeding
www.ijert.org
www.ijert.org
www.ijert.org

