
Survey on Object Oriented Matrices

Ms. Soniya S. Dadhania Ms. Avni S Galathiya

M.E Computer Science and Engineering MTech Computer Engineering

 Lecturer Computer Engineering

 R C Technical Institute, Ahmedabad R C Technical Institute, Ahmedabad

Abstract: Software quality estimation in terms of performance

and reliability can be made by using software matrices.

Software matrices are used to calculate various types of

complexities, dependability, coupling, reusability, cohesion

etc., This measures are useful to estimate the quality of the

software because more reusable the software is less time and

cost required to develop new software by use of exiting one. In

this paper we have studied CK matrices suit which contains

Weighted methods per class (WMC), Depth of Inheritance

Tree (DIT), Number of Children (NOC), Coupling Between

Object Classes (CBO), Response for a Class (RFC), Lack of

Cohesion in Methods (LCOM), and other matrices IFANIN,

NIM, NIV. In this paper, Comparison between two projects is

made, one project consist of large number of classes and

another contains comparatively less number classes.

I. INTRODUCTION

A. CK Matrices Suit:

Depth of the Inheritance tree (DIT)

The maximum length from the node to the root of the tree.

 As DIT grows, it becomes difficult to predict behavior of

 a class because of the high degree of inheritance [5].

Number of children (NOC)

Count of the subclasses immediately subordinate to a class

As NOC grows, reuse increases.As NOC grows, abstraction

can become diluted. Increase in NOC means the amount of

testing will increase [5].

Coupling between object classes (CBO)

The number of collaborations listed for a class

As CBO increases, reusability of the class decreases

High CBO values complicate modifications

In general, CBO values for each class should be kept as low

as possible [5].

Response for a class (RFC)

The number of methods that can potentially be executed in

response to a message received by an object

As RFC increases, testing effort increases because the test

sequence grows.

As RFC increases, the overall complexity of the class

increases [5].

Lack of cohesion in methods (LCOM)

Measure of the number of methods within a class that access

the same instance variables

If no methods access the same attributes, LCOM = 0.

As LCOM increases, coupling between methods (via

attributes) increases, and thus class complexity increases [5].

II. EVALUATION

In this report, we have analyzed some metrics by using

Understand 2.6(build 581) tool. In our analysis I have use

two java projects to measure object oriented metrics.

In this paper, we focused mainly LCOM (Percent Lack of

Cohesion), DIT (Max Inheritance Tree), IFANIN (Count of

Base Classes), CBO (Count of Coupled Classes), NOC

(Count of Derived Classes), RFC (Count of All Methods),

NIM (Count of Instance Methods), NIV (Count of Instance

Variables), WMC (Count of Methods), as this tool support

those metrics.

Project -1 details

Classes: 85

Files: 33

Library Units: 513

Lines: 22271

Lines Blank: 997

Lines Code: 18983

Lines Comment: 2987

Lines Inactive: 0

Executable Statements: 10074

Declarative Statements:: 2784

Ratio Comment/Code: 0.16

Lecturer Computer Engineering

1432

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031564

Project -2 details

Classes: 19

Files: 12

Library Units: 49

Lines: 2589

Lines Blank: 113

Lines Code: 2224

Lines Comment: 614

Lines Inactive: 0

Executable Statements: 946

DeclarativeStatements:

:
548

Ratio Comment/Code: 0.28

 Table A and Table B represent project1 and project2

metrics respectively.

TABLE-A

C
la

ss

L
C

O
M

D
IT

IF
A

N
IN

C
B

O

N
O

C

R
F

C

N
IM

N
IV

W
M

C

Class1 100 5 1 5 0 452 2 1 2

Class2 80 5 2 6 0 457 7 3 7

Class3 0 2 1 6 0 19 2 0 2

Class4 0 1 1 2 0 12 0 9 0

Class5 87 5 2 6 0 457 7 5 7

Class6 0 2 1 4 0 20 3 0 3

Class7 0 1 1 2 0 12 0 9 0

Class8 83 5 2 6 0 457 7 5 7

Class9 0 2 1 4 0 20 3 0 3

Class10 0 1 1 2 0 12 0 9 0

 Class11 83 5 2 6 0 457 7 5 7

Class12 0 2 1 5 0 21 4 0 4

Class13 0 1 1 2 0 12 0 10 0

Class14 83 10 2 13 0 914 7 5 7

Class15 0 4 1 10 0 44 5 0 5

Class16 0 2 1 4 0 24 0 10 0

Class17 83 5 2 6 0 457 7 5 7

Class18 0 2 1 5 0 22 5 0 5

Class19 0 1 1 2 0 12 0 10 0

Class20 83 5 2 6 0 457 7 5 7

Class21 0 2 1 5 0 22 5 0 5

Class22 0 1 1 2 0 12 0 10 0

Class23 83 5 2 8 0 457 7 5 7

Class24 0 2 1 7 0 24 7 0 7

Class25 0 1 1 2 0 12 0 10 0

Class26 0 5 1 5 0 452 2 1 2

Class27 83 5 2 6 0 457 7 5 7

Class28 0 2 1 7 0 25 8 0 8

Class29 0 1 1 2 0 12 0 10 0

Class30 83 5 2 6 0 457 7 5 7

Class31 0 2 1 7 0 27 10 0 10

Class32 0 1 1 2 0 12 0 10 0

Class33 84 5 2 6 0 457 7 6 7

Class34 0 2 1 8 0 29 12 0 12

Class35 0 1 1 2 0 12 0 10 0

Class36 84 5 2 6 0 457 7 6 7

Class37 0 2 1 8 0 29 12 0 12

Class38 0 1 1 2 0 12 0 10 0

Class39 84 5 2 6 0 457 7 6 7

Class40 0 2 1 9 0 30 13 0 13

Class41 0 1 1 2 0 12 0 10 0

Class42 84 5 2 6 0 457 7 6 7

Class43 76 2 1 9 0 30 13 2 13

Class44 0 1 1 2 0 12 0 10 0

Class45 84 5 2 6 0 457 7 6 7

Class46 78 2 1 9 0 31 14 2 14

Class47 0 1 1 2 0 12 0 10 0

Class48 87 5 2 6 0 457 7 8 7

Class49 0 2 1 9 0 33 16 0 16

Class50 0 1 1 2 0 12 0 10 0

Class51 85 5 2 6 0 457 7 9 7

Class52 0 2 1 9 0 36 19 0 19

Class53 0 1 1 2 0 12 0 10 0

Class54 60 5 2 7 0 454 4 5 4

Class55 85 5 2 6 0 457 7 8 7

Class56 0 2 1 9 0 37 20 0 20

Class57 0 1 1 2 0 12 0 10 0

Class58 85 5 2 6 0 457 7 8 7

Class59 0 2 1 9 0 37 20 0 20

Class60 0 1 1 2 0 12 0 10 0

Class61 85 5 2 6 0 457 7 9 7

Class62 0 2 1 10 0 42 25 0 25

Class63 0 1 1 2 0 12 0 10 0

Class64 85 5 2 6 0 457 7 10 7

1433

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031564

Class65 0 2 1 10 0 42 25 0 25

Class66 0 1 1 2 0 12 0 10 0

Class67 85 5 2 6 0 457 7 9 7

Class68 0 2 1 9 0 42 25 0 25

Class69 0 1 1 2 0 12 0 10 0

Class70 85 5 2 6 0 457 7 10 7

Class71 0 2 1 9 0 42 25 0 25

Class72 0 1 1 2 0 12 0 10 0

Class73 52 5 2 7 0 454 4 17 4

Class74 55 5 2 7 0 454 4 17 4

Class75 0 2 1 4 0 19 2 0 2

Class76 56 5 2 7 0 454 4 18 4

Class77 0 2 1 5 0 19 2 0 2

Class78 56 5 2 7 0 454 4 18 4

Class79 0 2 1 5 0 19 2 0 2

Class80 96 5 2 8 0 456 6 18 6

Class81 0 2 1 5 0 19 2 0 2

Class82 0 1 1 2 0 12 0 8 0

Class83 80 5 2 8 0 457 7 3 7

Class84 0 2 1 5 0 19 2 0 2

Class85 0 1 1 2 0 12 0 8 0

TABLE B

C
la

ss

L
C

O
M

D
IT

IF
A

N
IN

C
B

O

N
O

C

R
F

C

N
IM

N
IV

W
M

C

Class1 85 7 1

2

6 0 109 5 22 5

Class2 0 1 1 9 0 14 0 0 2

Class3 0 1 1 9 0 14 0 0 2

Class4 0 1 1 9 0 14 0 0 2

Class5 0 1 1 9 0 14 0 0 2

Class6 0 1 1 9 0 14 0 0 2

Class7 0 1 1 7 0 14 0 0 2

Class8 0 1 1 7 0 14 0 0 2

Class9 0 1 1 7 0 14 0 0 2

Class10 0 1 1 7 0 14 0 0 2

Class11 0 1 1 7 0 14 0 0 2

Class12 0 1 1 8 0 14 0 0 2

Class13 0 1 1 8 0 14 0 0 2

LCOM (Lack of Cohesion in Methods):

Research: Chidamber & Kemerer - Lack of Cohesion in

Methods (LCOM/LOCM)

Description: 100% minus average cohesion for class data

members. Calculates what percentage of class methods use

a given class instance variable. To calculate, average

percentages for all of that class'es instance variables and

subtract from 100%. A lower percentage means higher

cohesion between class data and methods.[1] Maximum

LCOM in Table A and Table B is 100 and 85 respectively.

 If LCOM is high, methods may be coupled to one another

via attributes and then class design will be complex. So,

designers should keep cohesion high, that is, keep LCOM

low [2].

Therefore, Project 2 is having better LCOM then Project 1.

Graphical representation of LCOM from table A and table

B.

 TABLE A

 TABLE B

DIT(Depth of Inheritance Tree)

Research: Chidamber & Kemerer - Depth of Inheritance

Tree(DIT)

Description: The depth of a class within the inheritance

1434

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031564

hierarchy is the maximum number of nodes from the class

node to the root of the inheritance tree. The root node has a

DIT of 0. The deeper within the hierarchy, the more

methods the class can inherit, increasing its complexity [1].

Maximum DIT in Table A and Table B is 10 and 7

respectively.

From the above result we can conclude that Project 2 is less

complex and project 1 is more complex.

Graphical representation of DIT from table A and table B.

 TABLE A

 TABLE B

IFANIN (Count of Base Classes)

Research:IFANIN

Description: Number of immediate base classes.[1]

Maximum IFANIN in Table A and Table B is 2 and 1

respectively.
Graphical representation of IFANIN from table A and table B.

TABLE A

 TABLE B

CBO (Count of Coupled Classes)

Research: Chidamber & Kemerer - Coupling Between

Objects(CBO)

Description: The Coupling Between Object Classes (CBO)

measure for a class is a count of the number of other classes

to which it is coupled. Class A is coupled to class B if class

A uses a type, data, or member from class B. This metric is

also referred to as Efferent Coupling (Ce). Any number of

couplings to a given class counts as 1 towards the metric

total [1].

Chidamber & Kemerer suggest that:

1) Excessive coupling between object classes is detrimental

to modular design and prevents reuse.

2) Inter-object class couples should be kept to a minimum.

3) The higher the inter-object class coupling, the more

rigorous testing needs to be[1].

Maximum COB in Table A and Table B is 13 and 26

respectively.

Therefore, we can conclude that the reusability of project 1

is more than that of project 2.

Even though Project 2 is having less no of classes than

project 1, reusablity of project 2 is less then project 1. Thus

we can conclude that, the reusability does not depend on the

number of class and size of code.

1435

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031564

Graphical representation of CBO from table A and table B.

 TABLE A

 TABLE B

NOC (Count of Derived Classes)

Research: Chidamber & Kemerer - Number of Children

(NOC)

Description: Number of immediate subclasses. (i.e. the

number of classes one level down the inheritance tree from

this class)[1].

NOC metric measures the number of direct subclass of a

class. Since more children in a class have more

responsibility, thus it is harder to modify the class and

requires more testing. So NOC with less value is better and

more NOC may indicate a misuse of subclassing[2].

 In our analysis, both project1 and project2 have 0 NOC.

If NOC grows it means reuse increases. On the other hand,

as NOC increases, the amount of testing will also increase

because more children in a class indicate more

responsibility. So, NOC represents the effort required to test

the class and reuse [2].

Project1 and project2 both requires fewer efforts for testing

and have less reusability.

RFC (Count of All Methods)

Research: Chidamber & Kemerer - Response For a Class

(RFC), Lorenz & Kidd - Number of Methods (NM)

Description: Number of methods, including inherited ones

[1].

RFC is the number of methods that can be invoked in

response to a message in a class.

Pressman [3] States, since RFC increases, the effort required

for testing also increases because the test sequence grows. If

RFC increases, the overall design complexity of the class

increases and becomes hard to understand. On the other

hand lower values indicate greater polymorphism. The value

of RFC can be from 0 to 50 for a class[4].

Maximum RFC in Table A and Table B is 914 and 109

respectively.

In our analysis both the projects are having very high RFC ,

so we should reduce the RFC for better maintainability.

Higher the number of RFC more difficult to test and

maintain the class. Thus, complexity of both the project is

high and it is hard to maintain. Project 2 is comparatively

less complex than that of project 1.

Graphical representation of RFC from table A and table B.

 TABLE A

 TABLE B

1436

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031564

NIM (Count of Instance Methods)

Research:NIM

Description: Number of instance methods[1].

Maximum number of NIM in project 1 and project 2 is 25

and 5 respectively.

NIV (Count of Instance Variables)

Research:NIV

Description: Number of instance variables.

Maximum number of NIV for project 1 and project 2 is 18

and 22.

WMC (Count of Methods)

Research: Chidamber & Kemerer - Weighted Methods per

Class (WMC)

Description: Number of local (not inherited) methods[1].

Low WMC indicates greater polymorphism in a class and

high WMC indicates more complexity in the class [2].

In our analysis, maximum WNC in project 1 and project 2 is

respectively 25 and 5. In project 2 all the classes excluding

one has WNC 2 and in 25 classes has WNC 7,24 classes

have WNC 0,and between 25 to 10 WNC is found in 10

classes.

Thus, we can conclude that project 2 has greater

polymorphism then project 1. And project 2 is less complex

then project 1. So, it is hard to maintain project 1 then

project 2.

Graphical representation of WNC from table A and table B.

 TABLE A

 TABLE B

III. CONCLUSION

We have applied the set of matrices defined by CK and

other matrices. By applying these matrices important issues

of complexity, cohesion, dependability, polymorphism and

reusability of any object oriented system can be judged. The

reusability, complexity and maintainability of any OO

system does not depend on the only the one of classes. A

system having less number of classes can be less reusable

and more complex than that of system containing more

classes.

REFERENCES

1. www.scitools.com
2. An overview of Object Oriented Design Metrics, Department

of Computer Science, Umeå University, Sweden

3. Software Engginering by Roger Pressman

4. http://www.refactorit.com/

5. www.adammikeal.org

AUTHORS

S. S. Dadhania has received her B.E. from Atmiya Institute of

Technology and Science, Rajkot, Gujarat in 2009. And She has

completed M.E. in Computer Science and Engg from Gujarat

Technological University, Gujarat in 2012. She is working as a

Lecturer at R C Technical Institute, Ahmedabad, Gujarat. Her

current research interest includes Data Mining and Software

Engineering.

A. S. Galathiya has received her B.E and MTech degrees in 2007

and 2012 in Computer Engineering from Dharmsinh Desai

University, Nadiad, Gujarat, India. Her general research includes

Data Mining and Software Engineering. She is Lecturer at R. C.

Technical Institute of Computer department, Ahmedabad, Gujarat,

India.

1437

Vol. 3 Issue 3, March - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS031564

