
Survey on Methods To Reconfigure

The Instruction Set Processors

 M.Tech Ph.D Scholar,

 CMRIT, Bangalore Jain University

Abstract – In this paper, we are comparing two techniques to

reconfigure the Instruction Set Processors: Dynamically

Reconfigurable RISP and

Expression Grained reconfigurable Array. In Dynamically

Reconfigurable RISP, the reconfiguration can be done during

runtime. For processors with Expression Grained

reconfigurable Array (EGRA), the processor is stalled during

reconfiguration.

Keywords- Dynamically Reconfigurable RISP, Expression

Grained Reconfigurable Array(EGRA)

I. INTRODUCTION
General Purpose processors (GPP) are designed

for general purpose computers. The most important

concern of GPP is the computation speed. GPPs can be

used in embedded systems because of their features such as

flexibility, low cost design, programmability, tools

availability, less time to market etc. The drawbacks of

GPPs are their inefficiency for high performance

computing. In order to accelerate the performance of GPP,

an application specific instruction set extension can be

added to the basic processor. Such a processor is called

Application Specific Instruction Set Processors (ASIPs). In

ASIP, the critical portions of the application can be

executed on Custom Function Unit (CFU).Reconfigurable

Instruction Set processors (RISP) consists of a

microprocessor core that has been extended with the

reconfigurable logic. It is similar to ASIP but instead of

CFU, it contains RFU. The design of a reconfigurable

processor can be divided in two main tasks. The first one is

the interfacing between the microprocessor and the

reconfigurable logic. The second task is the design of the

reconfigurable logic itself. In RISP, the Instruction Set

Architecture (ISA) can be expanded during runtime after

manufacturing. They provide trade off between efficiency

and flexibility. There are different techniques for

reconfiguring instruction set processor- Reconfiguration

during runtime, Reconfiguration by stalling processors etc.

in this paper we are comparing two techniques:

Dynamically Reconfigurable RISP and Expression grained

Reconfigurable Array (EGRA).

II. RELATED WORK

There are several techniques to reconfigure the

instruction set processors. Authors in [4] demonstrate that

combination of multicore processor and reconfigurable

instruction set extensions creates multi- level parallelism

for high performance. ReMAP (Reconfigurable Multicore

Acceleration and Parallelization) [5] uses common RFU

between heterogeneous cores. RFU is loosely coupled with

cores with a fine granularity. The methodology in [6]

customizes a MPSoC platform by a repetitive procedure.

Initially it assigns the tasks to processors and then adds CIs

for the tasks which are on critical path until the selected

path is no longer critical. EGRA is inspired by the

Configurable Computation Acceleration (CCA) structure

proposed by Clark [7]. The CCA is used as standalone

acceleration. The authors in [8] describe a pipelining

scheme for EGRA.

III. DYNAMICALLY RECONFIGURABLE

RISP

In Dynamically Reconfigurable RISP,

reconfiguration can be done during runtime. The

instruction set of RISP is not fixed during design time. It is

essential to change the manner in which code for RISP is

generated. RISP code generation involves code generation

techniques and hardware design techniques. The basic

element of the code generation for a RISP is the High

Level language (HLL) compiler. The HLL compiler will do

the hardware/software partitioning. The fig.1.shows the

generic RISP compiler flow

 Fig.1. Generic RISP Compiler Flow [1]

Kavitha.VParvathy Asokan

1174

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041389

International Journal of Engineering Research & Technology (IJERT)

 In the figure, the white blocks represent traditional

compiler blocks and tools. The grey area represents new

techniques for RISP and black areas represent traditional

hardware synthesis technique. The source code is analyzed

and an internal representation in the form of control and

data flow graph is obtained. This graph consists of basic

blocks, hyper blocks or constructs that facilitates

compilation. The blocks size depends on the architecture of

the processor. During these stages, high level optimization

steps are also done.
 After obtaining the control and data flow graph, the

next step is the identification of instructions

to be

implemented in RFU. This depends on the internal

representation used. There are two techniques for

instruction identification.

Data flow/ general techniques

Ad hoc/ customized techniques

 In the data flow technique, groups of operations can be

combined to obtain a complex instruction. The Ad hoc/

customized

techniques are specialized techniques. In this

technique, special construct in the application is identified

and create a new instruction specifically for that.
 An example for a complex instruction is shown in

fig.2.

 Fig.2. Generation of a complex instruction

[1]

 The next step in the generic RISP compiler flow is the

instruction characterization. This is done to obtain the

estimate of the required parameters without doing complex

synthesis. This can reduce the compilation time. By doing

this, we can obtain the instructions which do not fit inside

the RFU. Such instructions are discarded.
 After instruction creation and characterization, the

instructions can be checked to determine whether there is

any increase in performance. If not, the instruction is

rejected.
 The next step is Instruction Synthesis. It takes the

description of an instruction and generates the

configuration string

for the RFU.

The backend of the compiler performs platform

specific optimizations and outputs the assembly code.

There are three main optimization techniques.

 Manual identification: The programmer elucidates

the code with special compiler directives and

identifies the places where the compiler should

optimize.

 Static identification: the compiler analyzes the

code and identifies the code for optimization.

 Dynamic identification: The code is compiled

initially without optimization and then the code is

profiled to obtain the places of optimization. This

is time consuming but can achieve better results.

The main advantage of this technique is that this can

lead to solutions in which the processor spends most of its

time reconfiguring the RFU. This also reduces the power

consumption.

The main issue faced by the Dynamically

Reconfigurable RISP is related to code generation. It is

also difficult to manage the reconfiguration delay.

IV. EXPRESSION GRAINED

RECONFIGURABLE ARRAY (EGRA)

 Expression Grained Reconfigurable Array consists

of an array of cells consisting of a group of Arithmetic

logic Units (ALUs) with customizable capabilities. These

array of cells are called Coarse Grained cell RAC

(Reconfigurable ALU cluster). The architecture which

embeds it is called Expression Grained Reconfigurable

Array. The RAC is the heart of EGRA. It supports efficient

computation of entire sub expression. In EGRA, each cell

consists of a cluster of ALUs while the CGRA consists of a

single ALU. So the CGRA can perform single operation

only. The EGRA removes the limit on the number of inputs

and outputs. The comparison between EGRA and CGRA is

shown in fig.3

Fig.3. Comparison between EGRA and CGRA

1175

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041389

International Journal of Engineering Research & Technology (IJERT)

The data path of RAC is shown in fig.4.

 Fig. 4. Data path of RAC [2]

The ALU in each cell are organized as rows

connected by switch boxes. The inputs of the RAC are

obtained from the neighboring cell output or from the

output of the cell itself or from a set of constants

The RAC of EGRA consisting of multiple ALU

cluster, memories and multipliers are shown in fig.5.

There are two operational modes for EGRA.

 DMA mode: DMA mode is used to transfer data in

burst to the EGRA and to program the cells and to

read/write from scratchpad memories.

 Execution mode: In execution mode, the control unit

controls the data flow between the cells.

It is possible to interface the EGRA with the extensible

host processor. Such type of processors supports variable

latency custom instructions. When EGRA is executing, the

host processor is stalled until the EGRA completes its

operation, and asserts a “done” signal.

Fig.5. EGRA instance example: a 5 x5 mesh with 15

 RACs, 6 memory cells, and 4 multipliers [2]

The main advantage of using the processor with EGRA is

the stalling of processor while EGRA is executing. So the

power consumption is reduced. The processor with EGRA

also reduces the completion time of an application and

hence it increases the performance. But the drawback is the

increase in area.

V. CONCLUSION

In this paper, we compared two techniques for

reconfiguring instruction set processors: Dynamically

Reconfigurable RISP and Expression Grained

Reconfigurable Array (EGRA). From the investigation, we

obtained that EGRA is having less power consumption and

high performance as compared to Dynamically

Reconfigurable RISP. This is because for the processor

with EGRA, the processor is stalled while the

reconfigurable logic is executing.

VI. ACKNOWLEDGEMENT

 I would like to express my heartfelt gratitude to

my Guide Mrs. Kavitha.V, Associate Prof, Electronics

And Communication Engineering, CMR Institute of

Technology, for her timely advice on the technical support

and regular assistance throughout the project work.

1176

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041389

International Journal of Engineering Research & Technology (IJERT)

REFERENCES

 [1] F. Barat, R. Lauwereins and G. Deconinck, “Reconfigurable

instruction set processors from a hardware/ software perspective”,

Software engineering, IEEE Transactions on, vol.28, no.9, pp.847-
862, 2002.

 [2] Giovanni Ansaloni, Paolo Bonzini, Laura Pozzi,

“EGRA: A Coarse

Grained Reconfigurable Architectural Template”, Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on

Vol.19,

no. 6,

pp

1062 –

1074, 2010.

 [3] F. Barat and R.Lauwereins,

“Reconfigurable Instruction Set

Processors: A Survey”, Rapid system prototyping, 11th

international

workshop, 2000, pp.168-

173.

 [4] Z. Chen, R. N. Pittman, and A. Forin,

"Combining multicore and

reconfigurable instruction set extensions," in Proceedings of the 18th

 annual ACMISIGDA international symposium on Field

programmable

gate arrays, 2010, pp. 33-36.

 [5]

M. A. Watkins and D. H. Albonesi, "ReMAP: A reconfigurable

heterogeneous multicore architecture," in Micro architecture
(MICRO),2010 43rd Annual IEEEIACM International Symposium

on, 2010, pp.497-508.
 [6]

F. Sun, S. Ravi, A. Raghunathan, and N. Jha, "A Framework for
Extensible Processor Based MPSoC Design," Designing Embedded

 Processors, pp. 65-95, 2007.
 [7]

N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner,

“Application-specific processing on a general-purpose core via

transparent instruction set customization,” in Proc. 37th Ann. Int.

Symp. Micro arch.

(MICRO’37), Washington, DC, Dec. 2004, pp.

30–40.
 [8] L. Pozzi and P. Ienne, “Exploiting pipelining to relax register-file

port constraints of instruction-set extensions,” in Proc. Int. Conf.
 Compilers, Arch., Synth. Embed. Syst., San Francisco, CA, Sep.

2005, pp. 2–10.

1177

Vol. 3 Issue 4, April - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS041389

International Journal of Engineering Research & Technology (IJERT)

