
Survey on Lifting based 2-D DWT VLSI

Architectures

S.Srikanth

Assistant Professor

SNS College of Technology

V.Muralidharan

Assistant Professor

Christ the King Engineering College

A.Santhoshkumar

Assistant Professor

SNS College of Technology

Abstract- In this paper, we review recent developments in

VLSI architectures and algorithms for efficient

implementation of lifting based 2-D Discrete Wavelet

Transform (DWT). Lifting scheme technique is used for

Fast implementation of DWT. This method is entirely

based on a spatial interpretation of the wavelet transform.

In this paper, we provide a survey of the architectures

for 2-dimensional DWT. The architectures are

representative of many design styles and range from

highly parallel architectures to DSP-based architectures

to folded architectures

Keywords- Discrete Wavelet Transform, Lifting Scheme,

MIMO,

I. INTRODUCTION

2-D DWT has evolved as essential part of modern

compression system such as JPEG 2000. This is because the

DWT can decompose the signals into different subbands with

both time and frequency information and facilitate to arrive a

high compression ratio [1]. In addition ,a wavelet based

compression system, not only presents superior compression

performance over DCT ,but provides four dimension of

scalabilities resolution, distortion, spatial and color, which are

very difficult to achieve in DCT based compression system. In

a compression system, the function of DWT is to decorrelate

the original image pixels prior to compression step such that

they can be amenable to compression. The computation of

DWT can be done either by convolution based scheme or

Lifting based scheme. The lifting scheme of computation of

DWT has, however, become more popular over the

convolution-based scheme for its lower computational

complexity [2] .The main feature of the lifting-based DWT

scheme is to break up the high pass and low-pass filters into a

sequence of upper and lower triangular matrices and covert the

filter implementation into banded matrix multiplications. Such

a scheme has several advantages, including “in-place”

computation of DWT, integer-to integer wavelet transform,

symmetric forward and inverse transform. The popularity of

lifting-based DWT has triggered the development of several

architectures in recent years. These architectures range from

highly parallel architectures to programmable DSP-based

architectures to folded architectures.

In this paper we present a survey of these architectures. We

provide a systematic derivation of these architectures and

comment on their hardware and timing requirements.

The rest of the paper is organized as follows. In Section II,

We explained about the lifting based DWT. We also present a

Comparison of the hardware and timing complexities of all the

Architectures. In Section III, we present the memory

configuration for 2-dimensional DWT architectures, followed

by descriptions of a few representative architectures and

a comparison of their hardware and timing complexities.

II. LIFTING BASED DWT

In traditional convolution (filtering) based approach for

computation of the forward DWT, the input signal (x) is

filtered separately by a low-pass filter (˜ h) and a high-

pass filter (˜ g). The two output streams are then sub-

sampled by simply dropping the alternate output samples in

each stream to produce the low-pass (yL) and high-pass

(yH) sub-band outputs.

The lifting-based DWT has many advantages over the

convolution based approach. Some of them are as follows.

 Lifting-based DWT typically requires less

computation (up to 50%) compared to the

convolution based approach. However the savings

depends upon the length of the filters.

 During the lifting implementation, no extra memory

buffer is required because of the in-place

Computation feature of lifting. This is particularly

suitable for hardware implementation with limited On-

chip memory.

 The lifting based approach offers integer to integer

transformation suitable for lossless image

Compression.

 In lossless transformation mode, the boundary

extension of the input data can be avoided because

the original input can be exactly reconstructed by

integer to integer lifting transformation.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

1www.ijert.org

III. TWO DIMENSIONAL DWT ARCHITECTURE

Generally, 2D wavelet filters are separable functions. A

straight-forward approach for 2D implementation is to first

apply the 1D DWT row-wise (to produce L and H sub bands)

and then column-wise to produce four sub bands LL, LH, HL

and HH in each level of decomposition. Obviously, the

processor utilization is a concern in direct implementation of

this approach because it requires all the rows be filtered before

the column wise filtering can begin and thus it requires a size

of memory buffer of the order of the image size.

 The alternative approach is to begin the column-processing

as soon as sufficient number of rows has been filtered.

The column-wise processing is now performed on these

available lines to produce wavelet coefficients row-wise. The

overview of the two-dimensional architecture for convolution

based DWT is shown in Fig1: (a). the row module reads the

data from MEM1 performs DWT along the rows and writes the

data into MEM2. The column module reads the data from

MEM2 performs DWT along the columns and writes LL data

to MEM1 and LH, HL, HH data to external memory.

a) Convolution based Architecture

b) Lifting based Architecture

Fig 1: Overview of convolution based and Lifting

based 2-DWT Architectures

A similar approach can be implemented for the lifting scheme

as well. The basic idea of lifting based approach for DWT

implementation is to replace the parallel low-pass and

high-pass filtering of traditional approach by a sequence

of alternating smaller filters. The computations in each filter

can be partitioned into prediction (dual lifting) and update

(primal lifting) stages as shown in Fig1: (b). Here the row

module reads the data from MEM1 performs the DWT along

the rows (H and L) and writes the data into MEM2. The

prediction filter of the column module reads the data from

MEM2, performs column-wise DWT along alternate rows

(HH and LH) and writes the data into MEM2 in [5] (and into

MEM1 in [12]); the update filter of the column module reads

the data from MEM2 in [5] (and MEM1 in [12]), performs

column wise DWT along the remaining rows, and writes the

LL data into MEM1 for higher octave computations and HL

data to external memory. Note that this is a generic

architectural flow and is the backbone of the existing 2D

architectures. An important consideration in the design of

2D architectures is the memory configuration. A trade-off

exists between the size of the internal memory and the

frame memory access bandwidth. The size of the internal

memory is again a function of the way the frame memory is

scanned. In Section A, we describe the existing scanning

techniques along the lines of [14], [13].Then we describe

three representative 2D DWT architectures, namely, the

dedicated architecture for the (4,2) filter [12], the

generalized architecture [5] and the recursive architecture

[8], and compare them with respect to hardware and timing

complexities.

A. Memory Scan Techniques

The memory scan techniques can be broadly classified into

line-based scan, block-based scan and stripe-based scan.

Though most of the existing architectures are based on line

scan, we describe all three techniques to (possibly) facilitate

development of new 2D DWT architectures.

 Line-Based Scan

In line-based scan, the scan order is raster scan. An internal

line buffer of size LN is required, where N is the number

of pixels in a row and L is the number of rows that are required

for that particular filter. A line-based implementation of the

traditional convolution based wavelet transform has been

discussed in great detail in [10]. For lifting based architectures,

the value of L can be determined as in [13] by

considering the data dependency graph (Fig2). This is an

extension of the 1D data dependency graph (Fig1) with a node

now corresponding to a row of pixels. Note that several rows

of data corresponding to R2-R4 and coefficients corresponding

to R1 and R5 have to be stored. When a new row of data

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

2www.ijert.org

corresponding to R6 is available, another column operation

can be initiated. After this column operation, data in R7–R9

are stored for the next column operation. According to the

implementation in [13], the line buffer needs to store six rows

of data. The implementation in [14] as well as that in [11]

requires only four rows of data to be stored. A detailed analysis

of the memory requirements for line scan implementations of

both forward and inverse transforms are presented in [7].

Fig 2: Line based Scan

 Block-based Scan

In block-based scan, the frame memory is scanned

block-by-block and the DWT coefficients are also

computed block-by-block. Figure 3 shows two

configurations of block based methods where the blocks

are scanned in the row direction first. In the non-

overlapped configuration, the blocks are not overlapped

with each other and in the overlapped configuration,

the blocks are overlapped by 2K pixels in the column

direction.

Fig 3: Block Based Scan

Here K = _(L − 1)/2_,where L is the number of DWT filter

taps. In both cases, intermediate data have to be stored

between two adjacent blocks as shown in grey in Fig. 3. The

size of the internal buffer for one level for the non-overlapped

case is LN + LBy. The first term, LN, is due to the

column-wise intermediate data and the second term, LBy is

due to the intermediate data between adjacent blocks in a row.

The size of the internal buffer can be reduced to only

LBy if the column-wise intermediate data is not stored

and instead the data is read from the frame memory as

needed. The size of the internal buffer for the overlapped case

can also be reduced to LBy at the expense of increasing the

number of frame memory reads to N2By/(By−2K) [14].

However, this scheme is not directly applicable to multi-level

architectures. The block-based technique proposed in [11] first

performs filtering operation on neighboring data blocks

independently and later combines the partial boundary results

together. Two boundary post-processing techniques are

proposed - overlap-state sequential which reduces the

buffer size for sequential processing and split-and-merge

which reduces the interprocessor delay in parallel

implementations.

 Stripe-Based Scan

The stripe-based scan is equivalent to the line-based scan

with Bx = N. In other words, the stripe is a very wide block

with width N and height S. As in the case of block-based scan,

there are two categories, namely, the non-overlapped stripe

based scan also referred to as the optimal Z-scan in [13] and

shown in Fig. 4(a) and the overlapped stripe based scan

shown in Fig. 4(b). The non-overlapped stripe-based scan has

an internal buffer of size LN +LS and N2 frame memory

READ accesses. In contrast, the overlapped stripe-based scan

has a significantly smaller internal buffer of size LS and

N2S/(S – 2K) frame memory READ accesses.

Fig 4: Stripe Based Scan

B. (4, 2) Filter Architecture

A dedicated architecture for 2D DWT using the (4, 2) filter

from the Deslauriers-Dubuc family has been proposed by

Ferretti and Rizzo in [12]. The architecture is shown in Fig5. It

consists of two parallel filters to compute the predict and

update values along the rows (Pred-row, Upd-row), two

parallel filters to compute the predict and update values along

the columns, and four buffers A, B, C, D, to hold the

intermediate data to support the pipelined computations.

The buffers are dual-ported and are organized such that words

can be accessed simultaneously.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

3www.ijert.org

Fig 5: Block diagram of (4, 2) Filter Architecture

Each filter consists of multipliers (Lg = 4 for predict

filters and Lh = 2 for update filters), adders, shifters and

internal buffers (proportional to lg and Lh) to streamline the

computations. Pred-row computes on Lg = 4 data, Lg − 1

of which are stored in its internal buffer. It computes the H

values. The Upd-row requires LH = 2 „H‟ values to compute a

L value. It obtains these by reading the last value produced by

Pred-row and storing the other Lh − 1 in internal registers. It

picks up the primary input value from the internal buffer in

Pred-row.

Pred-col performs the same basic operations as Pred-row,

though working on columns. It reads Lg even position H
values along the columns. It produces a new row of wavelet

coefficients for every two rows produces by Pred-row. During

the time Pred-row produces H values for odd-indexed rows,

Pred-col computes on the L values generated by Upd-row. The

architecture utilization is only 50% if we only consider

the computations in the first level. The higher level

computations can thus be easily interspersed with the first level

computations using a RPA-based approach. In fact, once the

unit delay for any level is determined, the schedule can be

easily obtained.

C. Generalized 2D DWT Architecture

 The architecture proposed by Andra et al. [8] Is more

generalized and can compute a large set of filters for both the

2D forward and inverse transforms. It supports two classes of

Architectures based on whether lifting is implemented by one

or two lifting steps. The M2 architecture corresponds to

implementation using one lifting step or two factorization

matrices, and the M4 architecture corresponds to

implementation by two lifting steps or four factorization

matrices. The dataflow of the M2 architecture that is used to

implement the wavelet filters (5,3), C(13,7), S(13,7), (2,6),

(2, 10) is similar to that in Fig1: (b). A block diagram of the

M2 architecture is shown in Fig. 6.

Fig 6: Block Diagram Generalised M2 Architecture

It consists of the row and column computation modules and

two memory units, MEM1 and MEM2. The row module

consists of two processors RP1 and RP2 along with a register

file REG1, and the column module consists of two processors

CP1 and CP2 along with a register file REG2. All the four

processors RP1, RP2, CP1, CP2 in the proposed architecture

consists of 2 adders, 1 multiplier and 1 shifter. For the M2

architecture, RP1 and CP1 are predicting filters and RP2 and

CP2 are update filters.

The data access pattern for the (5, 3) filter with N = 5. RP1

calculates the high-pass (odd) elements along the rows,

y01,y03, while RP2 calculates the low-pass (even) elements

along the rows, y00, y02, y04. . . , CP1 calculates the high-

pass and low pass elements z10, z11. . . z30, z31 . . . along odd

rows and CP2 calculates high-pass and low-pass elements z00,

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

4www.ijert.org

z01, . . . ; z20, z21, . . . ; z40, z41, . . . along the even rows.

Note that CP1 and CP2 start computations as soon as the

required elements are generated by RP1 and RP2.

 The memory modules, MEM1 and MEM2, are both dual

port with one read and one write port, and support two

simultaneous accesses per cycle. MEM1 consists of two banks

and MEM2 consists of four banks. The multi-bank structure

increases the memory bandwidth and helps support highly

pipelined operation. Details of the memory organization and

size, register file, and schedule for the overall architecture with

specific details for each constituent filter have been included in

[5].

The dataflow of the M4 architecture that is used to

implement the filters (9,7), (6,10) is quite different. Since this

is a generalized architecture with the hardware in the row and

column modules fixed, the computations span two passes. In

the first pass, the row-wise computations are performed using

both the modules. Module 1 reads the data from MEM1,

executes the first two matrix multiplications, and writes the

result into MEM2. Module 2 executes the next two matrix

multiplications and writes the result into MEM1. In the second

pass, the transform is computed along the columns. Once

again, Module 1 executes the first two matrix multiplications

and Module 2 executes the next two matrix multiplications.

D. 2D Recursive Architecture

The 2D recursive architecture proposed by Liao et al. [8]

is built by the 1D recursive architecture proposed by the

same authors in [7,8]. As in the 1D case, the computations of

all the lifting stages are interleaved to increase the hardware

utilization. The column processor and the row-processor are

similar to the1D recursive architecture processor. The image is

input to the row-processor in raster scan format. When the

row-processor processes the even rows, the high- and low-

frequency DWT coefficients of the odd rows are shifted into

their corresponding first-in first-out FIFO registers. The use of

two FIFOs to separately store high frequency and low

frequency components results in lower controller complexity.

When the row processor processes the odd lines, the low-

frequency DWT coefficients of the current line and lines

previously stored in the FIFOs are sent to the column

processors. The column-processor starts calculating the

vertical DWT in zigzag scan format after one row delay. The

computations are arranged in a way that the DWT coefficients

of the first stage are interleaved with the other stages. The

arrangement is done with the help of the data arrangement

switches at the input to the row and column processors, and the

exchange switch.

A mix of the principles of recursive pyramid algorithm

(RPA) [6] and folded architecture has been adopted by Jung et

to design a 2D architecture for lifting based DWT in

[9].The row-processor is a 1D folded architecture and does

row-wise computations in the usual fashion. The column

processor is responsible for filtering along the columns at the

first level and filtering along both the rows and the columns at

the higher levels. It does this by employing RPA scheduling

and achieves very high utilization. The utilization of the row

processor is 100%, and that of the column processor is

83% for 5-level decomposition.

E. Parallel and Pipelined VLSI Architecture for

Multilevel Lifting 2-D DWT

Fig 7: Structure for J-Level Lifting 2-D Dwt

 According to the pyramid-algorithm (PA), the low-low sub

band of a given decomposition level is processed further to

generate DWT coefficients of the next higher level, and due to

down-sampling, after each level of decomposition, the

computational complexity steadily decrease by a factor of four.

The amount of hardware resources required to calculate the

DWT coefficients of every higher-level of decomposition

should, therefore, be reduced by a factor of 4, in order to

achieve 100% HUE. The scalable parallel structure [15] for

multilevel DWT, based on the above view point, is shown in

Fig 7. It is comprised of (L+1) PUs, where L= [log4P] The PU

(L+1) is a RPA based structure, while all other PUs are simple

PA units. In each cycle, PU-1 receives a block of samples of an

input row and produces a block of component of a particular

row of sub band matrices [C
1
,D

1
]or[B

1
,A

1
] One row of sub

band [A
1
]is obtained from PU-1 after a gap of R cycles.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

5www.ijert.org

Architecture Multiplier Adder On-chip

memory

Computing

time

control

(4,2) filter [17] 10 8 25N+7[L-2] Tm+2Ta+Ts Moderate

Generalized [5] 4 8 N
2
+34 Tm Moderate

Recursive[7] 8 8 4N 4 Tm+8 Ta Complex

Folded Rpa [9] 9 2 12N 4Tm+4 Ta Complex

MIMO[16] 4M 8M 10M+4N+

(MN/2)

N
2
/M Simple

Table 1: Hardware, memory& Computation Time for various 2-D DWT Architectures

 Each block of sub band output [A
1
] of PU-1 is split into two

blocks of (P/4) samples each, and fed to PU-2 in each cycle, so

that one complete row of [A
1
] is fed in 2R cycles. The

computation of PU- j, (for j>1) is similar to that of PU-1.

Similar to PU-1PU-j can be designed for the computation of jth

level DWT. It consists of (P/2
2j-1

) number of PEs and

calculates the j-th level DWT of an input block of (P/2
2j-2

)

samples in every cycle, where 1<j<L and L=[log4P]. Structures

of PU-j are similar to that of PU-1, except that the size of each

shift register of ID and MD of subcell-2 is 2
j-1

words. Each of

the (PU- j)s uses a separate input buffer (IB j).The structure

(IB j) is shown in fig .It is comprised of two RAM units and

two MULTIPLEXERS. (IB j).receives N’ components in each

cycle and complete a row of A
j-1

in one cycle and complete one

row in 2R’ cycles.

F. MIMO VLSI Architecture for 2-D Lifting-Based

DWT
An efficient multi-input/multi-output VLSI architecture

(MIMOA)[16] is constructed as shown in Fig.8, which meets

the high processing speed requirement with controlled increase

of hardware cost and simple control signals. High processing

speed can be achieved when multiple row data samples are

processed simultaneously. And time multiplexing technique is

adopted to control the increase of the hardware cost for the

MIMOA. Furthermore, the control signals are simple, since the

regular architecture is a combination of simple single-

input/single-output (SISO) modules and two-input/two-output

(TITO) modules. It provides a variety of hardware

implementations to meet different processing speed

requirements by selecting different throughput rates.

G. Comparison of Performances

A summary of the hardware, memory and timing

requirements of a few representative architectures is presented

in Fig 9 . The hardware complexity has been described in

terms of data path components and internal memory size

Fig 8: MIMOA for 2D lifting-based DWT.

We list only the internal memory size since all the

architectures require an External memory of size N2 for input

data of size N×N. The Timing performance has been compared

with respect to the number of clock cycles to compute L levels

of decomposition and the clock period.

Of the five architectures, the architecture in [8] has the

smallest internal memory. This is because [8] is an RPA based

approach that intersperses the computations at the higher

levels with those of the lower levels. The architecture in [8],

on the other hand, computes all the outputs of one level before

starting the computations at the next level and has an internal

memory of size O(N2). The data path complexity of the

architecture in [8] is by far the lowest.

The control complexity of the architecture in [8] is

significantly higher than the others. This is because of the

large number of control signals and switches that are used to

organize the data before sending to the row and column

Computation units.

In terms of the timing performance, the architecture in [5]

is pipelined and has the highest throughput (1/Tm). The

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

6www.ijert.org

architecture in [8, 9] requires the fewest number of cycles since

they are RPA based, though the clock periods are

significantly higher.

The architecture in [12] is specific to the (4,2) filters while

the RPA concept that is applied to the architectures in [8,9]

can be applied to a large set of filters (not just (3,5),

(9,7),Daub-4). The architecture in [9] is essentially a

programmable architecture which supports implementation of a

large set of filters on the same hardware platform.

IV. CONCLUSION

In this paper, we presented a survey of the existing lifting

based implementations of 2-dimensional Discrete Wavelet

Transform. We briefly described the principles behind the

lifting scheme in order to better understand the different

implementation styles and structures. We have presented

several architectures of different flavors ranging from highly

parallel ones to highly folded ones to programmable ones.

REFERENCES

 [1]. S. Mallat, “A Theory for Multiresolution Signal

Decomposition: The Wavelet Representation,” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 11, no. 7,

1989, pp. 674–693.

[2] T. Acharya and P. S. Tsai, JPEG2000 Standard for Image

Compression: Concepts, Algorithms and VLSI

Architectures.John Wiley & Sons, Hoboken, New Jersey,

2004.

[3] W. Sweldens, “The Lifting Scheme: A Custom-Design

Construction of Biorthogonal Wavelets,” Applied and

Computational Harmonic Analysis, vol. 3, no. 15, 1996, pp.

186–200.

[4] I. Daubechies and W. Sweldens, “Factoring Wavelet

Transforms into Lifting Schemes,” The J. of Fourier Analysis

and Applications, vol. 4,1998, pp. 247–269.

[5] K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI

Architecture for Lifting-Based Forward and InverseWavelet

Transform,” IEEE Trans.of Signal Processing, vol. 50, no. 4,

2002, pp. 966– 977.

[6] M. Vishwanath, “The Recursive Pyramid Algorithm for

the Discrete Wavelet Transform,” in IEEE Transactions on

Signal Processing, vol. 42, 1994, pp. 673–676.

[7] H. Liao, M.K. Mandal, and B.F. Cockburn, “Novel

Architectures for Lifting-Based Discrete Wavelet

Transform,” in Electronics Letters, vol. 38, no. 18, 2002, pp.

1010–1012.

[8] H. Liao, M.K. Mandal, and B.F. Cockburn, “Efficient

Architectures for1-D and 2-D Lifting-BasedWavelet

Transform,” IEEE Transactions on Signal Processing, vol. 52,

no. 5, 2004, pp.1315–1326.

[9] G.C. Jung, D.Y. Jin and S.M. Park, “An Efficient Line

Based VLSI Architecture for 2-D Lifting DWT,” in The

47th IEEE International Midwest Symposium on Circuits and

Systems, 2004.

[10] C. Chrysafis and A. Ortega, “Line-Based, Reduced

Memory, Wavelet Image Compression,” IEEE Trans. on Image

Processing, vol. 9, no. 3, 2000, pp. 378–389.

[11] W. Jiang and A. Ortega, “Lifting Factorization-Based

Discrete Wavelet Transform Architecture Design,” IEEE

Trans, on Circuits and Systems for Video Technology, vol. 11,

2001, pp. 651– 657.

[12] M. Ferretti and D. Rizzo, “A Parallel Architecture for the

2-D Discrete Wavelet Transform with Integer Lifting Scheme,”

Journal of VLSI Signal Processing, vol. 28, 2001, pp. 165–

185.

[13] M.Y. Chiu, K.-B. Lee, and C.-W. Jen, “Optimal Data

Transfer and Buffering Schemes for JPEG 20000 Encoder,”

in Proceedings of the IEEE Workshop on Design and

Implementation of Signal Processing Systems, 2003, pp.

177–182.

[14] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Memory

Analysis and Architecture for Two-Dimensional Discrete

Wavelet Transform,” in Proceedings of the IEEE Int. Conf.

on Acoustics, Speech and Signal Processing, 2004, pp. V13–

V16.

[15] Meher, P. K. Mohanty, B. K. and Patra, J. C.(2008)

“Memory Efficient Modular VLSI Architecture for High

throughput and Low-Latency Implementation of Multilevel

Lifting 2-D DWT”. IEEE Transactions on Signal processing,

vol. 59, no. 5, may 2011.

[16] Xin Tian , Lin Wu , Yi-Hua Tan “Efficient Multi-

Input/Multi-Output VLSI Architecture for Two-Dimensional

Lifting-Based Discrete Wavelet Transform,” IEEE

Transactions on Computers, vol. 60, no. 8, August 2011.

[17] M. Ferretti and D. Rizzo, “A Parallel Architecture for the

2-D Discrete Wavelet Transform with Integer Lifting Scheme,”

Journal of VLSI Signal Processing, vol. 28, 2001, pp. 165–

185.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012
ISSN: 2278-0181

7www.ijert.org

