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Abstract- In this paper, we review recent developments in  

VLSI  architectures  and  algorithms  for  efficient 

implementation  of  lifting  based 2-D Discrete Wavelet  

Transform  (DWT). Lifting scheme technique is used for 

Fast implementation of DWT. This method is entirely 

based on a spatial interpretation of the wavelet transform. 

In  this paper,  we  provide  a  survey  of  the  architectures  

for  2-dimensional  DWT. The  architectures  are  

representative  of  many  design  styles  and  range  from  

highly  parallel architectures  to  DSP-based  architectures  

to  folded architectures 

Keywords- Discrete Wavelet Transform, Lifting Scheme, 

MIMO,  

I. INTRODUCTION 

2-D DWT has evolved as essential part of modern 

compression system such as JPEG 2000. This is because the 

DWT can decompose the signals into different subbands with 

both time and frequency information and facilitate to arrive a 

high compression ratio [1]. In addition ,a wavelet based 

compression system, not only presents superior compression 

performance over DCT ,but provides four dimension of 

scalabilities resolution, distortion, spatial and color, which are 

very difficult to achieve in DCT based compression system. In 

a compression system, the function of DWT is to decorrelate 

the original image pixels prior to compression step such that 

they can be amenable to compression. The computation of 

DWT can be done either by convolution based scheme or 

Lifting based scheme. The lifting scheme of computation of 

DWT has, however, become more popular over the 

convolution-based scheme for its lower computational 

complexity [2] .The main feature of the lifting-based DWT 

scheme is to break up the high pass and low-pass filters into a 

sequence of upper and lower triangular matrices and covert the 

filter implementation into banded matrix multiplications. Such 

a scheme has several advantages, including “in-place” 

computation of DWT, integer-to integer wavelet transform, 

symmetric forward and inverse transform. The popularity of 

lifting-based DWT has triggered the development of several 

architectures in recent years.  These architectures range from 

highly parallel architectures to programmable DSP-based 

architectures to folded architectures.  

 

In this paper we present a survey of these architectures.  We  

provide  a  systematic derivation  of  these  architectures  and  

comment  on  their hardware and timing requirements. 

The rest of the paper is organized as follows. In Section II,  

We explained about the lifting based DWT. We also present a 

Comparison of the hardware and timing complexities of all the  

Architectures. In Section III, we present the memory 

configuration for 2-dimensional DWT architectures, followed  

by  descriptions  of  a  few  representative  architectures  and   

a comparison  of  their  hardware  and  timing  complexities. 

II. LIFTING BASED DWT 

In traditional convolution (filtering) based approach for 

computation  of  the  forward  DWT,  the  input  signal  (x)  is 

filtered  separately  by  a  low-pass  filter  (˜  h  )  and  a high-

pass filter (  ˜ g). The  two output  streams are  then  sub-

sampled by simply dropping the alternate output samples in 

each stream to produce  the  low-pass  (yL)  and  high-pass  

(yH)  sub-band outputs. 

The lifting-based DWT has many advantages over the 

convolution based approach. Some of them are as follows. 

 

 Lifting-based  DWT  typically  requires  less   

computation  (up  to  50%)  compared  to  the 

convolution  based  approach.  However the savings 

depends upon the length of the filters. 

 During  the  lifting  implementation, no  extra memory 

buffer  is  required  because  of  the  in-place           

Computation feature of lifting.  This is particularly           

suitable for hardware implementation with limited On-

chip memory. 

 The  lifting  based  approach  offers  integer  to  integer 

transformation  suitable  for  lossless  image 

Compression. 

 In  lossless  transformation  mode,  the  boundary 

extension  of  the  input  data  can  be  avoided  because 

the  original  input  can  be  exactly  reconstructed  by 

integer to integer lifting transformation. 
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III. TWO DIMENSIONAL DWT ARCHITECTURE 

Generally, 2D wavelet filters are separable functions.  A 

straight-forward approach for 2D implementation is to first 

apply the 1D DWT row-wise (to produce L and H sub bands) 

and then column-wise to produce four sub bands LL, LH, HL 

and  HH  in  each  level  of  decomposition.  Obviously, the 

processor utilization is a concern in direct implementation of 

this approach because it requires all the rows be filtered before  

the column wise filtering can begin and thus it requires a size 

of memory buffer of the order of the image size. 

   The alternative approach is to begin the column-processing 

as  soon  as  sufficient  number  of  rows  has  been  filtered.  

The column-wise processing is now performed on these 

available lines to produce wavelet coefficients row-wise. The 

overview of the two-dimensional architecture for convolution 

based DWT is shown in Fig1: (a). the row module reads the 

data from MEM1 performs DWT along the rows and writes the 

data into MEM2.  The column module reads the data from  

MEM2 performs DWT along the columns and writes LL data 

to MEM1 and LH, HL, HH data to external memory. 

 
a) Convolution based Architecture 

 
b) Lifting based Architecture 

 

Fig 1: Overview of convolution based and Lifting 

based 2-DWT Architectures 

A similar approach can be implemented for the lifting scheme 

as well. The  basic  idea  of  lifting  based  approach  for DWT  

implementation  is  to  replace  the  parallel  low-pass  and 

high-pass  filtering  of  traditional  approach  by  a  sequence  

of alternating smaller filters. The computations in each filter 

can be partitioned into prediction (dual lifting) and update 

(primal lifting) stages as shown in Fig1: (b). Here the row 

module reads the data from MEM1 performs the DWT along 

the rows (H and L) and writes the data into MEM2. The 

prediction filter  of  the  column  module  reads  the  data  from  

MEM2, performs  column-wise DWT  along  alternate  rows  

(HH  and LH) and writes the data into MEM2 in [5] (and into 

MEM1 in [12]); the update filter of the column module reads 

the data from MEM2  in  [5]  (and MEM1  in  [12]),  performs  

column wise DWT along the remaining rows, and writes the 

LL data into MEM1  for higher octave computations and HL 

data  to external memory. Note that this is a generic 

architectural flow and is the backbone of the existing 2D 

architectures. An  important  consideration  in  the  design  of  

2D architectures  is  the memory  configuration. A trade-off 

exists between  the  size  of  the  internal  memory  and  the  

frame memory access bandwidth. The size of the internal 

memory is again a function of the way the frame memory is 

scanned. In Section A, we describe the existing scanning 

techniques along the  lines  of  [14],  [13].Then we  describe  

three  representative 2D DWT architectures, namely, the 

dedicated architecture for the  (4,2)  filter  [12],  the  

generalized  architecture  [5]  and  the recursive  architecture  

[8],  and  compare  them with  respect  to hardware and timing 

complexities. 

 

A.  Memory Scan Techniques 

The memory scan techniques can be broadly classified into 

line-based scan, block-based scan and stripe-based scan. 

Though most of the existing architectures are based on line 

scan, we describe all three techniques to (possibly) facilitate 

development of new 2D DWT architectures. 

 Line-Based Scan 

In line-based scan, the scan order is raster scan.  An internal  

line  buffer  of  size  LN  is  required,  where  N  is  the number 

of pixels in a row and L is the number of rows that are required 

for that particular filter. A line-based implementation of the 

traditional convolution based wavelet transform has been 

discussed in great detail in [10]. For lifting based architectures,  

the  value  of  L  can  be determined  as  in  [13]  by  

considering  the  data  dependency graph (Fig2). This is an 

extension of the 1D data dependency graph (Fig1) with a node 

now corresponding to a row of pixels. Note that several rows 

of data corresponding to R2-R4 and coefficients corresponding 

to R1 and R5 have to be stored. When  a  new  row  of  data  
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corresponding  to  R6  is  available, another  column  operation  

can  be  initiated. After this column operation, data in R7–R9 

are stored for the next column operation. According to the 

implementation in [13], the line buffer needs to store six rows 

of data. The implementation in [14] as well as that in [11] 

requires only four rows of data to be stored. A detailed analysis 

of the memory requirements for line scan implementations of 

both forward and inverse transforms are presented in [7]. 

 
Fig 2:  Line based Scan 

 Block-based Scan 

In block-based scan, the frame memory is scanned 

block-by-block and the DWT coefficients are also 

computed block-by-block.  Figure 3 shows two 

configurations of block based methods where the blocks 

are scanned in the row direction first.  In the non-

overlapped configuration,  the  blocks  are not overlapped  

with  each  other  and  in  the  overlapped configuration,  

the  blocks  are  overlapped  by  2K  pixels  in  the column 

direction. 

 

Fig 3:  Block Based Scan 

Here K = _(L − 1)/2_,where L is the number of DWT filter 

taps.  In  both  cases,  intermediate  data  have  to  be  stored 

between  two adjacent blocks as shown  in grey  in Fig. 3. The 

size of the internal buffer for one level for the non-overlapped 

case is LN + LBy. The  first  term,  LN,  is  due  to  the  

column-wise intermediate data and the second term, LBy is 

due to the intermediate data between adjacent blocks  in a row. 

The size of  the  internal  buffer  can  be  reduced  to  only  

LBy  if  the column-wise  intermediate  data  is  not  stored  

and  instead  the data is read from the frame memory as 

needed. The size of the internal buffer  for  the overlapped case 

can also be reduced  to LBy at the expense of increasing the 

number of frame memory reads  to  N2By/(By−2K)  [14].  

However, this scheme is not directly applicable to multi-level 

architectures. The block-based technique proposed in [11] first 

performs filtering operation on neighboring data blocks 

independently and later combines the partial boundary results 

together. Two boundary post-processing techniques  are  

proposed  -  overlap-state  sequential which  reduces  the  

buffer  size  for  sequential processing and split-and-merge 

which reduces the interprocessor delay in parallel 

implementations.   

 Stripe-Based Scan 

The stripe-based scan is equivalent to the line-based scan 

with Bx = N.  In other words, the stripe is a very wide block 

with width N and height S. As in the case of block-based scan, 

there  are  two  categories,  namely,  the  non-overlapped  stripe 

based  scan also  referred  to as  the optimal Z-scan  in [13] and 

shown  in  Fig.  4(a) and the overlapped stripe based scan 

shown in Fig. 4(b). The non-overlapped stripe-based scan has 

an  internal  buffer  of  size  LN  +LS  and  N2  frame  memory 

READ accesses. In contrast,  the overlapped stripe-based scan 

has  a  significantly  smaller  internal  buffer  of  size  LS  and  

N2S/(S – 2K) frame memory READ accesses. 

 
 

Fig 4:  Stripe Based Scan 

B.   (4, 2) Filter Architecture 

A dedicated architecture for 2D DWT using the (4, 2) filter 

from the Deslauriers-Dubuc family has been proposed by 

Ferretti and Rizzo in [12]. The architecture is shown in Fig5. It 

consists  of  two  parallel  filters  to  compute  the  predict  and 

update  values  along  the  rows  (Pred-row,  Upd-row),  two 

parallel filters to compute the predict and update values along 

the columns, and four buffers A, B, C, D, to  hold  the  

intermediate  data  to  support  the  pipelined computations. 

The buffers are dual-ported and are organized such that words 

can be accessed simultaneously. 
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Fig 5:  Block diagram of (4, 2) Filter Architecture 

Each filter consists of  multipliers  (Lg =  4  for  predict  

filters  and  Lh =  2  for  update filters), adders, shifters and 

internal buffers (proportional to lg and Lh) to streamline the 

computations. Pred-row  computes  on Lg =  4  data, Lg  −  1  

of which are stored  in  its  internal  buffer.  It computes the H 

values. The Upd-row requires LH = 2 „H‟ values to compute a 

L value. It obtains these by reading the last value produced by 

Pred-row and storing the other Lh − 1 in internal registers.  It 

picks up the primary input value from the internal buffer in 

Pred-row. 

Pred-col performs the same basic operations as Pred-row, 

though working on columns.  It reads Lg even position H 
values along the columns.  It produces a new row of wavelet 

coefficients for every two rows produces by Pred-row. During 

the time Pred-row produces H values for odd-indexed rows, 

Pred-col computes on the L values generated by Upd-row.  The  

architecture  utilization  is  only  50%  if  we  only consider  

the computations  in  the  first  level. The higher level 

computations can thus be easily interspersed with the first level 

computations using a RPA-based approach. In fact, once the 

unit delay for any level is determined, the schedule can be 

easily obtained.   

C.   Generalized 2D DWT Architecture 

  The architecture proposed by Andra et al.  [8] Is more 

generalized and can compute a large set of filters for both the 

2D forward and inverse transforms. It supports two classes of 

Architectures based on whether lifting is implemented by one 

or two lifting steps. The  M2  architecture  corresponds  to 

implementation  using  one  lifting  step  or  two  factorization  

matrices, and the  M4  architecture  corresponds  to 

implementation  by  two  lifting  steps  or  four  factorization 

matrices. The dataflow of the M2 architecture that is used to 

implement  the  wavelet  filters  (5,3),  C(13,7),  S(13,7),  (2,6),  

(2, 10) is similar to that in Fig1: (b). A block diagram of the 

M2 architecture is shown in Fig. 6. 

 

Fig 6:  Block Diagram Generalised M2 Architecture 

It consists of the row and column computation modules and 

two memory units, MEM1 and MEM2. The row module 

consists of two processors RP1 and RP2 along with a register 

file REG1, and the column module consists of two processors 

CP1 and CP2 along with a register file REG2. All  the  four 

processors RP1, RP2, CP1, CP2  in  the proposed architecture 

consists  of  2  adders,  1 multiplier  and  1  shifter.  For the M2 

architecture, RP1 and CP1 are predicting filters and RP2 and 

CP2 are update filters. 

The data access pattern for the (5, 3) filter with N = 5.  RP1 

calculates  the  high-pass  (odd)  elements  along  the  rows,  

y01,y03, while RP2 calculates the low-pass (even) elements 

along the rows, y00, y02, y04.  .  .  , CP1 calculates the high-

pass and low pass elements z10, z11. . . z30, z31 . . . along odd 

rows and CP2 calculates high-pass and low-pass elements z00, 
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z01, . . . ; z20, z21, . . . ; z40, z41, . . . along the even rows. 

Note  that  CP1  and  CP2  start  computations  as  soon  as  the 

required elements are generated by RP1 and RP2. 

 The memory modules, MEM1 and MEM2, are  both  dual 

port  with  one  read  and  one  write  port,  and  support  two 

simultaneous accesses per cycle. MEM1 consists of two banks 

and MEM2 consists of four banks.  The multi-bank structure 

increases the memory bandwidth and helps support highly 

pipelined operation. Details of the memory organization and 

size, register file, and schedule for the overall architecture with 

specific details for each constituent filter have been included in 

[5]. 

The  dataflow  of  the  M4  architecture  that  is  used  to 

implement the filters (9,7), (6,10) is quite different. Since this 

is a generalized architecture with the hardware in the row and 

column modules fixed, the computations span two passes.  In 

the first pass, the row-wise computations are performed using 

both the modules.  Module  1  reads  the  data  from  MEM1, 

executes  the  first  two matrix multiplications,  and writes  the 

result  into MEM2. Module 2 executes the next two matrix 

multiplications and writes the result into MEM1. In the second 

pass, the transform is computed along the columns.  Once 

again, Module 1 executes the first two matrix multiplications 

and Module 2 executes the next two matrix multiplications. 

D.   2D Recursive Architecture 

The 2D  recursive architecture proposed  by Liao  et al. [8]  

is  built  by  the  1D  recursive  architecture  proposed  by  the 

same authors in [7,8]. As in the 1D case, the computations of 

all the lifting stages are interleaved to increase the hardware 

utilization. The column processor and the row-processor are 

similar to the1D recursive architecture processor. The image is 

input to the row-processor in raster scan format. When the 

row-processor processes the even rows, the high- and low-

frequency DWT coefficients of the odd rows are shifted into 

their corresponding first-in first-out FIFO registers. The use of 

two FIFOs to separately store high frequency and low 

frequency components results in lower controller complexity. 

When the row processor processes the odd lines, the low-

frequency DWT coefficients of the current line and lines  

previously stored  in  the  FIFOs  are  sent  to  the  column  

processors.  The column-processor starts calculating the 

vertical DWT in zigzag scan format after one row delay. The 

computations are arranged in a way that the DWT coefficients 

of the first stage are interleaved with the other stages. The 

arrangement is done with the help of the data arrangement 

switches at the input to the row and column processors, and the 

exchange switch. 

A  mix  of  the  principles  of  recursive  pyramid  algorithm 

(RPA) [6] and folded architecture has been adopted by Jung et 

to  design  a  2D architecture  for  lifting  based DWT  in  

[9].The row-processor  is a 1D  folded architecture and does  

row-wise computations in the usual fashion. The column 

processor is responsible for filtering along the columns at the 

first level and filtering along both the rows and the columns at 

the higher levels. It does this by employing RPA scheduling 

and achieves very high utilization. The utilization of the row 

processor is 100%,  and  that  of  the  column  processor  is  

83%  for  5-level decomposition. 

E. Parallel and Pipelined VLSI Architecture for 

Multilevel Lifting   2-D DWT 

 

Fig 7:  Structure for J-Level Lifting 2-D Dwt 

 According to the pyramid-algorithm (PA), the low-low sub 

band of a given decomposition level is processed further to 

generate DWT coefficients of the next higher level, and due to 

down-sampling, after each level of decomposition, the 

computational complexity steadily decrease by a factor of four. 

The amount of hardware resources required to calculate the 

DWT coefficients of every higher-level of decomposition 

should, therefore, be reduced by a factor of 4, in order to 

achieve 100% HUE. The scalable parallel structure [15] for 

multilevel DWT, based on the above view point, is shown in 

Fig 7. It is comprised of (L+1) PUs, where L= [log4P] The PU 

(L+1) is a RPA based structure, while all other PUs are simple 

PA units. In each cycle, PU-1 receives a block of samples of an 

input row and produces a block of component of a particular  

 

row of sub band matrices [C
1
,D

1
]or[B

1
,A

1
] One row of sub 

band [A
1
]is obtained from PU-1 after a gap of R cycles. 
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Architecture Multiplier Adder On-chip 

memory 

Computing 

time 

control 

(4,2) filter [17] 10 8 25N+7[L-2] Tm+2Ta+Ts Moderate 

Generalized [5] 4 8 N
2
+34 Tm Moderate 

Recursive[7] 8 8 4N 4 Tm+8 Ta Complex 

Folded Rpa [9] 9 2 12N 4Tm+4 Ta Complex 

MIMO[16] 4M 8M 10M+4N+ 

(MN/2) 

N
2
/M Simple 

 

Table 1:  Hardware, memory& Computation Time for various 2-D DWT Architectures 

    Each block of sub band output [A
1
] of PU-1 is split into two 

blocks of (P/4) samples each, and fed to PU-2 in each cycle, so 

that one complete row of [A
1
] is fed in 2R cycles. The 

computation of PU- j, (for j>1) is similar to that of PU-1. 

Similar to PU-1PU-j can be designed for the computation of jth 

level DWT. It consists of (P/2
2j-1

) number of PEs and 

calculates the j-th level DWT of an input block of (P/2
2j-2

) 

samples in every cycle, where 1<j<L and L=[log4P]. Structures 

of PU-j are similar to that of PU-1, except that the size of each 

shift register of ID and MD of subcell-2 is 2
j-1 

words. Each of 

the (PU- j)s  uses a separate input buffer (IB j).The structure 

(IB j) is shown in fig .It is comprised of two RAM units and 

two MULTIPLEXERS. (IB j).receives N’ components in each 

cycle and complete a row of A
j-1 

in one cycle and complete one 

row in 2R’ cycles. 

 

F. MIMO VLSI Architecture for 2-D Lifting-Based 

DWT 
An efficient multi-input/multi-output VLSI architecture 

(MIMOA)[16] is constructed as shown in Fig.8, which meets 

the high processing speed requirement with controlled increase 

of hardware cost and simple control signals. High processing 

speed can be achieved when multiple row data samples are 

processed simultaneously. And time multiplexing technique is 

adopted to control the increase of the hardware cost for the 

MIMOA. Furthermore, the control signals are simple, since the 

regular architecture is a combination of simple single-

input/single-output (SISO) modules and two-input/two-output 

(TITO) modules. It provides a variety of hardware 

implementations to meet different processing speed 

requirements by selecting different throughput rates. 

 

 

G.  Comparison of Performances 

A summary of the hardware, memory and timing 

requirements of a few representative architectures is presented 

in Fig 9 .  The hardware complexity  has  been  described  in  

terms  of  data  path components  and  internal  memory  size 

 

 
 

Fig 8:  MIMOA for 2D lifting-based DWT. 
 

We  list  only  the internal  memory  size  since  all  the  

architectures  require  an External memory of size N2 for input 

data of size N×N. The Timing performance has been compared 

with respect to the number of clock cycles to compute L levels 

of decomposition and the clock period.   

Of the five architectures, the architecture in [8] has the 

smallest internal memory. This is because [8] is an RPA based  

approach  that  intersperses  the  computations  at  the  higher 

levels with  those of  the  lower  levels. The architecture in [8],  

on the other hand, computes all the outputs of one level before 

starting the computations at the next level and has an internal 

memory  of  size  O(N2).  The data path complexity of the 

architecture in [8] is by far the lowest.   

The control complexity of the architecture in [8] is 

significantly higher than the others.  This is because of the 

large number of control signals and switches that are used to 

organize the data before sending to the row and column 

Computation units.   

In terms of the timing performance, the architecture in [5] 

is pipelined and has the highest throughput (1/Tm).  The 
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architecture in [8, 9] requires the fewest number of cycles since  

they  are  RPA  based,  though  the  clock  periods  are 

significantly higher.   

The architecture in [12] is specific to the (4,2) filters while  

the RPA  concept  that  is applied  to  the architectures  in  [8,9]  

can  be  applied  to  a  large  set  of  filters  (not  just  (3,5),  

(9,7),Daub-4). The architecture in [9] is essentially a 

programmable architecture which supports implementation of a 

large set of filters on the same hardware platform. 

 

IV. CONCLUSION 

In this paper, we presented a survey of the existing lifting 

based implementations of 2-dimensional Discrete Wavelet 

Transform.  We briefly described  the  principles  behind  the 

lifting  scheme  in  order  to  better  understand  the  different 

implementation  styles  and  structures.  We have presented 

several architectures of different flavors ranging from highly 

parallel ones to highly folded ones to programmable ones.  
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