
Survey on Different Page Replacement Algorithm

for Flash-Aware Swap Systems

Liya Thomas

Department of Computer

Science and Engineering

SCT College of Engineering

Trivandrum Kerala

Punya Peethambaran

Department of Computer

Science and Engineering

SCT College of

Engineering

Trivandrum Kerala

Lekshmi Radhakrishnan

Department of

Computer

Science and Engineering

SCT College of

Engineering

Trivandrum Kerala

Dr. Jayasudha J. S.

Head of the Department

Department of Computer

Science and Engineering

SCT College of

Engineering

Trivandrum Kerala

Abstract—Flash memory is used widely nowadays. Being a

non volatile storage technique with small size and no moving

parts, they are of great use in small portable electronic

equipments. The physical features of flash memory introduce

limitations also. These distinguishing features of a flash memory

make it important to have replacement algorithms specifically

designed for them. Most of the traditionally followed replacement

techniques aim at improving the hit ratio and not to reduce the

cost of writing. In this paper, a study on different page

replacement algorithms for flash aware swap systems is

discussed.

Keywords—Flash Memory; Page replacement; page eviction;

flash aware swap system; page replacement cost.

I. INTRODUCTION

Nowadays, flash memory has become one of the best

storage media for portable consumer electronics such as digital

cameras, smart phones, music players and laptop computers.

Flash memory is advantageous in several aspects when

compared with the conventional magnetic hard disks. The

attractive features of flash memory are faster data access speed,

light weight and smaller dimensions, better shock resistance,

low power consumption and high capacity. These attractive

features as well as increase in capacity and decrease in price

have made flash memory popular among mobile embedded

systems as a non volatile storage [1]. With several gigabytes of

capacity in a single chip, flash memory is replacing magnetic

disks as a secondary storage of mobile computing devices.

Due to the limited memory resources of portable

consumer electronics, they currently exploit efficient swap

systems considering flash memory as swap space as a cost

effective solution to extend the limited memory space [2]-[4].
Unlike hard disks, the write operations to the flash-based swap

storage require relatively long latency compared to the read

operations. Moreover increased number of write operations

will be accompanied by even more costly erase operations. The

life time of flash memory is shorter than that of a hard disk. In

other words, only a limited number of erase operations can be

performed safely to each memory cell, typically between

100,000 and 1,000,000 cycles [5].

All the write operations to flash-memory-based swap

storage are requested during the page replacement algorithm to

make free page frames for the requested swap in pages. Due to

the out-of-place update scheme adopted to solve the erase-

before-write constraint, intensive write operations could result

in using up the flash-memory-based swap storage quickly and

incurring frequent garbage collection operations with high

energy consumption. In order to reduce energy consumption of

battery-powered portable consumer electronics, the design

principle for designing an efficient page replacement algorithm

for flash-aware swap system is to reduce the number of flash

page write operations.

In this paper, a study on different page replacement

algorithms for flash aware swap systems is presented. The rest

of the paper is organized as follows. Section II gives an

overview of flash aware swap systems. Section III presents the

study of different page replacement algorithms namely Clean

First LRU (CF-LRU), LRU-Write Sequence Reordering (LRU-

WSR), Flash Aware Replacement Strategy (FARS), Cold

Clean First-LRU (CCF-LRU), Flash Aware Buffer

management policy (FAB), Adaptive Cost Aware Buffer

Replacement Algorithm (ACR), Adaptive Double-LRU (AD-

LRU) and Greedy page replacement algorithm. Section IV

presents a comparison of these algorithms and Section V

contains the conclusion.

II. BACKGROUND

In this section, a brief overview of flash memory and flash-
aware swap system is presented.

A. FLASH MEMORY

Flash memory is a type of non volatile computer

storage chip. Flash memory can be erased very quickly by

electrical means. The name „FLASH‟ was chosen since it

reminded its inventors of the speed of flash on a camera.

1) TYPES OF FLASH MEMORY

There are two types of flash memory, the NOR flash

memory and the NAND flash memory. NOR performs slower

sequential read and write operations than the NAND but

achieves very fast random access. NOR flash memory is

2679

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21373

suitable for code execution and storage. NAND type is most

suitable for mass data storage [6]. NAND flash memory can

store more data in smaller silicon area resulting in lower cost

per bit. The NAND architecture is very compact.

2) PROPERTIES OF FLASH MEMORY

a) Endurance: Endurance describes the number of times

the media can be erased and rewritten. Flash memory

deteriorates over time. A proper flash management can

considerably slow down this process.

b) Data Retention: Data retention describes how long

the flash media can retain data before it becomes unreliable.

Flash get used up over time after repeated writing and erasing

operations shortening the data retention.

3) NAND FLASH MEMORY

 NAND flash memory is organized by many blocks,

and each block contains a fixed number of pages. As it can be

seen in figure 3.1, each page consists of 512 bytes in the main

area and 16 bytes in the spare area. The main area is usually

used for storing data, while the spare area is often used to store

management information and error correction code which

corrects errors when reading and writing.

Figure 3.1 The architecture of flash memory

A NAND flash memory provides three basic

operations: read, write, and erase. The read operation fetches

data from a target page, while the write operation writes data to

a page. The erase operation resets all the values of a target

block to 1. Namely, the granularity of erase operation is a

block, while the granularity of read/write operation is a page.

However, flash memory exhibits a number of unique

characteristics which might have a significant influence on

energy consumption of traditional page replacement algorithms

customized for magnetic disk directly implemented for flash-

aware swap system. First, flash memory adopts out-of-place

update scheme to solve the erase-before-write constraint of

flash memory. Namely, once a page is written, it should be

erased in advance before the subsequent write operation is

performed on the same page. Second, the cost of flash page

write operation is much higher than that of flash page read

operation in terms of latency and energy consumption.

B. FLASH-AWARE SWAP SYSTEM

Almost every modern OS makes use of additional

swap space in order to supplement the limited physical

memory space. The portable consumer electronics currently

exploit efficient swap systems considering flash memory as

swap space as a cost effective solution to extend the limited

memory space [7]. However, there are some limitations for

flash memory. First, it does not support in-place update of

pages, that is, a page in a flash memory cannot be overwritten

before it is erased. Second, the number of erase operations

allowed to be performed for each block is limited. Also it takes

longer time to erase a block.

To relieve these drawbacks, one of the common

practices used for flash memory based secondary storages is to

employ a thin software layer called Flash Translation Layer

(FTL). Since FTL emulates the conventional hard disks

transparently, most systems do not require any modification to

the kernel in order to build file systems or swap space on top of

flash memory based secondary storages. FTL also performs

garbage collection to reclaim free pages by erasing appropriate

blocks. In addition, FTL should deal with power-off recovery

because there could be unexpected power-outages any time in

mobile embedded systems.

But the kernel or FTL can sometimes make bad

decision because FTL has no access to kernel level information

and kernel is not aware of flash memory states. For example,

although there are many invalidated page slots in the swap area

due to process termination, unmapped anonymous pages, and

page slot release by the kernel, such information is not readily

available to FTL. This will result in a situation where FTL

uselessly copies those pages during garbage collection,

considering them as valid.

Some functions of FTL are even unnecessary for swap

system. For instance, the comprehensive power off recovery is

not necessary for swap system, since the contents of page slots

are meaningless after the system restarts. For the same reason,

it is not required to preserve mapping information managed by

FTL. This inefficiency can be avoided by turning off useless

functions of FTL and providing communication channels

between the kernel and FTL. However, this requires

modification of both layers and incurs communication

overhead. Moreover, the extra mapping performed inside FTL

is redundant if the page table entry (PTE) points to the physical

location of page slot directly. Hence a novel flash-aware swap

system called FASS is introduced.

In FASS, the kernel manages NAND flash memory

based swap space directly without the use of an intermediate

layer such as FTL.

III. PAGE REPLACEMENT ALGORITHMS FOR

FLASH AWARE SWAP SYSTEMS

A. Clean First LRU (CFLRU)

S.Y. Park and D. Jung in [8] proposed the Clean First

LRU (CFLRU) replacement policy which takes into

consideration the imbalance in the cost of read and write

operations of the flash memory when replacing pages. The

main idea of CFLRU is to keep a certain amount of dirty pages

intentionally in page cache to reduce the number of flash write

operations. Thus preventing the overall performance from

being significantly affected due to the degraded cache hit rate.

CFLRU is the first replacement algorithm proposed for flash

memory.

2680

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21373

CFLRU is a modification of the LRU algorithm.

CFLRU divides the LRU list into two regions namely the

working region and the clean-first region. The working region

consists of recently used pages and most of cache hits are

generated in this region. The clean-first region consists of

pages which are candidates for eviction [8]. Inorder to save the

flash write cost CFLRU selects a clean page from the clean-

first region for eviction. In the absence of a clean page in this

region, a dirty page from the end of the LRU list is selected for

eviction.

The size of the clean-first region is called a window

size, w. The window size should be properly adjusted as the hit

rate depends on it. The hit rate may fall dramatically if the

window size grows too large.

B. LRU-WRITE SEQUNCE REORDERING (LRU-WSR)

H. Jung et al. proposed LRU-WSR with the objective

of reducing the number of flushes of dirty pages during page

replacement [5]. The strategy used to achieve this objective is

delaying evicting the page which is dirty and has high access

frequency as possible [5]. Even though this strategy may

reduce the hit ratio when compared to that of LRU, it

effectively reduces the number of page writes and erases. As a

result, it increases the overall performance of the flash memory

based storage system.

Write Sequence Reordering (WSR) policy is used in

this algorithm to overcome the limitations of CF-LRU. Basic

scheme of WSR is as follows:

 Use cold-detection algorithm to judge whether the
page is cold or not.

 Delays flushing dirty pages which are not regarded as
cold.

LRU-WSR uses a page list and an additional flag

known as cold flag. When a dirty page is chosen as a candidate

for eviction, its cold flag is checked. In case it is not set, the

page is moved to the MRU position of the buffer list after

setting the flag and another candidate page is selected from the

LRU position of the buffer list as victim. If the candidate page

is dirty and its cold flag is set, the page is regarded as a cold

dirty page, and is flushed into flash memory to avoid excessive

decrement of the hit ratio. If a candidate page is clean, it is

selected as a victim without checking the Cold flag. When a

dirty page in a buffer list is referenced, the page is moved to

the MRU position and its cold flag is cleared. WSR is heuristic

algorithm and it effectively reduces the page writes and erases

of flash memory without much degradation of hit-ratio.

C. Flash Aware Replacement Strategy(FARS)

Ohhoon Kwon. et al. proposed an algorithm called

Flash Aware Replacement Strategy for NAND flash memory

based embedded systems [9]. FARS exploits three levels of

LRU lists for maximizing the hit ratio and minimizing the page

replacement cost. In this method they divided the LRU list into

three lists namely L1, L2 and L3 list. The size of L1, L2 and

L3 are SL1, SL2 and SL3 respectively. The L1 list is used to

maintain frequently accessed pages, and the L2 list is for pages

not accessed frequently or pages accessed first.SL is the total

number of pages in the memory which is the sum of SL1 and

SL2. L3 is known as a ghost list which stores the information

of pages replaced from L2. As it does not store the contents of

pages but just the metadata of the evicted pages, it is called the

ghost list. The sum of SL2 and SL3 is equal to SL.

When a page fault occurs, one of the pages in L2 is

chosen as the victim and then a new page is stored in L2 if the

page is accessed first. If the new page is resident in the ghost

list, it is stored in the L1 list since the page is accessed again

recently.

A Replacement Sequence Reassignment (RSR)

strategy is used by FARS to reduce early eviction of clean

pages. The basic idea of RSR is the following [9]:

1) Use a reference pattern detection algorithm to judge

whether a page is read or write intensive.

2) If a dirty page is turned out to be write intensive, its

eviction is delayed. Otherwise, the page is evicted by

its ordinary priority.

To detect the reference pattern of a dirty page a flag

called “RP-flag” is used. It changes when a read or a write

reference occurs. The write intensive pages are kept in the main

memory for long time in order to improve the performance.

However, if there are no read or read-intensive pages, the write

or write intensive pages are evicted from the L2 list. Also, if

the dirty page resides in the L2 list over a predefined threshold

time, the page should be evicted from the L2 list to guarantee

the consistency of data in case of unexpected power off.

D. Cold-Clean-First LRU (CCFLRU)

Z. Li, P. Jin et.al introduced a new buffering

algorithm which enhances the previous CFLRU and LRU-

WSR methods by differentiating clean pages into cold and hot

ones, and evicting cold clean pages first and delaying the

eviction of hot clean pages [10]. In order to reduce the write

count incurring in the replacement process, this algorithm tries

to first evict clean pages with low access frequencies. If no

such clean pages are there, it will evict the dirty pages with low

access frequencies rather than evicting clean pages with high

access frequencies. The cold-detection mechanism used is

same as that of LRU-WSR.

The main idea of the CCF (Cold Clean First) strategy

is as follows:

 It uses the cold-detection algorithm to judge whether
the page is cold or hot.

 It evicts cold clean page preferentially as possible,
especially for clean page accessed only once recently.

 If there is no cold clean page, cold dirty page is evicted
instead of hot clean page.

The CCF-LRU algorithm maintains two LRU lists

[10], namely mixed LRU list and cold clean LRU list. The

mixed LRU list contains L1 pages and it maintains hot clean

pages and dirty pages regardless of the status of its cold flag.

The cold clean LRU list contains L2 pages and is used to

maintain cold clean pages. If the buffer contains a total of L

pages, the sizes of the two LRU lists are both from 0 to L.

Moreover, the sum of L1 and L2 is L. By default the first

referenced pages are regarded as cold are inserted into the cold

clean LRU list with a cold flag set. When the page in the cold

2681

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21373

clean LRU list is referenced again or becomes dirty, it will be

moved from the cold clean LRU list to the MRU position in the

mixed LRU list. When the page in the mixed LRU list is

referenced, it will be moved to the MRU position of the mixed

LRU list.

The CCF-LRU selects a victim page by the following

rules in order:

 The LRU page in the cold clean LRU list is selected as
the victim, if the cold clean LRU list is not empty.

 The LRU page in the mixed LRU list is chosen as the
victim candidate, if the cold clean LRU list is empty. If
the candidate is a cold dirty page, it is selected as the
victim. If the candidate is a hot dirty page, it is labelled
as cold and moved to the MRU position of the mixed
LRU list. If the candidate is a hot clean page, it is set to
cold and moved from the mixed LRU list to the MRU
position of the cold clean LRU list and the LRU
position in the mixed LRU list is checked continually.
If there is no victim found after traversing the mixed
LRU list, it needs to call the CCF-LRU algorithm one
more time to select a victim.

E. Flash Aware Buffer Management Policy (FAB)

Joon Woon Lee et.al, introduces a flash aware buffer

management technique that decreases the number of erase

operations by deciding a victim based on its page utilization

cost and not on the commonly used LRU policy [11]. This

technique helps in decreasing the number of write and erase

operations and thereby reducing the total execution time by

17% than the LRU policy.

 This technique is particularly useful in portable

media players (PMP). The media data in PMPs are accessed in

long sequential order whereas the metadata of files are

accessed with relatively short access. Thus in the case of

PMPs, LRU policy cannot hold the data for short accesses in

the buffer because the long sequential access pushes them

away from the buffer. This technique also reduces the time

required to search the data that is requested from the buffer.

The FAB on receiving a write request will search the

buffer and if found (hit), that data will be overwritten. Else, the

sector that is requested is written to a new slot that is allocated

in the buffer. The data write on flash memory will happen only

when the block is replaced. Here, the block which has the most

pages in the buffer is identified as the victim block, when the

buffer is full. This technique also considers whether the pages

are dirty and if so, they are written back to the flash storage.

This paper follows the LRU policy itself on a tie. Their concept

of victim block rather than victim page adds on to the features

of multimedia buffering.

Similarly, if there is a read request, if there is no hit

and consequently, if the data has to be read from the flash

storage to the buffer, then if the buffer is full, a victim block

will be selected and evicted. The decision on whether the

requested sector is in the buffer or not has to be taken more

frequently, in [11] they have introduced two data structures for

ease of search of the buffer such as block node list and page

node list. Search Insert and replace operation have been

designed exclusively for these data structures.

F. Adaptive Cost Aware BufferReplacement Algorithm (ACR)

Xian Tang and Xiaofeng Meng introduced an

adaptive cost-aware replacement policy (ACR) which is using

three cost-based heuristics in order to select the victim page

[12]. Their technique works really well for various types of

flash disks. They divided the buffer pages into two lists: clean

and dirty lists. It is ensured that the frequently requested pages

remain in the buffer for a longer time. The newly entered pages

will be inserted at the middle and not at the MRU (Most

Recently Used) position [12]. This technique that they have

adopted made ACR a real adaptive buffer. This technique can

be used in varying workloads. A ghost buffer is used as a

buffer directory that maintains the list of once-requested pages

that are recently removed from the buffer. If there are hits on

the pages in the ghost buffer, they will be used to adaptively

change the length of the buffer list and also adaptively identify

the frequently accessed pages.

The basic idea that they have introduced is that the

length of the LRU list containing clean pages and dirty pages

should be proportional to the ratio of replacement cost of the

pages to that of all the buffer pages based on the latest m

requests, where m is half the buffer size. If the list of dirty

pages is longer, then LRU page from that list should be paged

out and vice versa.

The read and write operations have been

discriminated as logical (Served in the buffer) and physical

(Served in the disk). A conservative scheme that takes into

account only the physical operations on pages and not the

logical operations, an optimistic scheme that considers only the

logical operations and a hybrid scheme that considers both

physical and logical operations and thus combines the

advantages of both the conservative and optimistic schemes

have been defined for eviction based on costs. The ACR

replacement policy adapts the length of the LRU list of clean

pages and dirty pages based on the work load [8]. This paper

introduced ACR replacement algorithms considering three

cases:

 Hit request

 Miss request and the page is in the ghost buffer.

 Miss request and the page is not in the ghost buffer.

G. Adaptive Double LRU (AD-LRU)

Peiquan Jin, Yi Ou et.al introduced a buffer

management technique for flash based databases which focuses

on improving the overall runtime efficiency by reducing the

number of write/erase operations and by retaining a high buffer

hit ratio [13]. The AD-LRU concepts can be summarized as

follows:

 Two LRU queues are used to capture both the recency
and frequency of page references, among which one
cold LRU queue stores the pages referenced only once
and the hot LRU queue stores the pages referenced at
least twice.

 Based on the changes in the reference patterns, the
sizes of double LRU queues are dynamically adjusted.

 During the eviction procedure, the least-recently-used
clean page from the cold LRU queue is selected as the

2682

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21373

victim, for which a specific pointer FC is used. If clean
pages do not exist in the cold LRU queue, a second-
chance policy is used to select a dirty page as the
victim.

The double LRU queues of AD-LRU separate the

cold and hot pages in the buffer. When a page P is first

referenced, it is put in the cold queue and set as the MRU

element. When it is referenced again, it is moved into the hot

queue and is set as the MRU element.

The page fetching algorithm [13] works as follows. If

the requested page is found in the hot LRU queue, the page is

moved to the MRU position. If the page is found in the cold

LRU queue, the hot queue is enlarged; thereby automatically

reducing the cold queue and the page is moved to the MRU

position in the hot queue. If a page miss occurs and the buffer

has free space, the size of the cold queue is increased and the

fetched page is put into the cold queue. If the buffer is full, then

a page has to be selected for replacement. The parameter

min_lc sets the lowest limit for the size of the cold queue. If the

cold LRU queue contains more than min_lc pages, the victim is

evicted from the cold queue, otherwise, it is evicted from the

hot queue.

When a page is referenced, its referenced bit is set to

1, which will be used in the SelectVictim routine to determine

the victim based on the second-chance policy. When a victim is

selected, the FC page (least-recently-used clean page) from the

LRU queue is selected as the victim if FC is valid. If no clean

pages exist in the queue, it selects a dirty page using the

second-chance policy. The referenced bit of the buffer page

under consideration is checked, if it is 1, the page is moved to

the MRU position and the referenced bit is set to 0; this

inspection is continued until the first page with referenced bit

having 0 is located, which is then returned as the result.

H. Greedy Page Replacement Algorithm

M. Lin et al. proposed a greedy page replacement

algorithm called GDLRU [14]. It maintains two page lists,

namely clean page list and dirty page list. Each page in the

dirty page list is divided into eight flash pages under the

assumption that the sizes of page and flash page are 4KB and

512B, respectively [14]. Each flash page has a dirty flag. A

dirty flash page is a flash page with dirty flag set.

If the number of free page frames in the main memory

is lower than a threshold value, the greedy page replacement

algorithm uses a clean-aware victim page selection (CPS)

method to select a suitable page as victim. The CPS scans the

clean page list and chooses the least recently referenced page

as victim. If the clean page list is empty, the CPS scans the

dirty page list and evicts the dirty page that minimizes the

formula (1)

 m / n (1)

Where m is the number of dirty flash pages in the

selected victim dirty page and n is the number of all flash pages

which the selected victim dirty page contains.

Once a page is selected as victim, the greedy page

replacement algorithm uses a clean-aware victim page update

(CPU) scheme in order to further reduce the number of flash

page write operations. CPU checks whether the victim page is

clean. If the victim page is clean, CPU just removes it from the

physical memory to make the corresponding page frame free. If

the victim page is dirty, CPU writes back only the dirty flash

pages within the victim page into the flash-memory-based

swap storage.

IV. COMPARISON

TABLE I. COMPARISON

Techniques Advantages Disadvantages

CLEAN

FIRST LRU

• Helps reduce the write

cost of flash memory

when replacing pages.

• Considers asymmetric
I/O costs of read and

write operation in flash

memory.
• Has better performance

when compared to

LRU.

• It needs to

determine the

window size

dynamically.
• It does not

consider the

access
frequencies of

data.

• Dirty page
selected as

victim often
contains clean

data.

• Not scan-
resistant.

LRUWSR

• It considers the access

frequencies of data

while choosing a victim
page.

• Considers the cold/hot
property of dirty pages.

• Delays flushing cold

dirty pages thus
reducing the write

request to the flash

memory.

• Does not evict

all clean pages

before dirty
pages.

• Does not

consider the
clean data within

the dirty page.
• Does not

consider the

access frequency
of clean pages.

• Not scan-

resistant and
does not exploit

frequency of

references.

FLASH

AWARE

REPLACEME
NT

STRATEGY

• It reduces early eviction

of clean pages by using
RSR strategy.

• It performs better than
CFLRU.

• Does not

consider the

clean data within
the dirty page.

CCFLRU

• Performs better than
CFLRU and LRU-WSR

by evicting cold clean

pages first.
• Differentiates both dirty

and clean pages into

cold ones and hot ones.
• Focuses on the

reference frequency of

clean pages.

• No technique is

used to control
the length of the

cold clean

queue.

FAB

• Well suited for PMPs.

• Decreases execution
time by 17 % than LRU.

• Fragmentation

and memory

overhead is more
for buffers with

small size.

ACR
• Adapts to varying

workloads and access
• Sequential writes

may affect the

2683

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21373

Techniques Advantages Disadvantages

patterns

• Scan Resistant

• Loop Resistant

performance,

only random
writes are

considered.

AD-LRU

• Self-tuning to respond

to changes in reference
patterns.

• Takes into account the

imbalance of read and
write costs of flash

memory when replacing

pages.
• Takes into account both

the reference frequency
of clean pages and dirty

pages.

• Has a mechanism to
control the length of the

cold queue.

• Scan-resistant.

• Dirty pages
evicted still

contain clean

data which is not
considered.

GDLRU

• GDLRU incurs the least
flash page read

operations and

consumes the least
replacement cost.

• It takes into account the
clean data within a dirty

page while replacement.

• Degrades the hit
ratio in case of

highly read

intensive
applications

V. CONCLUSION

In nutshell, the past and present of different flash

aware swap systems are discussed. Device specific as well as

device independent techniques can be devised. Flash memory

page replacement cost can be further reduced by introducing

more flash memory specific algorithms. Thus it has a rich

scope for new research ideas and future works.

REFERENCES

[1] S. Park and S. Y. Ohm, “New techniques for real-time FAT file system
in mobile multimedia devices,” IEEE Transactions on Consumer
Electronics, Vol. 52, No. 1, pp. 1-9, 2006.

[2] D. Jung, J. S. Kim, S. Y. Park, J. U. Kang and J. Lee, “A flash-aware
swap system,” Proc. of International Workshop on Software Support for
Portable Storage, San Francisco,CA, USA, 2005.

[3] O. Kwon and K. Koh, “Swap space management technique for portable
consumer electronics with NAND flash memory,” IEEE Transactions on
Consumer Electronics, Vol. 56, No. 3, pp. 1524-1531, 2010.

[4] S. Ko, S. Jun, Y. Ryu, O. Kwon and K. Koh, “A new Linux swap system
for flash memory storage devices,” Proc. of the International Conference
on Computational Sciences and its Applications, p. 151-156, 2008.

[5] H. Jung, H. Shim, S. Park, S. Kang and J. Cha, “LRU-WSR: Integration
of LRU and writes sequence reordering for flash memory,” IEEE
Transactions on Consumer Electronics, Vol. 54, No. 3, pp. 1215-1223,
2008.

[6] Arie Tal, “Two Technologies Compared: Nor vs. NAND” White Paper.
http://www.m-sys.com/NR/rdonlyres/24795A9E-16F9-404A-
857CC1DE21986D28/77/NOR_vs_NAND6.pdf

[7] D. Jung, J. S. Kim, S. Y. Park, J. U. Kang and J. Lee, “A flash-aware
swap system,” Proc. of International Workshop on software Support
for Portable Storage, San Francisco,CA, USA, 2005.

[8] Y. Park and D. Jung, “CFLRU: A replacement algorithm for flash
memory,” Proc. of the 2006 International Conference on Compilers,
Architecture and Synthesis for embedded systems, pp. 234-241, 2006.

[9] O. Kwon, B. Hyokyung and K. Kern, “FARS: A page replacement
algorithm for NAND flash memory based embedded systems,” Proc. of
the IEEE 8th International Conference on Computer and Information
Technology, pp. 218-223, 2008.

[10] Z. Li, P. Jin, X. Su, K. Cui, L. Yue, “CCF-LRU: A New Buffer
Replacement Algorithm for Flash memory, ” Transactions on Consumer
Electronics, Vol. 55 , pp.1351-1359,2009.

[11] Heeseung Jo, Jeong-Uk Kang, Seon-Yeong Park, Jin-Soo Kim, and
Joonwoon Lee, “FAB: Flash-Aware Buffer Management Policy for
Portable Media Players,” IEEE Transactions on Consumer Electronics,
Vol. 52, No. 2, MAY 2006.

[12] Xian Tang, Xiaofeng Meng, “ACR: an Adaptive Cost-Aware Buffer
Replacement Algorithm for Flash Storage Devices,” Eleventh
International Conference on Mobile Data Management, IEEE Computer
Society, pp 33-42 , 2010.

[13] Peiquan Jin, Yi Ou, Theo Härder, Zhi Li, “AD-LRU: An efficient buffer
replacement algorithm for flash-based databases,” Data & Knowledge
Engineering, 2012.

[14] Mingwei Lin, Shuyu Chen and Guiping Wang, “Greedy Page
Replacement Algorithm for Flash-aware Swap System”, 2012.

2684

International Journal of Engineering Research & Technology (IJERT)

Vol. 3 Issue 2, February - 2014

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS21373

