

I. INTRODUCTION

 The ability to manage large datasets is becoming more

important in research and business environments. Big data is

the term for data sets so large and complicated that it becomes

difficult to process using traditional data management tools or

processing applications. Big Data is a heterogeneous mix of

data both structured (traditional datasets –in rows and columns

like DBMS tables, CSV's and XLS's) and unstructured data

like e-mail attachments, manuals, images, PDF documents,

medical records such as x-rays, ECG and MRI images, forms,

rich media like graphics, video and audio, contacts, forms and

documents.

Defining Big Data

Big data typically refers to the following types of data:

a) Traditional enterprise data – includes customer

information from CRM systems, transactional ERP

data, web store transactions, and general ledger data.

b) Machine-generated /sensor data – includes Call

Detail Records (―CDR‖), weblogs, smart meters,

manufacturing sensors, equipment logs (often

referred to as digital exhaust), trading systems data.

c) Social data – includes customer feedback streams,

micro-blogging sites like Twitter, social media

platforms like Facebook

The McKinsey Global Institute estimates that data volume

is growing 40% per year, and will grow 44x between 2009 and

2020. But while it’s often the most visible parameter, volume

of data is not the only characteristic that matters. In fact, there

are four key characteristics that define big data:

a) Volume.

Machine-generated data is produced in much larger

quantities than non-traditional data. For instance, a single jet

engine can generate 10TB of data in 30 minutes. With more

than 25,000 airline flights per day, the daily volume of just

this single data source runs into the Petabytes. Smart meters

and heavy industrial equipment like oil refineries and drilling

rigs generate similar data volumes, compounding the problem.

b) Velocity.

Social media data streams – while not as massive as

machine-generated data – produce a large influx of opinions

and relationships valuable to customer relationship

management. Even at 140 characters per tweet, the high

velocity (or frequency) of Twitter data ensures large volumes

(over 8 TB per day).

c) Variety.

Traditional data formats tend to be relatively well defined

by a data schema and change slowly. In contrast, non-

traditional data formats exhibit a dizzying rate of change. As

new services are added, new sensors deployed, or new

marketing campaigns executed, new data types are needed to

capture the resultant information.

d) Value.

The economic value of different data varies significantly.

Typically there is good information hidden amongst a larger

body of non-traditional data; the challenge is identifying what

is valuable and then transforming and extracting that data for

analysis.

 To make the most of big data, enterprises must evolve

their IT infrastructures to handle these new high-volume, high-

velocity, high-variety sources of data and integrate them with

the pre-existing enterprise data to be analyzed.

Survey on Big Data Technologies
Recent technologies on big data

A. Pratheeba,

M.Tech II yr,
K.L.N.College of Information Technology,

Pottapalayam, Sivagangai (dist),

S. K. Karthikumar,

 Associate professor , IT Department,

K.L.N.College of Information Technology,

Pottapalayam, Sivagangai (dist),

Dr. S. Appavu Alias Balamurugan,

Head of the IT Department,

K.L.N.College of Information

Technology, Pottapalayam,Sivagangai

(dist),

Abstract—In recent years handling of large data

becomes more complex so the processing demand will be

high on big data. In worldwide there are 9 geographic

regions are used to store the data. Analyzing of big data is a

challenging task to handle this situation Hadoop

Distributed File System is used. This paper provides the

overview of big data and hadoop architecture ,challenges

of big data, tools used on big data and various methods to

solve the problems in hand through Map Reduce

Framework over Hadoop distributed File System. Map

Reduce is a minimization technique which makes use of

indexing with mapping, sorting, shuffling and finally

reducing. implementation of big data combines both

infrastructure and analytics. When analysed the big data

properly, it provides new business insights, open new

markets, and create competitive advantage.

Keywords— Big data,HDFS,Map reduce

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICCT-2015 Conference Proceedings

Volume 3, Issue 12

Special Issue - 2015

1

The Importance of Big Data

When big data is distilled and analyzed in combination

with traditional enterprise data, enterprises can develop a more

thorough and insightful understanding of their business, which

can lead to enhanced productivity, a stronger competitive

position and greater innovation –

all of which can have a

significant impact

on the bottom line.

For example, in the delivery of healthcare services,

management of chronic or long-term conditions is expensive.

Use of in-home monitoring devices to measure vital signs, and

monitor progress is just one way that sensor data can be used

to improve patient health and reduce both office visits and

hospital admittance.

Manufacturing companies deploy sensors in their

products to return a stream of telemetry. In the automotive

industry, systems such as General Motors’ OnStar ® or

Renault’s

R-Link ®, deliver communications, security and

navigation services. Perhaps more importantly, this telemetry

also reveals usage patterns, failure rates and other

opportunities for product improvement that can reduce

development and assembly costs.

The proliferation of smart phones and other GPS devices

offers advertisers an opportunity to target consumers when

they are in close proximity to a store, a coffee shop or a

restaurant. This opens up new revenue for service providers

and offers many businesses a

chance to target new customers.

Retailers usually know who buys their products. Use of social

media and web log files from their ecommerce sites can help

them understand who didn’t buy and why they chose not to,

information not available to them today. This can enable much

more effective micro customer segmentation and targeted

marketing campaigns, as well as improve supply chain

efficiencies through more accurate demand planning.

Finally, social media sites like Facebook and LinkedIn

simply wouldn’t exist without big data. Their business model

requires a personalized experience on the web, which can only

be delivered by capturing and using all the available data

about a user or member.

II HADOOP AND HDFS

Hadoop is a scalable, open source, fault-tolerant Virtual

Grid operating system architecture for data storage and

processing. It runs on commodity hardware, it uses HDFS

which is fault-tolerant high-bandwidth clustered storage

architecture. It runs MapReduce for distributed data

processing and is works with structured and unstructured data.

Figure1Illustrates the layers found in the software

architecture of aHadoop stack. At the bottom of the Hadoop

software stack is HDFS, a distributed file system in which

each file appears as a (very large) contiguous and randomly

addressable sequence of bytes. For batch analytics, the middle

layer of the stack is the Hadoop Map Reduce system, which

applies map operations to the data in partitions of an HDFS

file, sorts and redistributes the results based on key values in

the output data, and then performs reduce operations on the

groups of output data items with matching keys from the map

phase of the job. For applications just needing basic key-based

record management operations, the HBase store (layered on

top of HDFS) is available as a key-value layer in the Hadoop

stack. As indicated in the figure, the contents of HBase can

either be directly accessed and manipulated by a client

application or accessed via Hadoop for analytical needs. Many

users of the Hadoop stack prefer the use of a declarative

language over the bare MapReduce programming model.

High-level language compilers (Pig and Hive) are thus the

topmost layer in the Hadoop software stack for such

clients.

Figure 1.Hadoop Architecture Layers

Figure 2.Hadoop Architecture Tools and usage

Figure 3. HDFS Clusters

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICCT-2015 Conference Proceedings

Volume 3, Issue 12

Special Issue - 2015

2

Figure2 shows the relevancy between the traditional

experience in data warehousing, reporting, and online analytic

processing (OLAP) and advanced

analytics with collection of

related techniques like data mining with DBMS, artificial

intelligence, machine learning, and database analytics

platforms such as MapReduce and Hadoop over HDFS.

Figure3 shows the architecture of HDFS clusters

implementation with Hadoop. It can be seen that HDFS has

distributed the task over two parallel clusters with one server

and two slave nodes each. Data analysis tasks are distributed

in these clusters.

III TECHNOLOGIES

a)

Column-oriented databases

Traditional, row-oriented databases are excellent for

online transaction processing with high update speeds, but

they fall short on query performance as the data volumes grow

and as data becomes more unstructured. Column-oriented

databases store data with a focus on columns,

instead of rows,

allowing for huge data compression and very fast query times.

The downside to these databases is that they will generally

only allow batch updates, having a much slower update time

than traditional models.

b)

Schema-less databases, or NoSQL databases

There are several database types that fit into this category,

such as key-value stores and document stores, which focus on

the storage and retrieval of large volumes of unstructured,

semi-structured, or even structured data. They achieve

performance gains by doing away with some (or all) of the

restrictions traditionally

associated with conventional

databases, such as read-write consistency, in exchange for

scalability and distributed processing.

c)

MapReduce

This is a programming paradigm that allows for massive

job execution scalability against thousands

of servers or
clusters of servers. Any MapReduce implementation consists

of two tasks:

The "Map" task, where an input dataset is converted into a

different set of key/value pairs, or tuples;

The "Reduce" task, where several of the outputs of the

"Map" task are combined to form a reduced set of tuples

(hence the name).

d)

Hadoop

Hadoop is by far the most popular implementation of

MapReduce, being an entirely open source platform for

handling Big Data. It is flexible enough to be able to work

with multiple data sources, either aggregating multiple sources

of data in order to do large scale processing, or even reading

data from a database in order to run processor-intensive

machine learning jobs. It has several different applications, but

one of the top use cases is for large volumes of constantly

changing data, such as location-based data from weather or

traffic sensors, web-based or social media data, or machine-to-

machine transactional data.

e)

Hive

Hive is

a "SQL-like" bridge that allows conventional BI

applications to run queries against a Hadoop cluster. It was

developed originally by Facebook, but has been made open

source for some time now, and it's a higher-level abstraction

of the Hadoop framework that allows anyone to make queries

against data stored in a Hadoop cluster just as if they were

manipulating a conventional data store. It amplifies the reach

of Hadoop, making it more familiar for BI users.

f)

PIG

PIG is another bridge that tries to bring Hadoop closer to

the realities of developers and business users, similar to Hive.

Unlike Hive, however, PIG consists of a "Perl-like" language

that allows for query execution over data stored on a Hadoop

cluster, instead of a "SQL-like" language. PIG was developed

by Yahoo!, and, just like Hive, has also been made fully open

source.

g)

WibiData

WibiData is a combination of web analytics with Hadoop,

being built on top of HBase, which is itself a database layer on

top of Hadoop. It allows web sites to better explore

and work

with their user data, enabling real-time responses to user

behavior, such as serving personalized content,

recommendations and decisions.

h)

PLATFORA

Perhaps the greatest limitation of Hadoop is that it is a

very low-level implementation of MapReduce, requiring

extensive developer knowledge to operate. Between preparing,

testing and running jobs, a full cycle can take hours,

eliminating the interactivity that users enjoyed with

conventional databases. PLATFORA is a platform that turns

user's queries into Hadoop jobs automatically, thus creating an

abstraction layer that anyone can exploit to simplify and

organize datasets stored in Hadoop.

i)

Storage Technologies

As the data volumes grow, so does the need for

efficient and effective storage techniques. The main

evolutions in this space are related to data compression and

storage virtualization.

j)

SkyTree

SkyTree is a high-performance machine learning and data

analytics platform focused specifically on handling Big Data.

Machine learning, in turn, is an essential part of Big Data,

since the massive data volumes make manual exploration, or

even conventional automated exploration methods unfeasible

or too expensive.

IV MAP REDUCE

MapReduce

is a programming model for processing

large-scale datasets in computer clusters. The MapReduce

programming model consists of two functions, map() and

reduce(). Users can implement their own processing logic by

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICCT-2015 Conference Proceedings

Volume 3, Issue 12

Special Issue - 2015

3

specifying a customized map() and reduce() function. The

map() function takes an input key/value pair and produces

a

list of intermediate key/value pairs. The MapReduce runtime

system groups together all intermediate pairs based on the

intermediate keys and passes them to reduce() function for

producing the final results.

Map (in_key, in_value) --->list(out_key,intermediate_value)

Reduce (out_key,list(intermediate_value)) --

->list(out_value)

Figure 4. Map Reduce Architecture and Working

The signatures of map() and reduce() are as follows :

map (k1,v1) ! list(k2,v2)and reduce (k2,list(v2)) ! list(v2)

A MapReduce cluster employs a master-slave architecture

where one master node manages a number of slave

nodes . In

the Hadoop, the master node is called JobTracker and the

slave node is called TaskTracker as shown in the figure 4.

Hadoop launches a MapReduce job by first splitting the input

dataset into even-sized data blocks. Each data block is then

scheduled to one TaskTracker node and is processed by a map

task. The TaskTracker node notifies the JobTracker when it is

idle. The scheduler then assigns new tasks to it. The scheduler

takes data locality into account when it disseminates data

blocks.

It always tries to assign a local data block to a

TaskTracker. If the attempt fails, the scheduler will assign a

rack-local or random data block to the TaskTracker instead.

When map() functions complete, the runtime system groups

all intermediate pairs and launches a set of reduce tasks to

produce the final results. Large scale data processing is a

difficult task, managing hundreds or thousands of processors

and managing parallelization and distributed environments

makes is more difficult. Map Reduce provides solution to the

mentioned issues, as is supports distributed and parallel I/O

scheduling, it is fault tolerant and supports scalability and it

has inbuilt

processes

for status

and

monitoring

of

data and

large datasets as in Big Data.

A. Map Reduce Components

1. Name Node

–

manages HDFS metadata, doesn‟t deal with

files directly

2. Data Node

–

stores blocks of HDFS –

default replication

level for each block: 3

3. Job Tracker

–

schedules, allocates and monitors job

execution on slaves –

Task Trackers

4. Task Tracker

–

runs Map Reduce operations

B. Map Reduce Working

We implement the Mapper and Reducer interfaces to

provide the map and reduce methods as shown in figure 4.

These form the core of the job.

1) Mapper

Mapper maps input key/value pairs to a set of

intermediate key/value pairs. Maps are the individual tasks

that transform input records into intermediate records. The

transformed intermediate records do not need to be of the

same type as the input records. A given input pair may map

to

zero or many output pairs.

The number of maps is usually driven by the total size of

the inputs, that is, the total number of blocks of the input files.

The right

level of parallelism for maps seems to be around 10-

100 maps per-node, although it has been set up to 300 maps

for very cpu-light map tasks. Task setup takes awhile, so it is

best if the maps take at least a minute to execute. For

Example, if you expect 10TB of input data and have a

blocksize of 128MB, you'll end

up with 82,000 maps.

2) Reducer

Reducer reduces a set of intermediate values which

share a key to a smaller set of values.

Reducer has 3 primary phases: shuffle, sort and reduce.

2.1) Shuffle

Input to the Reducer is the sorted output of the mappers.

In this phase the framework fetches the relevant partition of

the output of all the mappers, via HTTP.

Name Node–manages HDFS metadata, doesn’t deal with files

directly.

Data Node

–stores blocks of HDFS –default replication level

for each block: 3

Job Tracker

–schedules, allocates and monitors job execution

on slaves –Task Trackers

Task Tracker

–runs Map Reduce operations

2.2) Sort

The framework groups Reducer inputs by keys (since

different mappers may have output the same key) in this

stage. The shuffle and sort phases occur simultaneously; while

map-outputs are being fetched they are merged.

2.3) Secondary Sort

If equivalence rules for grouping the intermediate keys

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICCT-2015 Conference Proceedings

Volume 3, Issue 12

Special Issue - 2015

4

are required to be different from those for grouping keys

before reduction, then one may specify a Comparator

(Secondary Sort).

2.4) Reduce

In this phase the reduce method is called for each <key,

(list of values)> pair in the grouped inputs.The output of the

reduce task is typically written to the File

System via Output

Collector.

Applications can use the Reporter to report progress, set

application-level status messages and update Counters, or just

indicate that they are alive. The output of the Reducer is not

sorted. The right number of reduces seems to be 0.95 or 1.75

multiplied by no. of nodes. With 0.95 all of the reduces can

launch immediately and start transferring map outputs as the

maps finish. With 1.75 the faster nodes will finish their first

round of reduces and launch a second wave of reduces doing a

much better job of load balancing [MR

Framework].Increasing the number of reduces increases the

framework overhead, but increases load balancing and lowers

the cost of failures. The scaling factors above are slightly

less

than whole numbers to reserve a few reduce slots in the

framework for speculative-tasks and failed tasks. It is legal to

set the number of reduce-tasks to zero if no reduction is

desired.

a) Partitioner

Partitioner partitions the key space. Partitioner controls

the partitioning of the keys of the intermediate map-outputs.

The key (or a subset of the key) is used to derive the partition,

typically by a hash function. The total number of partitions is

the same as the number of reduce tasks for the job. Hence this

controls which of the m reduce tasks the intermediate key (and

hence the record) is sent to for reduction.

Hash Partitioner is the default Partitioner.

b) Reporter

 Reporter is a facility for MapReduce applications

to

report progress, set application-level status messages and

update Counters.

Mapper and Reducer implementations can

use the Reporter to report progress or just indicate that they

are alive. In scenarios where the application takes a significant

amount of time to process individual key/value pairs, this is

crucial since the framework might assume that the task has

timed-out and kill that task. Applications can also update

Counters using the Reporter.

c) Output Collector

Output Collector is a generalization of the facility

provided

by the MapReduce framework to collect data output

by the Mapper or the Reducer (either the intermediate outputs

or the output of the job). HadoopMapReduce comes bundled

with a library of generally useful mappers, reducers, and

partitioners.

Map Reduce

Working through Master / Slave.

C. Map Reduce techniques

Combining

Combiners provide a general mechanism within the

MapReduce framework to reduce the amount of intermediate

data generated by the mappers. They can be understood as

"mini-reducers" that

process the output of mappers. The

combiner's aggregate term counts across the documents

processed by each map task. This result in a reduction in the

number of intermediate key-value pairs that need to be

shuffled across the network, from the order of total number of

terms in the collection to the order of the number of unique

terms in the collection. They reduce the result size of map

functions and perform reduce-like function in each machine

which decreases the shuffling cost.

Inverse Indexing

Inverse

indexing is a technique in which the keywords of

the documents are mapped according to the document keys in

which they are residing.

For example Doc1: IMF, Financial Economics Crisis

Doc2: IMF, Financial Crisis Doc3: Harry Economics Doc4:

Financial Harry

Potter Film Doc5: Harry Potter Crisis The

following is the inverted index of the above data IMF ->

Doc1:1, Doc2:1 Financial -> Doc1:6, Doc2:6, Doc4:1

Economics -> Doc1:16, Doc3:7 Crisis -> Doc1:26, Doc2:16,

Doc5:14 Harry -> Doc3:1, Doc4:11, Doc5:1 Potter ->

Doc4:17, Doc5:7 Film -> Doc4:24

Shuffling

Shuffling is the procedure of mixing the indexes of the

files and their keys, so that a heterogeneous mix of dataset can

be obtained. If the dataset is shuffled, then there are better

chances that the resultant query processing will yield near

accurate results. We can relate the shuffling process with the

population generating by crossover in the GA algorithms. The

processes are different in nature, but their purpose is similar.

Sharding

It is a term used to

distribute the Mappers in the HDFS

architecture. Sharding refers to the groupings or documents

which are done so that the MapReduce jobs are done parallel

in a distributed environment.

Joins

Join is a RDBMS term; it refers to combining two or

more discrete datasets to get Cartesian product of data of all

the possible combinations. Map Reduce does not have its own

Join techniques, but RDBMS techniques are tweaked and used

to get the maximum possible combinations.

The join

techniques which are adopted for

Map Reduce are Equi Join,

Self Join, Repartition Join and Theta Join.

Clustering & Classification

Data Analysis term, used mainly in Data Mining.

In Map Reduce it is achieved through K means clustering.

Here, iterative working improves partitioning of data into k

clusters. After the clustering,

the data sorted are grouped

together based upon rules to be formed into classes.

The

steps for clustering in Map Reduce are; Step1: Do Step2: Map

Step3: Input is a data point and k centres are broadcasted

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICCT-2015 Conference Proceedings

Volume 3, Issue 12

Special Issue - 2015

5

Step4: Finds the closest centre among k centres for the input

point Step5: Reduce Step6: Input is one of k centres and all

data points having this centre as their closest centre Step7:

Calculates the new centre using data points Step 8: Repeat 1-7,

until all of

new centres are not changed

V CONCLUSION

Processing of enormous quantities of data becomes more

complex. In this paper we present the detailed view about the

big data ,Hadoop architecture ,map reduce framework and

challenges of big data. By using Big Data analysis tools like

Map Reduce over Hadoop and HDFS, promises to help

organizations better understand their customers and the

marketplace, hopefully leading to better business decisions

and competitive advantages.

REFERENCES

[1] Steve Loughran, Jose M. Alcaraz Calero,Andrew Farrell,Johannes
Kirschnick, and Julio Guijarro Hewlett-Packard Laboratories”

Dynamic Cloud Deployment of a MapReduce Architecture”.
[2] “Data from Year 2000 US

Census,”
http://aws.amazon.com/dataset

s/Economics/2290.

[3] “Department of Defense Information Enterprise Strategic Plan
2011- 2012,” http://dodcio.defense.gov/docs/DodIESP-r16.pdf.

[4] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t

Settle for Eventual: Scalable Causal Consistency for Wide- area
Storage with COPS,” in SOSP, 2011.

[5] Puneet Singh Duggal, Sanchita Paul” Big Data Analysis:

Challenges and Solutions.International Conference on Cloud, Big

Data and Trust 2013, Nov 13-15, RGPV.
[6] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing

on Large Clusters,” in OSDI, 2004.

[7] Apache Software Foundation,
“Hadoop,”

http://hadoop.apache.org.

[8] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H.
Bhogan, “Volley: Automated Data Placement for Geo-Distributed
Cloud Services,” in NSDI, 2010.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCICCT-2015 Conference Proceedings

Volume 3, Issue 12

Special Issue - 2015

6

