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Abstract—In recent years handling of large data
becomes more complex so the processing demand will be
high on big data. In worldwide there are 9 geographic
regions are used to store the data. Analyzing of big data is a
challenging task to handle this situation Hadoop
Distributed File System is used. This paper provides the
overview of big data and hadoop architecture ,challenges
of big data, tools used on big data and various methods to
solve the problems in hand through Map Reduce
Framework over Hadoop distributed File System. Map
Reduce is a minimization technique which makes use of
indexing with mapping, sorting, shuffling and finally
reducing. implementation of big data combines both
infrastructure and analytics. When analysed the big data
properly, it provides new business insights, open new
markets, and create competitive advantage.
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I. INTRODUCTION

The ability to manage large datasets is becoming more
important in research and business environments. Big data is
the term for data sets so large and complicated that it becomes
difficult to process using traditional data management tools or
processing applications. Big Data is a heterogeneous mix of
data both structured (traditional datasets —in rows and columns
like DBMS tables, CSV's and XLS's) and unstructured data
like e-mail attachments, manuals, images, PDF documents,
medical records such as x-rays, ECG and MRI images, forms,
rich media like graphics, video and audio, contacts, forms and
documents.

Defining Big Data

Big data typically refers to the following types of data:

a) Traditional enterprise data — includes customer
information from CRM systems, transactional ERP
data, web store transactions, and general ledger data.

b) Machine-generated /sensor data — includes Call
Detail Records (“CDR”), weblogs, smart meters,
manufacturing sensors, equipment logs (often

referred to as digital exhaust), trading systems data.

(dist),

c) Social data — includes customer feedback streams,
micro-blogging sites like Twitter, social media
platforms like Facebook

The McKinsey Global Institute estimates that data volume
is growing 40% per year, and will grow 44x between 2009 and
2020. But while it’s often the most visible parameter, volume
of data is not the only characteristic that matters. In fact, there
are four key characteristics that define big data:

a) Volume.

Machine-generated data is produced in much larger
quantities than non-traditional data. For instance, a single jet
engine can generate 10TB of data in 30 minutes. With more
than 25,000 airline flights per day, the daily volume of just
this single data source runs into the Petabytes. Smart meters
and heavy industrial equipment like oil refineries and drilling
rigs generate similar data volumes, compounding the problem.

b) Velocity.

Social media data streams — while not as massive as
machine-generated data — produce a large influx of opinions
and relationships valuable to customer relationship
management. Even at 140 characters per tweet, the high
velocity (or frequency) of Twitter data ensures large volumes
(over 8 TB per day).

c) Variety.

Traditional data formats tend to be relatively well defined
by a data schema and change slowly. In contrast, non-
traditional data formats exhibit a dizzying rate of change. As
new services are added, new sensors deployed, or new
marketing campaigns executed, new data types are needed to
capture the resultant information.

d) Value.

The economic value of different data varies significantly.
Typically there is good information hidden amongst a larger
body of non-traditional data; the challenge is identifying what
is valuable and then transforming and extracting that data for
analysis.

To make the most of big data, enterprises must evolve
their IT infrastructures to handle these new high-volume, high-
velocity, high-variety sources of data and integrate them with
the pre-existing enterprise data to be analyzed.
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The Importance of Big Data

When big data is distilled and analyzed in combination
with traditional enterprise data, enterprises can develop a more
thorough and insightful understanding of their business, which
can lead to enhanced productivity, a stronger competitive
position and greater innovation — all of which can have a
significant impact on the bottom line.

For example, in the delivery of healthcare services,
management of chronic or long-term conditions is expensive.
Use of in-home monitoring devices to measure vital signs, and
monitor progress is just one way that sensor data can be used
to improve patient health and reduce both office visits and
hospital admittance.

Manufacturing companies deploy sensors in their
products to return a stream of telemetry. In the automotive
industry, systems such as General Motors’ OnStar ® or
Renault’s R-Link ®, deliver communications, security and
navigation services. Perhaps more importantly, this telemetry
also reveals usage patterns, failure rates and other
opportunities for product improvement that can reduce
development and assembly costs.

The proliferation of smart phones and other GPS devices
offers advertisers an opportunity to target consumers when
they are in close proximity to a store, a coffee shop or a
restaurant. This opens up new revenue for service providers
and offers many businesses a chance to target new customers.
Retailers usually know who buys their products. Use of social
media and web log files from their ecommerce sites can help
them understand who didn’t buy and why they chose not to,
information not available to them today. This can enable much
more effective micro customer segmentation and targeted
marketing campaigns, as well as improve supply chain
efficiencies through more accurate demand planning.

Finally, social media sites like Facebook and LinkedIn
simply wouldn’t exist without big data. Their business model
requires a personalized experience on the web, which can only
be delivered by capturing and using all the available data
about a user or member.

Il HADOOP AND HDFS

Hadoop is a scalable, open source, fault-tolerant Virtual
Grid operating system architecture for data storage and
processing. It runs on commodity hardware, it uses HDFS
which is fault-tolerant high-bandwidth clustered storage
architecture. It runs MapReduce for distributed data
processing and is works with structured and unstructured data.

Figurellllustrates the layers found in the software
architecture of aHadoop stack. At the bottom of the Hadoop
software stack is HDFS, a distributed file system in which
each file appears as a (very large) contiguous and randomly
addressable sequence of bytes. For batch analytics, the middle
layer of the stack is the Hadoop Map Reduce system, which
applies map operations to the data in partitions of an HDFS
file, sorts and redistributes the results based on key values in

the output data, and then performs reduce operations on the
groups of output data items with matching keys from the map
phase of the job. For applications just needing basic key-based
record management operations, the HBase store (layered on
top of HDFS) is available as a key-value layer in the Hadoop
stack. As indicated in the figure, the contents of HBase can
either be directly accessed and manipulated by a client
application or accessed via Hadoop for analytical needs. Many
users of the Hadoop stack prefer the use of a declarative
language over the bare MapReduce programming model.
High-level language compilers (Pig and Hive) are thus the
topmost layer in the Hadoop software stack for such clients.
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Figure2 shows the relevancy between the traditional
experience in data warehousing, reporting, and online analytic
processing (OLAP) and advanced analytics with collection of
related techniques like data mining with DBMS, artificial
intelligence, machine learning, and database analytics
platforms such as MapReduce and Hadoop over HDFS.

Figure3 shows the architecture of HDFS clusters
implementation with Hadoop. It can be seen that HDFS has
distributed the task over two parallel clusters with one server
and two slave nodes each. Data analysis tasks are distributed
in these clusters.

Il TECHNOLOGIES

a) Column-oriented databases

Traditional, row-oriented databases are excellent for
online transaction processing with high update speeds, but
they fall short on query performance as the data volumes grow
and as data becomes more unstructured. Column-oriented
databases store data with a focus on columns, instead of rows,
allowing for huge data compression and very fast query times.
The downside to these databases is that they will generally
only allow batch updates, having a much slower update time
than traditional models.

b) Schema-less databases, or NoSQL databases

There are several database types that fit into this category,
such as key-value stores and document stores, which focus on
the storage and retrieval of large volumes of unstructured,
semi-structured, or even structured data. They achieve
performance gains by doing away with some (or all) of the
restrictions traditionally —associated with conventional
databases, such as read-write consistency, in exchange for
scalability and distributed processing.

¢) MapReduce

This is a programming paradigm that allows for massive
job execution scalability against thousands of servers or
clusters of servers. Any MapReduce implementation consists
of two tasks:

The "Map" task, where an input dataset is converted into a
different set of key/value pairs, or tuples;

The "Reduce" task, where several of the outputs of the
"Map" task are combined to form a reduced set of tuples
(hence the name).

d) Hadoop

Hadoop is by far the most popular implementation of
MapReduce, being an entirely open source platform for
handling Big Data. It is flexible enough to be able to work
with multiple data sources, either aggregating multiple sources
of data in order to do large scale processing, or even reading
data from a database in order to run processor-intensive
machine learning jobs. It has several different applications, but
one of the top use cases is for large volumes of constantly
changing data, such as location-based data from weather or
traffic sensors, web-based or social media data, or machine-to-
machine transactional data.

e) Hive

Hive is a "SQL-like" bridge that allows conventional BI
applications to run queries against a Hadoop cluster. It was
developed originally by Facebook, but has been made open
source for some time now, and it's a higher-level abstraction
of the Hadoop framework that allows anyone to make queries
against data stored in a Hadoop cluster just as if they were
manipulating a conventional data store. It amplifies the reach
of Hadoop, making it more familiar for BI users.

f) PIG

PIG is another bridge that tries to bring Hadoop closer to
the realities of developers and business users, similar to Hive.
Unlike Hive, however, PIG consists of a "Perl-like" language
that allows for query execution over data stored on a Hadoop
cluster, instead of a "SQL-like" language. PIG was developed
by Yahoo!, and, just like Hive, has also been made fully open
source.

g) WibiData

WibiData is a combination of web analytics with Hadoop,
being built on top of HBase, which is itself a database layer on
top of Hadoop. It allows web sites to better explore and work
with their user data, enabling real-time responses to user
behavior, such as serving personalized content,
recommendations and decisions.

h) PLATFORA

Perhaps the greatest limitation of Hadoop is that it is a
very low-level implementation of MapReduce, requiring
extensive developer knowledge to operate. Between preparing,
testing and running jobs, a full cycle can take hours,
eliminating the interactivity that users enjoyed with
conventional databases. PLATFORA is a platform that turns
user's queries into Hadoop jobs automatically, thus creating an
abstraction layer that anyone can exploit to simplify and
organize datasets stored in Hadoop.

i) Storage Technologies
As the data volumes grow, so does the need for
efficient and effective storage techniques. The main
evolutions in this space are related to data compression and
storage virtualization.

j) SkyTree

SkyTree is a high-performance machine learning and data
analytics platform focused specifically on handling Big Data.
Machine learning, in turn, is an essential part of Big Data,
since the massive data volumes make manual exploration, or
even conventional automated exploration methods unfeasible
or too expensive.

IV MAP REDUCE

MapReduce is a programming model for processing
large-scale datasets in computer clusters. The MapReduce
programming model consists of two functions, map() and
reduce(). Users can implement their own processing logic by
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specifying a customized map() and reduce() function. The
map() function takes an input key/value pair and produces a
list of intermediate key/value pairs. The MapReduce runtime
system groups together all intermediate pairs based on the
intermediate keys and passes them to reduce() function for
producing the final results.

Map (in_key, in_value) --->list(out_key,intermediate_value)
Reduce (out_key,list(intermediate_value)) -- ->list(out_value)
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Figure 4. Map Reduce Architecture and Working

The signatures of map() and reduce() are as follows :
map (k1,v1) ! list(k2,v2)and reduce (k2,list(v2)) ! list(v2)

A MapReduce cluster employs a master-slave architecture
where one master node manages a number of slave nodes . In
the Hadoop, the master node is called JobTracker and the
slave node is called TaskTracker as shown in the figure 4.
Hadoop launches a MapReduce job by first splitting the input
dataset into even-sized data blocks. Each data block is then
scheduled to one TaskTracker node and is processed by a map
task. The TaskTracker node notifies the JobTracker when it is
idle. The scheduler then assigns new tasks to it. The scheduler
takes data locality into account when it disseminates data
blocks.

It always tries to assign a local data block to a
TaskTracker. If the attempt fails, the scheduler will assign a
rack-local or random data block to the TaskTracker instead.
When map() functions complete, the runtime system groups
all intermediate pairs and launches a set of reduce tasks to
produce the final results. Large scale data processing is a
difficult task, managing hundreds or thousands of processors
and managing parallelization and distributed environments
makes is more difficult. Map Reduce provides solution to the
mentioned issues, as is supports distributed and parallel 1/0
scheduling, it is fault tolerant and supports scalability and it
has inbuilt processes for status and monitoring of data and

large datasets as in Big Data.
A. Map Reduce Components

1. Name Node — manages HDFS metadata, doesn™t deal with
files directly

2. Data Node — stores blocks of HDFS — default replication
level for each block: 3

3. Job Tracker — schedules, allocates and monitors job
execution on slaves — Task Trackers

4. Task Tracker — runs Map Reduce operations

B. Map Reduce Working

We implement the Mapper and Reducer interfaces to
provide the map and reduce methods as shown in figure 4.
These form the core of the job.

1) Mapper

Mapper maps input key/value pairs to a set of
intermediate key/value pairs. Maps are the individual tasks
that transform input records into intermediate records. The
transformed intermediate records do not need to be of the
same type as the input records. A given input pair may map to
zero or many output pairs.

The number of maps is usually driven by the total size of
the inputs, that is, the total number of blocks of the input files.
The right level of parallelism for maps seems to be around 10-
100 maps per-node, although it has been set up to 300 maps
for very cpu-light map tasks. Task setup takes awhile, so it is
best if the maps take at least a minute to execute. For
Example, if you expect 10TB of input data and have a
blocksize of 128MB, you'll end up with 82,000 maps.

2) Reducer

Reducer reduces a set of intermediate values which
share a key to a smaller set of values.
Reducer has 3 primary phases: shuffle, sort and reduce.

2.1) Shuffle

Input to the Reducer is the sorted output of the mappers.
In this phase the framework fetches the relevant partition of
the output of all the mappers, via HTTP.
Name Node-manages HDFS metadata, doesn’t deal with files
directly.
Data Node —stores blocks of HDFS —default replication level
for each block: 3
Job Tracker —schedules, allocates and monitors job execution
on slaves —Task Trackers
Task Tracker —runs Map Reduce operations

2.2) Sort
The framework groups Reducer inputs by keys (since
different mappers may have output the same key) in this
stage. The shuffle and sort phases occur simultaneously; while
map-outputs are being fetched they are merged.

2.3) Secondary Sort
If equivalence rules for grouping the intermediate keys
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are required to be different from those for grouping keys
before reduction, then one may specify a Comparator
(Secondary Sort).

2.4) Reduce

In this phase the reduce method is called for each <key,
(list of values)> pair in the grouped inputs.The output of the
reduce task is typically written to the File System via Output
Collector.

Applications can use the Reporter to report progress, set
application-level status messages and update Counters, or just
indicate that they are alive. The output of the Reducer is not
sorted. The right number of reduces seems to be 0.95 or 1.75
multiplied by no. of nodes. With 0.95 all of the reduces can
launch immediately and start transferring map outputs as the
maps finish. With 1.75 the faster nodes will finish their first
round of reduces and launch a second wave of reduces doing a
much better  job  of  load balancing [MR
Framework].Increasing the number of reduces increases the
framework overhead, but increases load balancing and lowers
the cost of failures. The scaling factors above are slightly less
than whole numbers to reserve a few reduce slots in the
framework for speculative-tasks and failed tasks. It is legal to
set the number of reduce-tasks to zero if no reduction is
desired.

a) Partitioner

Partitioner partitions the key space. Partitioner controls
the partitioning of the keys of the intermediate map-outputs.
The key (or a subset of the key) is used to derive the partition,
typically by a hash function. The total number of partitions is
the same as the number of reduce tasks for the job. Hence this
controls which of the m reduce tasks the intermediate key (and
hence the record) is sent to for reduction.
Hash Partitioner is the default Partitioner.

b) Reporter

Reporter is a facility for MapReduce applications to
report progress, set application-level status messages and
update Counters. Mapper and Reducer implementations can
use the Reporter to report progress or just indicate that they
are alive. In scenarios where the application takes a significant
amount of time to process individual key/value pairs, this is
crucial since the framework might assume that the task has
timed-out and Kkill that task. Applications can also update
Counters using the Reporter.

c) Output Collector

Output Collector is a generalization of the facility
provided by the MapReduce framework to collect data output
by the Mapper or the Reducer (either the intermediate outputs
or the output of the job). HadoopMapReduce comes bundled
with a library of generally useful mappers, reducers, and
partitioners. Map Reduce Working through Master / Slave.
C. Map Reduce techniques

Combining

Combiners provide a general mechanism within the
MapReduce framework to reduce the amount of intermediate
data generated by the mappers. They can be understood as
"mini-reducers" that process the output of mappers. The
combiner's aggregate term counts across the documents
processed by each map task. This result in a reduction in the
number of intermediate key-value pairs that need to be
shuffled across the network, from the order of total number of
terms in the collection to the order of the number of unique
terms in the collection. They reduce the result size of map
functions and perform reduce-like function in each machine
which decreases the shuffling cost.

Inverse Indexing

Inverse indexing is a technique in which the keywords of
the documents are mapped according to the document keys in
which they are residing.

For example Docl: IMF, Financial Economics Crisis
Doc2: IMF, Financial Crisis Doc3: Harry Economics Doc4:
Financial Harry Potter Film Docb: Harry Potter Crisis The
following is the inverted index of the above data IMF ->
Docl:1, Doc2:1 Financial -> Docl:6, Doc2:6, Doc4:1
Economics -> Docl:16, Doc3:7 Crisis -> Docl:26, Doc2:16,
Doc5:14 Harry -> Doc3:1, Doc4:11, Doc5:1 Potter ->
Doc4:17, Doc5:7 Film -> Doc4:24

Shuffling

Shuffling is the procedure of mixing the indexes of the
files and their keys, so that a heterogeneous mix of dataset can
be obtained. If the dataset is shuffled, then there are better
chances that the resultant query processing will yield near
accurate results. We can relate the shuffling process with the
population generating by crossover in the GA algorithms. The
processes are different in nature, but their purpose is similar.

Sharding

It is a term used to distribute the Mappers in the HDFS
architecture. Sharding refers to the groupings or documents
which are done so that the MapReduce jobs are done parallel
in a distributed environment.

Joins

Join is a RDBMS term; it refers to combining two or
more discrete datasets to get Cartesian product of data of all
the possible combinations. Map Reduce does not have its own
Join techniques, but RDBMS techniques are tweaked and used
to get the maximum possible combinations. The join
techniques which are adopted for Map Reduce are Equi Join,
Self Join, Repartition Join and Theta Join.

Clustering & Classification

Data Analysis term, used mainly in Data Mining.

In Map Reduce it is achieved through K means clustering.
Here, iterative working improves partitioning of data into k
clusters. After the clustering, the data sorted are grouped
together based upon rules to be formed into classes. The
steps for clustering in Map Reduce are; Stepl: Do Step2: Map
Step3: Input is a data point and k centres are broadcasted
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Step4: Finds the closest centre among k centres for the input
point Step5: Reduce Step6: Input is one of k centres and all
data points having this centre as their closest centre Step7:
Calculates the new centre using data points Step 8: Repeat 1-7,
until all of new centres are not changed

V CONCLUSION

Processing of enormous quantities of data becomes more
complex. In this paper we present the detailed view about the
big data ,Hadoop architecture ,map reduce framework and
challenges of big data. By using Big Data analysis tools like
Map Reduce over Hadoop and HDFS, promises to help
organizations better understand their customers and the
marketplace, hopefully leading to better business decisions
and competitive advantages.
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