
 
  

 

 

 

   

 

  

 

 

   

 
  

 

 

   

 

  

 

 

 

 

 

 
  

I.  INTRODUCTION  

          

             The ability to manage large datasets is becoming more 

important in research and business environments. Big data is 

the term for data sets so large and complicated that it becomes 

difficult to process using traditional data management tools or 

processing applications. Big Data is a heterogeneous mix of 

data both structured (traditional datasets –in rows and columns 

like DBMS tables, CSV's and XLS's) and unstructured data 

like e-mail attachments, manuals, images, PDF documents, 

medical records such as x-rays, ECG and MRI images, forms, 

rich media like graphics, video and audio, contacts, forms and 

documents. 

Defining Big Data 

Big data typically refers to the following types of data:  

 

a) Traditional enterprise data – includes customer 

information from CRM systems, transactional ERP 

data, web store transactions, and general ledger data.  

b) Machine-generated /sensor data – includes Call 

Detail Records (―CDR‖), weblogs, smart meters, 

manufacturing sensors, equipment logs (often  

referred to as digital exhaust), trading systems data.  

c) Social data – includes customer feedback streams, 

micro-blogging sites like Twitter, social media 

platforms like Facebook  

 

The McKinsey Global Institute estimates that data volume 

is growing 40% per year, and will grow 44x between 2009 and 

2020. But while it’s often the most visible parameter, volume 

of data is not the only characteristic that matters. In fact, there 

are four key characteristics that define big data:  

 

a) Volume.  

Machine-generated data is produced in much larger 

quantities than non-traditional data. For instance, a single jet 

engine can generate 10TB of data in 30 minutes. With more 

than 25,000 airline flights per day, the daily volume of just 

this single data source runs into the Petabytes. Smart meters 

and heavy industrial equipment like oil refineries and drilling 

rigs generate similar data volumes, compounding the problem.  

b) Velocity.  

Social media data streams – while not as massive as 

machine-generated data – produce a large influx of opinions 

and relationships valuable to customer relationship 

management. Even at 140 characters per tweet, the high 

velocity (or frequency) of Twitter data ensures large volumes 

(over 8 TB per day).  

c) Variety.  

Traditional data formats tend to be relatively well defined 

by a data schema and change slowly. In contrast, non-

traditional data formats exhibit a dizzying rate of change. As 

new services are added, new sensors deployed, or new 

marketing campaigns executed, new data types are needed to 

capture the resultant information.  

d) Value.  

The economic value of different data varies significantly. 

Typically there is good information hidden amongst a larger 

body of non-traditional data; the challenge is identifying what 

is valuable and then transforming and extracting that data for 

analysis.  

 To make the most of big data, enterprises must evolve 

their IT infrastructures to handle these new high-volume, high-

velocity, high-variety sources of data and integrate them with 

the pre-existing enterprise data to be analyzed. 
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The Importance of Big Data 

 

When big data is distilled and analyzed in combination 

with traditional enterprise data, enterprises can develop a more 

thorough and insightful understanding of their business, which 

can lead to enhanced productivity, a stronger competitive 

position and greater innovation –

 

all of which can have a 

significant impact

 

on the bottom line. 

 

For example, in the delivery of healthcare services, 

management of chronic or long-term conditions is expensive. 

Use of in-home monitoring devices to measure vital signs, and 

monitor progress is just one way that sensor data can be used 

to improve patient health and reduce both office visits and 

hospital admittance. 

 

Manufacturing companies deploy sensors in their 

products to return a stream of telemetry. In the automotive 

industry, systems such as General Motors’ OnStar ® or 

Renault’s

 

R-Link ®, deliver communications, security and 

navigation services. Perhaps more importantly, this telemetry 

also reveals usage patterns, failure rates and other 

opportunities for product improvement that can reduce 

development and assembly costs. 

 

The proliferation of smart phones and other GPS devices 

offers advertisers an opportunity to target consumers when 

they are in close proximity to a store, a coffee shop or a 

restaurant. This opens up new revenue for service providers 

and offers many businesses a

 

chance to target new customers. 

 

Retailers usually know who buys their products. Use of social 

media and web log files from their ecommerce sites can help 

them understand who didn’t buy and why they chose not to, 

information not available to them today. This can enable much 

more effective micro customer segmentation and targeted 

marketing campaigns, as well as improve supply chain 

efficiencies through more accurate demand planning. 

 

 

Finally, social media sites like Facebook and LinkedIn 

simply wouldn’t exist without big data. Their business model 

requires a personalized experience on the web, which can only 

be delivered by capturing and using all the available data 

about a user or member.

 

 

II     HADOOP AND HDFS 

 

 

Hadoop is a scalable, open source, fault-tolerant Virtual 

Grid operating system architecture for data storage and 

processing. It runs on commodity hardware, it uses HDFS 

which is fault-tolerant high-bandwidth clustered storage 

architecture. It runs MapReduce for distributed data 

processing and is works with structured and unstructured data. 

 

 

 

Figure1Illustrates the layers found in the software 

architecture of aHadoop stack. At the bottom of the Hadoop 

software stack is HDFS, a distributed file system in which 

each file appears as a (very large) contiguous and randomly 

addressable sequence of bytes. For batch analytics, the middle 

layer of the stack is the Hadoop Map Reduce system, which 

applies map operations to the data in partitions of an HDFS 

file, sorts and redistributes the results based on key values in 

the output data, and then performs reduce operations on the 

groups of output data items with matching keys from the map 

phase of the job. For applications just needing basic key-based 

record management operations, the HBase store (layered on 

top of HDFS) is available as a key-value layer in the Hadoop 

stack. As indicated in the figure, the contents of HBase can 

either be directly accessed and manipulated by a client 

application or accessed via Hadoop for analytical needs. Many 

users of the Hadoop stack prefer the use of a declarative 

language over the bare MapReduce programming model. 

High-level language compilers (Pig and Hive) are thus the 

topmost layer in the Hadoop software stack for such

 

clients.

 

 

 

 

 

     

 

Figure 1.Hadoop Architecture Layers

 
 

 

 

  

 

Figure 2.Hadoop Architecture Tools and usage

 

 

 

                         

 

   

Figure 3. HDFS Clusters
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Figure2 shows the relevancy between the traditional 

experience in data warehousing, reporting, and online analytic 

processing (OLAP) and advanced

 

analytics with collection of 

related techniques like data mining with DBMS, artificial 

intelligence, machine learning, and database analytics 

platforms such as MapReduce and Hadoop over HDFS.

 

Figure3 shows the architecture of HDFS clusters 

implementation with Hadoop. It can be seen that HDFS has 

distributed the task over two parallel clusters with one server 

and two slave nodes each. Data analysis tasks are distributed 

in these clusters.

 

 

  

III  TECHNOLOGIES

 

a)

 

Column-oriented databases

 

Traditional, row-oriented databases are excellent for 

online transaction processing with high update speeds, but 

they fall short on query performance as the data volumes grow 

and as data becomes more unstructured. Column-oriented 

databases store data with a focus on columns,

 

instead of rows, 

allowing for huge data compression and very fast query times. 

The downside to these databases is that they will generally 

only allow batch updates, having a much slower update time 

than traditional models.

 

 

b)

 

Schema-less databases, or NoSQL databases

 

There are several database types that fit into this category, 

such as key-value stores and document stores, which focus on 

the storage and retrieval of large volumes of unstructured, 

semi-structured, or even structured data. They achieve 

performance gains by doing away with some (or all) of the 

restrictions traditionally

 

associated with conventional 

databases, such as read-write consistency, in exchange for 

scalability and distributed processing.

 

 

c)

 

MapReduce

 

This is a programming paradigm that allows for massive 

job execution scalability against thousands

 

of servers or 
clusters of servers. Any MapReduce implementation consists 

of two tasks:

 

The "Map" task, where an input dataset is converted into a 

different set of key/value pairs, or tuples;

 

The "Reduce" task, where several of the outputs of the 

"Map" task are combined to form a reduced set of tuples 

(hence the name).

 

 

d)

 

Hadoop

 

Hadoop is by far the most popular implementation of 

MapReduce, being an entirely open source platform for 

handling Big Data. It is flexible enough to be able to work 

with multiple data sources, either aggregating multiple sources 

of data in order to do large scale processing, or even reading 

data from a database in order to run processor-intensive 

machine learning jobs. It has several different applications, but 

one of the top use cases is for large volumes of constantly 

changing data, such as location-based data from weather or 

traffic sensors, web-based or social media data, or machine-to-

machine transactional data.

 

e)

 

Hive

 

Hive is

 

a "SQL-like" bridge that allows conventional BI 

applications to run queries against a Hadoop cluster. It was 

developed originally by Facebook, but has been made open 

source for some time now, and it's a higher-level abstraction 

of the Hadoop framework that allows anyone to make queries 

against data stored in a Hadoop cluster just as if they were 

manipulating a conventional data store. It amplifies the reach 

of Hadoop, making it more familiar for BI users.

 

 

f)

 

PIG

 

PIG is another bridge that tries to bring Hadoop closer to 

the realities of developers and business users, similar to Hive. 

Unlike Hive, however, PIG consists of a "Perl-like" language 

that allows for query execution over data stored on a Hadoop 

cluster, instead of a "SQL-like" language. PIG was developed 

by Yahoo!, and, just like Hive, has also been made fully open 

source.

 

 

g)

 

WibiData

 

WibiData is a combination of web analytics with Hadoop, 

being built on top of HBase, which is itself a database layer on 

top of Hadoop. It allows web sites to better explore

 

and work 

with their user data, enabling real-time responses to user 

behavior, such as serving personalized content, 

recommendations and decisions.

 

 

h)

 

PLATFORA

 

Perhaps the greatest limitation of Hadoop is that it is a 

very low-level implementation of MapReduce, requiring 

extensive developer knowledge to operate. Between preparing, 

testing and running jobs, a full cycle can take hours, 

eliminating the interactivity that users enjoyed with 

conventional databases. PLATFORA is a platform that turns 

user's queries into Hadoop jobs automatically, thus creating an 

abstraction layer that anyone can exploit to simplify and 

organize datasets stored in Hadoop.

 

 

i)

 

Storage Technologies

 

As the data volumes grow, so does the need for

 

 

efficient and effective storage techniques. The main 

evolutions in this space are related to data compression and 

storage virtualization.

 

 

j)

 

SkyTree

 

SkyTree is a high-performance machine learning and data 

analytics platform focused specifically on handling Big Data. 

Machine learning, in turn, is an essential part of Big Data, 

since the massive data volumes make manual exploration, or 

even conventional automated exploration methods unfeasible 

or too expensive.

 

IV    MAP REDUCE 

 

MapReduce

 

is a programming model for processing 

large-scale datasets in computer clusters. The MapReduce 

programming model consists of two functions, map() and 

reduce(). Users can implement their own processing logic by 
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specifying a customized map() and reduce() function. The 

map() function takes an input key/value pair and produces

 

a 

list of intermediate key/value pairs. The MapReduce runtime 

system groups together all intermediate pairs based on the 

intermediate keys and passes them to reduce() function for 

producing the final results. 

 

 

Map (in_key, in_value) --->list(out_key,intermediate_value) 

Reduce (out_key,list(intermediate_value)) --

 

->list(out_value) 

 

 

 

Figure 4. Map Reduce Architecture and Working 

 

The signatures of map() and reduce() are as follows : 

 

 

map (k1,v1) ! list(k2,v2)and reduce (k2,list(v2)) ! list(v2) 

 

 

A MapReduce cluster employs a master-slave architecture 

where one master node manages a number of slave

 

nodes . In 

the Hadoop, the master node is called JobTracker and the 

slave node is called TaskTracker as shown in the figure 4. 

Hadoop launches a MapReduce job by first splitting the input 

dataset into even-sized data blocks. Each data block is then 

scheduled to one TaskTracker node and is processed by a map 

task. The TaskTracker node notifies the JobTracker when it is 

idle. The scheduler then assigns new tasks to it. The scheduler 

takes data locality into account when it disseminates data 

blocks.

 

It always tries to assign a local data block to a 

TaskTracker. If the attempt fails, the scheduler will assign a 

rack-local or random data block to the TaskTracker instead. 

When map() functions complete, the runtime system groups 

all intermediate pairs and launches a set of reduce tasks to 

produce the final results. Large scale data processing is a 

difficult task, managing hundreds or thousands of processors 

and managing parallelization and distributed environments 

makes is more difficult. Map Reduce provides solution to the 

mentioned issues, as is supports distributed and parallel I/O 

scheduling, it is fault tolerant and supports scalability and it

 

has inbuilt

 

processes

 

for status

 

and

 

monitoring

 

of

 

data and 

 

large datasets as in Big Data.

 

A. Map Reduce Components 

 

1. Name Node

 

–

 

manages HDFS metadata, doesn‟t deal with 

files directly 

 

2. Data Node

 

–

 

stores blocks of HDFS –

 

default replication 

level for each block: 3 

 

3. Job Tracker

 

–

 

schedules, allocates and monitors job 

execution on slaves –

 

Task Trackers 

 

4. Task Tracker

 

–

 

runs Map Reduce operations 

 

 

B. Map Reduce Working 

 

We implement the Mapper and Reducer interfaces to 

provide the map and reduce methods as shown in figure 4. 

These form the core of the job. 

 

 

1) Mapper 

 

Mapper maps input key/value pairs to a set of 

intermediate key/value pairs. Maps are the individual tasks 

that transform input records into intermediate records. The 

transformed intermediate records do not need to be of the 

same type as the input records. A given input pair may map

 

to 

zero or many output pairs.

 

 

The number of maps is usually driven by the total size of 

the inputs, that is, the total number of blocks of the input files. 

The right

 

level of parallelism for maps seems to be around 10-

100 maps per-node, although it has been set up to 300 maps 

for very cpu-light map tasks. Task setup takes awhile, so it is 

best if the maps take at least a minute to execute. For 

Example, if you expect 10TB of input data and have a 

blocksize of 128MB, you'll end

 

up with 82,000 maps.

 

 

2) Reducer 

 

Reducer reduces a set of intermediate values which 

 

share a key to a smaller set of values.

 

Reducer has 3 primary phases: shuffle, sort and reduce. 

 

 

2.1) Shuffle

  

Input to the Reducer is the sorted output of the mappers. 

In this phase the framework fetches the relevant partition of 

the output of all the mappers, via HTTP.

 

Name Node–manages HDFS metadata, doesn’t deal with files 

directly.

 

Data Node

 

–stores blocks of HDFS –default replication level 

for each block: 3 

 

Job Tracker

 

–schedules, allocates and monitors job execution 

on slaves –Task Trackers

 

Task Tracker

 

–runs Map Reduce operations

 

 

2.2) Sort 

 

The framework groups Reducer inputs by keys (since 

 

different mappers may have output the same key) in this 

stage. The shuffle and sort phases occur simultaneously; while 

map-outputs are being fetched they are merged. 

 

 

2.3) Secondary Sort 

 

If equivalence rules for grouping the intermediate keys
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are required to be different from those for grouping keys 

before reduction, then one may specify a Comparator 

(Secondary Sort ). 

 

 

2.4) Reduce 

 

In this phase the reduce method is called for each <key, 

(list of values)> pair in the grouped inputs.The output of the 

reduce task is typically written to the File

 

System via Output 

Collector. 

 

Applications can use the Reporter to report progress, set 

application-level status messages and update Counters, or just 

indicate that they are alive. The output of the Reducer is not 

sorted. The right number of reduces seems to be 0.95 or 1.75 

multiplied by no. of nodes. With 0.95 all of the reduces can 

launch immediately and start transferring map outputs as the 

maps finish. With 1.75 the faster nodes will finish their first 

round of reduces and launch a second wave of reduces doing a 

much better job of load balancing [MR 

Framework].Increasing the number of reduces increases the 

framework overhead, but increases load balancing and lowers 

the cost of failures. The scaling factors above are slightly

 

less 

than whole numbers to reserve a few reduce slots in the 

framework for speculative-tasks and failed tasks. It is legal to 

set the number of reduce-tasks to zero if no reduction is 

desired. 

 

 

a) Partitioner 

 

Partitioner partitions the key space. Partitioner controls 

the partitioning of the keys of the intermediate map-outputs. 

The key (or a subset of the key) is used to derive the partition, 

typically by a hash function. The total number of partitions is 

the same as the number of reduce tasks for the job. Hence this 

controls which of the m reduce tasks the intermediate key (and 

hence the record) is sent to for reduction. 

 

Hash Partitioner is the default Partitioner. 

 

 

 

b) Reporter 

 

        Reporter is a facility for MapReduce applications

 

to 

report progress, set application-level status messages and 

update Counters.

 

Mapper and Reducer implementations can 

use the Reporter to report progress or just indicate that they 

are alive. In scenarios where the application takes a significant 

amount of time to process individual key/value pairs, this is 

crucial since the framework might assume that the task has 

timed-out and kill that task. Applications can also update 

Counters using the Reporter. 

 

 

c) Output Collector 

 

Output Collector is a generalization of the facility 

provided 

 

by the MapReduce framework to collect data output 

by the Mapper or the Reducer (either the intermediate outputs 

or the output of the job). HadoopMapReduce comes bundled 

with a library of generally useful mappers, reducers, and 

partitioners.

 

Map Reduce

 

Working through Master / Slave.

 

C. Map Reduce techniques 

 

Combining 

 

Combiners provide a general mechanism within the 

MapReduce framework to reduce the amount of intermediate 

data generated by the mappers. They can be understood as 

"mini-reducers" that

 

process the output of mappers. The 

combiner's aggregate term counts across the documents 

processed by each map task. This result in a reduction in the 

number of intermediate key-value pairs that need to be 

shuffled across the network, from the order of total number of 

terms in the collection to the order of the number of unique 

terms in the collection. They reduce the result size of map 

functions and perform reduce-like function in each machine 

which decreases the shuffling cost. 

 

Inverse Indexing 

 

Inverse

 

indexing is a technique in which the keywords of 

the documents are mapped according to the document keys in 

which they are residing. 

 

For example Doc1: IMF, Financial Economics Crisis 

Doc2: IMF, Financial Crisis Doc3: Harry Economics Doc4: 

Financial Harry

 

Potter Film Doc5: Harry Potter Crisis The 

following is the inverted index of the above data IMF -> 

Doc1:1, Doc2:1 Financial -> Doc1:6, Doc2:6, Doc4:1 

Economics -> Doc1:16, Doc3:7 Crisis -> Doc1:26, Doc2:16, 

Doc5:14 Harry -> Doc3:1, Doc4:11, Doc5:1 Potter -> 

Doc4:17, Doc5:7 Film -> Doc4:24 

 

 

Shuffling 

 

Shuffling is the procedure of mixing the indexes of the 

files and their keys, so that a heterogeneous mix of dataset can 

be obtained. If the dataset is shuffled, then there are better 

chances that the resultant query processing will yield near 

accurate results. We can relate the shuffling process with the 

population generating by crossover in the GA algorithms. The 

processes are different in nature, but their purpose is similar.

 

 

Sharding 

 

It is a term used to

 

distribute the Mappers in the HDFS 

architecture. Sharding refers to the groupings or documents 

which are done so that the MapReduce jobs are done parallel 

in a distributed environment. 

 

 

Joins 

 

Join is a RDBMS term; it refers to combining two or 

more discrete datasets to get Cartesian product of data of all 

the possible combinations. Map Reduce does not have its own 

Join techniques, but RDBMS techniques are tweaked and used 

to get the maximum possible combinations.

 

The join 

techniques which are adopted for

 

Map Reduce are Equi Join, 

Self Join, Repartition Join and Theta Join. 

 

 

Clustering & Classification 

 

 

Data Analysis term, used mainly in Data Mining. 

 

In Map Reduce it is achieved through K means clustering. 

Here, iterative working improves partitioning of data into k 

clusters. After the clustering,

 

the data sorted are grouped 

together based upon rules to be formed into classes.

 

The 

steps for clustering in Map Reduce are; Step1: Do Step2: Map 

Step3: Input is a data point and k centres are broadcasted 
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Step4: Finds the closest centre among k centres for the input 

point Step5: Reduce Step6: Input is one of k centres and all 

data points having this centre as their closest centre Step7: 

Calculates the new centre using data points Step 8: Repeat 1-7, 

until all of

 

new centres are not changed

 

V  CONCLUSION

 

Processing of enormous quantities of data becomes more 

complex. In this paper we present the detailed  view about the 

big data ,Hadoop architecture ,map reduce framework and 

challenges of big data. By using Big Data analysis tools like 

Map Reduce over Hadoop and HDFS, promises to help 

organizations better understand their customers and the 

marketplace, hopefully leading to better business decisions 

and competitive advantages.
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