
Survey of Text Compression Algorithms

ege

 Kruti Dangarwala

 Associate Professor

 Dept of Information Technology

 SVMIT Engineering College

Bharuch, India

Abstract:- Data compression is now almost a common

requirement for every applications as it is a means for saving the

channel bandwidth and storage space. Data Compression is an

art of allowing a technique to reduce the volume of data i.e.

excess information, by maintaining the quality of data. There a

number of algorithms available for compression of files of

different formats. But, algorithm is to be such a chosen which

reduces redundancy of data by consuming less time and

providing more compression ratio as compared to other

techniques. So, even for a single data type, numbers of

approaches are available and to select among them the best one

depending upon the need is very important and a difficult task.

Compression methods are categorized as Lossy and Lossless but

in this paper focus is only on Lossless text compression

techniques. The methods which are discussed are Run Length

Encoding, Shannon Fanon, Huffman, Arithmetic, LZ77, LZ78

and LZW with its performance.

Keywords: Data Compression, Lossy, Lossless, Run Length

Encoding,Huffman, Shannon Fano, Arithmetic, Lz77,Lz78, LZW.

I. INTRODUCTION

In past years there has been a remarkable blast of

transmitting digital data via Internet, correspond to text,

images, video, audio, computer programs, etc. [3]. With this

tendency to continue, there is a need of developing

algorithms that is capable of using network bandwidth

effectively [1]. A text contains many words and in turn words

contain many characters so to store a text we need to store all

words and further to store words needs to store all characters.

For this type of storage huge space is needed. So, there is a

need of some technique to reduce the size of data so as to

occupy less space [2].Data Compression is a technique which

reduces the size of the data by removing redundancy and

excessive information, for storing the data and to reduce time

needed to transfer the data. So, it is a need of all

computerized applications to reduce the cost by using the

available bandwidth effectively [3]. It is easy to transfer the

files on internet if it is more compressed because of which

uploading and downloading becomes faster. More the

information in file more the cost needed. So, the main goal of

compression is to covert the source into digital form with as

few bits as possible as the original file while maintaining the

fidelity of the original file by less time and less storage space

[4][5].

Data Compression has important applications in the area

of file storage and distribution system as it requires a way to

transmit and store different types of data such as text, audio,

video, sound to reduce space and time [6].It is used in

multimedia field, text documents, medical image and

database table. Depending upon this the algorithm has been

divided into two ways. The algorithm which removes some

part of data is called lossy data compression and the

algorithm which do not loss the data during compression and

achieves the same back on decompression that is called

lossless data compression [7]. The lossy data compression

algorithm is mostly used when compression ratio need is

higher than the quality of data after decompression. Lossless

data compression is used when quality is the important factor

i.e., original data needs to be obtained as such as original

source after decompression.

II. TYPES OF COMPRESSION

Data Compression is divided into two types.

a. Lossless Compression

b. Lossy Compression

Fig. 1. Types of Data Compression Tehniques

 Poonam Choudhary

Dept of Information Technology

SVMIT Engineering Coll

 Bharuch, India

Tanvi Patel Judith Angela

Dept of Information Technology Dept of Information Technology

SVMIT Engineering College SVMIT Engineering College

Bharuch, India Bharuch, India

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030932

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

974

A. Lossless Compression

The main aim of lossless compression technique is to

compress the file by reducing the information in such a way

that there is no loss when decrypting the file back into the

original file. Text Compression is considered in Lossless

type. One of the popular file format i.e., ZIP file format

which is used for compression of data files is an application

of lossless data compression.

Lossless compression is used where we need the data the

same when decrypting the source file. Lossless data

compression most probably exploits statistical redundancy to

express data more precisely without any loss in information

[8].

 Lossless compression can be divided into two categories:

Fig. 2. Types of Lossless Compression

1) Entropy based encoding

This technique is not dependent on definite characteristics

of medium. In this method the algorithm starts by first

counting the frequency of each symbol according to its

occurrence in the file. Then the original symbols are replaced

with algorithm generated symbol by compression technique.

For certain symbols of original file, these newly produced

symbols are fixed and are not dependent on the content of

file. The new symbols length is variable and it varies on the

frequency of certain symbols of original file [9].

2) Dictionary based encoding

This algorithm does not encode single symbol but

encodes a variable length string into a single token. This

technique is also known as Substitution encoding. In this

method a data structure is maintained known as dictionary

[10]. The encoder finds the match of the string in dictionary

from original text and if the match is found it replaces with its

reference in the dictionary.

B. Lossy Compression

This technique does not produce the same original file

i.e., the exact copy but gives output with some information

lost. The original message cannot be reconstructed by

decoding process, and it is called as irreversible compression

[11]. So, this type of technique can’t be applied to textual

data but can be applied on video, audio, images etc.

III. COMPRESSION ALGORITHM

A. Run Length Encoding

RLE is one of the simple Data Compression Algorithm

and also called “Run Length Limiting”. The main aim of

RLE algorithm is to pick out the runs of the source file and to

report the symbol and the length of each run [11]. In this

encoding technique, one after another the same characters are

repeated in a text file.

Among the applications of RLE one of them most

popularly known is Fax. For example, the string

“XYXYYYYYYZ” is considered as a source to compress,

taken the first 3 letters as a non-run is having a length 3, and

the next 6 letters taken as a run having length 6, since symbol

Y is repeated consequently. So, in this manner Run Length

Encoding method compress the file or any type of document

but it is not of much use because it cannot compress big files

which may not have many repeated words or symbols.

B. Shannon Fano Coding

A coding process had been developed to create a binary

code tree by Claude E. Shannon and Robert M. Fano in 1960.

Shannon Fano coding is one of the easiest method to

implement as compared to other methods.

Based on their probabilities it encodes messages. In

highly probable character, less number of bits is used and in

least occurring character, more number of bits is used [12].

The algorithm is as described below [13]:-

Fig. 3. Shannon Fano Algorithm

C. Huffman Coding

For text compression, Huffman Coding is most

acknowledged method developed by David Huffman in 1950.

Sometimes Huffman Coding performs better than the

Shannon Fano Coding. In data file, the characters are

converted to binary code and most frequent characters and

rare characters are allocated by bits same as in Shannon Fano

[14]. The algorithm is as follows [13]:-

The nodes are arranged in ascending order.

 Step1:-
 Find the probability/frequency count of the

given list of symbol or character.

 Step2:-
 Sort the symbol/character according to

frequency/probability in a descending

order.

 Step3:-
 Divide the list into two parts according to

the least difference between the total

frequency counts of upper half and lower

half.

 Step4:-

 Assign the value of upper half to be zero

and lower half to be 1.

 Step5:-
 Apply the steps 3 and 4 recursively till the

code is obtained for the entire symbol.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030932

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

975

Fig. 4. Huffman Algoritm

D. LZ77

Huffman and Arithmetic Coding don’t capture the higher

order relationship between words and phrase. There is an

another technique which is more effective for compressing

text known as LZ77 developed by Jacob Ziv and Abraham

Lempel in 1977. It use Sliding Window concept [15,16].

Encoding-Pseudo code algorithms is as follows [13]:-

Fig. 5. LZ77 Algoritm

E. LZ78

It is dictionary based compression algorithm developed by
Jacob Ziv and Abraham Lempel in 1978. In this, encoding and

decoding both side has to create a dictionary, it is necessary that

both sides dictionary are identical. It maintains an explicit

dictionary[17].

The compression algorithm is as follows [13]:-

Fig. 6. LZ78 Algorithm

F. LZW

LZW is denoted by the name Lempel–Ziv–Welch developed

by Abraham Lampel , Jacob Zev and Terry Welch in 1984 and

is based on LZ78. In LZW, only the index is send to the

dictionary[19]. Based on the presence of substring chosen

from the original file, dynamic dictionary is obtained. When a

string is matched from the dictionary then the reference of

that string is used to encode it and if the match of that string

is not found then a new entry is made in the dictionary [18].

LZW algorithm records the string in dictionary. The first

255 entries contains the value of ASCII therefore the actual

allocation of index to the string starts from index 256. The

Dictionary is built to store all the possible combination of

string from the message, starting from two character and so

on.

The algorithm is as follows [13]:-

Fig. 7. LZW Algoritm

Step1:-
 Two nodes with the lowest frequency is

located.

Step2:-
 The two least node is added and an internal

node of this two node is created and the

added sum of the two node is given as it’s

weight.

Step3:-
 The internal node is now added to the list

and the two node as it’s child.

Step4:-

 One of the child node is assigned 1 and

other as 0 during coding.

Step5:-
 Previous steps are repeated till there is no

other node left in the tree. The free node is

root of the tree.

Set w=NIL

 loop

 read a character k

 if wk exists in the dictionary

 w=k

else

 Output the code for w add wk to the dictionary

w=k

end loop

Step1:-
 Check look-ahead buffer is empty or not

Step2:-
 If not empty, look for the longest match in

search buffer.

Step3:-
 If match is found print output as (offset from

window boundary, length of match, next

symbol in lookahead buffer) and shift

window by length+1 else print output as

(0,0,first symbol in look-ahead buffer) and

shift window by 1.

Step4:-
 Loop until the look ahead buffer is empty.

Dictionary = empty; Prefix = empty;

DictionaryIndex = 1;

Loop

while(characterStream is not empty)

{

 Take Char as a next character in characterStream;

 If (Prefix+Char exists in the dictionary)

 Assign Prefix = Prefix+char;

 Else

 {

 If (Prefix is empty)

 Assign CodeWordForPrefix = 0;

 Else

 Assign CodeWordForPrefix = DictionaryIndex

for Prefix;

 Print Output: (CodeWordForPrefix, Char);

 insertInDictionary((DictionaryIndex,

Prefix+char));

 DictionaryIndex++;

 Prefix = empty;

 }

 }

If(Prefix is not empty)

 Assign CodeWordForPrefix=DictionaryIndex for

Prefix;

 And print Output: (CodeWordForPrefix);

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030932

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

976

IV. MEASURING COMPRESSION PERFOMANCE

A. Compression Ratio

Compression ratio is the ratio between the original size of

the file and the compressed size of the file it is calculated as

[13] :

 (1)

B. Compression Time

Time taken for compression and decompression must be

taken into consideration as in some cases decompression time

and in some cases compression time to be considered is

necessary and in some cases both of them are necessary.

C. Entropy

Entropy is the measurement of the amount of information

in your file. This method is used when compression algorithm

is based on the statistical information of the original file. The

self-information can be calculated by equation [13].

 (2)

Or (3)

The Entropy value H of a compression algorithm can be

evaluated by the following equation [13].

 (4)

V.CONCLUSION

In this paper in which situations lossy and lossless
compression methods can be used are discussed. Different
compression techniques are discussed in detail. Major focus
in this paper is made on various data text compression
methods like dictionary based and entropy based dictionary.
In entropy based technique Run length encoding is not used
much as that of Shannon Fano and Huffman. This two
methods are much better than RLE. But, both Shannon Fano
and Huffman compression is almost same. Huffman is better
than Shannon Fano method in a very small difference. In
dictionary based method three methods are discussed upon
which LZW works best in comparison to LZ77 and LZ78.

REFERENCES

[1] Dr. V.K.Govindan and B.S. Mohan“An Intelligent Text Data
Encryption and Compression for High Speed and Secure Data
Transmission Over Internet” NIT Calicut, Kerala.

[2] Md. A. Kalam Azad, Rezwana S., Shabbir Ahmed and S. M.
Kamruzzaman “An Efficient Technique for Text Compression” 1st
International Conference on Information Management and Business
(IMB2005).

[3] Introduction to Data Compression, Khalid Sayood, Ed Fox (Editor),
March 2000.

[4] R.S. Brar and B. Singh, “A survey on different compression techniques
and bit reduction Algorithm for compression of text data” International
Journal of Advanced Research In Computer Science and Software
Engineering (IJARCSSE) Volume 3, Issue 3, March 2013.

[5] Amandeep Singh Sidhu and Er. Meenakshi Garg “Research Paper on
Text Data Compression Algorithm using Hybrid Approach” IJCSMC,
Vol. 3, Issue. 12, December 2014.

[6] Elabdalla, A.R. and Irshid, M. I., “An efficient bitwise Huffman coding
technique based on source mapping”. Computer and Electrical
Engineering 27 (2001) 265 – 272.

[7] Burrows M., and Wheeler, D. J. 1994. “A Block-Sorting Lossless Data
Compression Algorithm”. SRC Research Report 124, Digital Systems
Research Center.

[8] Shrusti Porwal, Yashi Chaudhary, Jitendra Joshi, Manish Jain “Data
Compression Methodologies for Lossless Data and Comparison
between Algorithms” International Journal of Engineering Science and
Innovative Technology (IJESIT) Volume 2, Issue 2, March 2013.

[9] Arup Kumar Bhattacharjee, Tanumon Bej, Saheb Agarwal
“Comparison Study of Lossless Data Compression Algorithms for Text
Data” IOSR Journal of Computer Engineering (IOSR-JCE).

[10] Kesheng, W., J. Otoo and S. Arie, 2006. Optimizing bitmap indices
with efficient compression, ACM Trans. Database Systems, 31: 1-38.

[11] S.R. Kodituwakku and U.S. AmaraSinghe “Compression of Lossless
Data Compression Algorithms for Text Data” Indian Journal of
Computer Science and Engineering Vol 1 No 4 416-425.

[12] Fano R.M., “The Transmission of Information”, Technical Report
No.65, Research Laboratory of Electronics, M.I.T., Cambridge, Mass.;
1949.

[13] Mark Nelson, Jean-Loup Gailly, “The Data Compression book” 2nd
Edition

[14] Huffman D.A., “A method for the construction of minimum
redundancy codes”, Proceedings of the Institute of Radio Engineers, 40
(9), pp. 1098–1101, September 1952.

[15] The MPEG-4 Book.
[16] Data Compression Conference (DCC '00), March 28-30, 2000,

Snowbird, Utah.
[17] M. Pal Singh and N. Singh, “A Study of Various Standards for Text

Compression Techniques”.
[18] Ziv. J and Lempel A., “Compression of Individual Sequences

viaVariable-Rate Coding”, IEEE Transactions on Information Theory
24 (5), pp. 530–536, September 1978.

[19] Welch T.A., “A technique for high-performance data compression”,
IEEE Computer, 17, pp. 8–19, 1984.

   



n

i

aIipH
0

1

   ipaI /1log1 2

   ipaI 2log1 

Compression Ratio =

Original Size

Compressed Size

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.orgIJERTV4IS030932

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Vol. 4 Issue 03, March-2015

977

