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Abstract

Finite Element Analysis (FEA) is a widely used tool for 
simulating the behavior of complex nonlinear materials, such 
as hyperelastic materials, but it is computationally expensive and 
time-consuming. To address this challenge, we propose a 
surrogate modeling approach using neural networks to 
approximate the material response with high accuracy while 
significantly reducing computational costs. The neural network 
learns to efficiently predict stress-strain relationships and 
other critical mechanical properties by training on data 
generated from traditional FEA solvers like ANSYS. This 
method not only accelerates simulations but also enables 
real-time applications in engineering design and optimization. 
Our study evaluates the model’s accuracy, generalization, and 
computational efficiency, demonstrating its potential as a 
powerful alternative to conventional FEA-based simulations.. 
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1. INTRODUCTION
The simulation of hyperelastic materials plays a crucial 

applications,

impractical for real-time applications. In particular, mesh 
selection plays a critical role in determining computational 
efficiency and accuracy. As described in Grebenişan et al. 
(2017), tetragonal and hexagonal meshing techniques can 
significantly affect convergence rates and numerical 
stability in FEA simulations. While fine-meshed FEA 
models improve accuracy, they also drastically increase 
computational demands, leading to the need for alternative 
approaches. 
To overcome these computational limitations, 
researchers have explored machine learning-based 
surrogate models as efficient alternatives to FEA. As 
stated in Asher et al. (2015), surrogate models are 
designed to approximate high-fidelity simulations with 
reduced computational cost while maintaining 
acceptable levels of accuracy. These models have been 
successfully applied across various fields, including 
structural mechanics, fluid dynamics, and material 
science. Surrogate models have shown promising 
results in predicting mechanical behavior, reducing the 
need for repeated simulations, and enabling real-time 
decision-making (Keprate et al., 2017).. 
In this study, a neural network-based surrogate model is 
developed to predict the mechanical response of 
hyperelastic materials, specifically a hollow cylindrical 
tube subjected to axial loading. The choice of the 
constitutive model is a crucial factor in accurately 
capturing material behavior. As stated in Shahzad et al. 
(2015), the Neo-Hookean model is often preferred for its 
simplicity, but its limitations in representing complex 
material behaviors especially under large strainsâ€”have 
led to the adoption of more advanced models. For this 
reason, the Mooney-Rivlin 5-parameter model is chosen in 
this study, as it provides greater flexibility and accuracy in 
describing nonlinear stress-strain relationships. 
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role in engineering  particularly in 
biomechanics, aerospace, and polymer mechanics, due to their 
ability to undergo large, reversible deformations. These 
materials require complex constitutive models for accurate 
representation, as they do not follow traditional linear 
elasticity laws. As stated in Darijani et al. (2010), 
hyperelastic materials are typically modeled using strain 
energy density functions that describe their mechanical 
behavior under deformation. The selection of an 
appropriate strain energy function (SEF) is essential for 
accurately predicting stress-strain responses, particularly 
for rubber-like materials. Various SEFs, such as Neo-
Hookean, Mooney-Rivlin, and Yeoh models, have been used 
to characterize these materials, each with its own advantages 
and limitations (Shahzad et al., 2015).
Finite Element Analysis (FEA) has traditionally been the 
primary tool for modeling hyperelastic material behavior due 
to its ability to provide detailed stress-strain predictions. 
However, as stated in Schneidera et al. (2019), large-scale 
FEA simulations are computationally expensive, requiring 
significant processing power and long runtimes, making them
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The structure analyzed in this research consists of a hollow 
cylindrical tube with an inner diameter of 30 cm, an outer 
diameter of 50 cm, and a length of 1 m. To ensure accurate 
stress, strain, and deformation predictions, a fine-meshed 
FEA model is created, covering axial loads ranging from 
5N to 1000N. Instead of performing an exhaustive number 
of simulations, which would be computationally 
impractical, a K-Means clustering method is used to 
efficiently parametrize the input loads, ensuring a 
representative selection of load cases (Ghaderi et al., 2020). 
This approach optimizes the dataset, allowing the neural 
network to learn from a diverse yet computationally 
manageable dataset, improving prediction accuracy while 
minimizing training time. 
To construct the surrogate model, the Levenberg-
Marquardt (LM) training algorithm is employed, as it 
is widely recognized for its superior convergence speed 
and precision in function approximation tasks. As stated 
in Liu et al. (2010), the LM algorithm is one of the most 
effective methods for training feedforward neural networks, 
particularly in engineering applications. MATLAB’s 
Neural Network Toolbox is utilized for training, as it 
provides various activation functions and optimization 
tools, making it a robust platform for neural network 
implementation (Gan et al., 2011). 
To assess the effectiveness of the proposed surrogate 
model, several performance metrics are used, including 
Root Mean Square Error (RMSE) and the correlation 
coefficient (R-value). As stated in Keprate et al. (2017), 
these metrics are commonly employed to evaluate the 
accuracy of machine learning-based surrogate models. A 
high R-value (close to 1.0) indicates a strong correlation 
between the predicted and actual FEA results, while a 
low RMSE confirms minimal deviation in predictions, 
ensuring that the neural network accurately captures the 
nonlinear mechanical behavior of hyperelastic materials. 
This study highlights the effectiveness of neural 
networks in approximating complex hyperelastic material 
simulations, significantly reducing computation time 
while maintaining precision (Asher et al., 2015). By 
leveraging data-driven methods, the proposed approach
enables real-time applications in engineering design, 
optimization, and control. The developed surrogate model 
enhances computational efficiency and provides a scalable 
framework that can be extended to other material models 
and loading conditions, demonstrating its potential as a 
powerful alternative to conventional FEA-based 
simulations (GrebeniÅŸan et al., 2017; Ghaderi et al., 
2020).  

2.1 Choice of Hyperelastic Model: Neo-Hookean Approach 

2.1.1 Hyperelasticity 

Hyperelastic materials exhibit nonlinear elastic behavior, 
meaning they can undergo large, reversible deformations 
without energy dissipation. Unlike classical linear elasticity, 
which assumes small strains and a linear stress-strain 
relationship, hyperelasticity is formulated in terms of a strain 
energy density function W, from which the stress-strain 
relationships are derived. 
The foundation of the Neo-Hookean model is the strain 
energy density function, which represents the stored 
energy per unit volume due to deformation: 

Where: 
W = strain energy per unit volume 
C₁ = material constant (related to shear modulus) 
I₁ = first strain invariant, representing the stretch in all directions 
J = determinant of the deformation gradient (volume change) 
D₁ = material parameter related to compressibility 
 𝐼₁ = 𝑡𝑟 (𝐶) is the first strain invariant (sum of diagonal elements of 𝐶) 
C = FT F is the right Cauchy-Green deformation tensor, 

 F is the deformation gradient tensor. 

the equation simplifies to: 

From this strain energy function, the Cauchy stress tensor is obtained as: 

Where B is the left Cauchy-Green deformation tensor, II is the 
identity matrix, and pp is the hydrostatic pressure enforcing 
incompressibility. The Neo-Hookean model provides a 
fundamental representation of rubber-like materials, making it 
widely applicable in modeling soft materials undergoing large 
deformations. 
The Neo-Hookean model describes hyperelastic material 
behavior using a strain energy density function, which defines 
how the material stores energy during deformation. This 
function depends on the first invariant of the Right Cauchy-
Green tensor, which represents the material stretch in different 
directions. Stress is derived from this energy function using the 
Cauchy stress tensor equation, which relates stress to the Left 
Cauchy-Green tensor while ensuring incompressibility through 
an additional pressure term. The deformation gradient tensor is 
used to track how material points move from their original to 
deformed positions. 

2. THEORY
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dependent solely on the first invariant of the deformation 
tensor, the Mooney-Rivlin formulation incorporates both the 
first and second invariants, providing a more comprehensive 
characterization of material behavior under various loading 
conditions. 
The strain energy function for the Mooney-Rivlin 5-parameter 
model is expressed as 
W = C10 (I1−3) +C20 (I2−3) +C20 (I1−3)2+C11 (I1−3) (I2−3) + 

C02 (I2−3)2

Where I1 and I2 are the first and second invariants of the 
left Cauchy-
Green deformation tensor, and C10, C20, C11, C02 are 
material constants 
determined through experimental fitting. The inclusion 
of I2 in the energy function allows this model to better 
capture the response of hyperelastic materials in 
complex deformation states, including shear and biaxial 
loading. 
From an analytical perspective, the superiority of the 
Mooney-Rivlin model over the Neo-Hookean 
formulation becomes evident when considering the 
constitutive equations governing the stress response. 
The Cauchy stress tensor, derived from the strain energy 
function, takes the form. 

Further refines the accuracy of the model, enabling it to 
describe stress-strain responses over a wider range of 
deformations. 
Furthermore, considering the shear modulus expression 
derived from these models, the Neo-Hookean 
formulation assumes a constant shear modulus G = 2C10 
which remains invariant with deformation. However, 
experimental studies on hyperelastic materials reveal 
that the shear modulus exhibits a strain-dependent 
variation. The Mooney-Rivlin 
model, through its dependence on both I1 and I2, 
effectively captures this variation, making it a more 
realistic representation of rubber elasticity. This is 
particularly important in applications involving 
torsional and biaxial loading, where the Neo-Hookean 
model leads to significant discrepancies. 
Another critical aspect of the analytical justification of 
the Mooney-Rivlin model is its performance in 
predicting stress distributions under 

2.1 Choice of Hyperelastic Model: Neo-Hookean Approach 
The Mooney-Rivlin model extends the basic hyperelastic theory 
by incorporating additional material parameters, allowing for a 
more accurate representation of large deformations in rubber-
like materials. Unlike the Neo-Hookean model, which is derived 
from a simplified strain energy function

mixed loading conditions. In situations where materials 
experience a combination of tension and shear, such as in 
rubber seals, gaskets, and biological tissues, the Neo-
Hookean assumption of isotropic material behavior fails 
to accurately represent the observed anisotropic 
response. The Mooney-Rivlin model, due to its 
more flexible constitutive form, provides a superior fit to 
experimental data, ensuring higher fidelity in numerical 
simulations and surrogate modeling applications. 
Thus, from both a theoretical and experimental 
standpoint, the Mooney-Rivlin 5-parameter model 
provides a significantly improved representation of 
hyperelastic materials when compared to the Neo-
Hookean model. The additional material parameters 
enhance the model's ability to describe complex 
deformation modes, particularly in shear-dominated and 
large-strain conditions. Consequently, the Mooney-
Rivlin formulation is widely adopted in 
engineering applications requiring high-accuracy material 
modeling, particularly in the context of rubber-like 
materials and biological tissues. 
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Where Bij and Bij-1 are the left Cauchy-Green deformation 
tensor and its inverse, respectively, and up is an arbitrary 
pressure term associated with the incompressibility 
constraint. In the case of the Neo-Hookean 
model, where W depends only on I1, the stress 
response is solely governed by the first term, meaning 
the model does not account for deformations where the 
second invariant significantly influences material 
behavior, such as in shear-dominated scenarios. 
A key limitation of the Neo-Hookean model arises in 
uniaxial and biaxial tension tests, where it fails to capture 
the nonlinear increase in stress at higher strains. 
Experimental data indicate that rubber-like 
materials exhibit a dependence on both I1 and I2, 
particularly in non-uniform deformation fields. The 
Mooney-Rivlin model accounts for this 
behavior by including terms associated with I2,, leading to 
an improved correlation with experimental observations. 
The presence of higher-order terms such as 
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Stress Strain Curve of mooney rivlin

3. GEOMETRY
To investigate the deformation behavior of hyperelastic 
materials under axial tensile loading, a finite element 
analysis (FEA) was performed on hollow cylinders using 
the Mooney-Rivlin 5-parameter model. Two cylindrical 
geometries were considered, with outer diameters of 30 
cm and 50 cm, each having a length of 100 cm. The 
material response was examined to determine axial 
elongation, radial expansion, and stress distribution 
under tensile loading. 
Axial tensile loading was applied at one end of the 
cylinder while the opposite end was constrained to 
prevent rigid body motion. The Cauchy stress tensor 
was derived from the strain energy function and used to 
quantify the deformation response: 

4. MESH CONVERGENCE ANALYSIS

In finite element analysis (FEA), meshing plays a 
crucial role in determining the accuracy and efficiency 
of simulations. The choice of mesh size and type directly 
affects solution convergence, computational cost, and the 
ability to capture stress-strain distributions accurately. For 
complex geometries such as a hollow cylinder, an 
optimized meshing approach is necessary to ensure 
numerical stability while maintaining computational 
feasibility. In this study, a tetragonal meshing strategy 
was employed to balance accuracy and efficiency. A finer 
mesh size of 2 cm was applied along the internal 
circumference to resolve high-stress concentration regions, 
while a coarser mesh of 3 cm was assigned to the 
remaining surfaces, where stress gradients were lower. 
A mesh convergence study was conducted to analyze 
the effects of different mesh sizes on solution 
accuracy, computational time, and memory usage. 
Several meshing configurations were tested, including 
uniform coarse meshes (4 cm, 5 cm), uniform fine meshes 
(1 cm, 2 cm), and adaptive meshing with refinement in 
critical areas. The results showed that coarse meshes led 
to significant underestimation of stress values, 
particularly in regions of localized deformation. While 
finer uniform meshes improved accuracy, they 
drastically increased computational time without yielding 
substantial improvements beyond a certain refinement 
threshold. The best balance between accuracy and 
computational efficiency was achieved using an 
adaptive tetrahedral refinement approach. 

Tetrahedron Meshing 
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Hexagonal Meshing 

The following results summarize the impact of different meshing 
strategies: 

Parameter Tetrahedral(adaptive 

refining) 

Hexagonal 

Aspect Ratio 2.00 1.20 
Skewness 0.38 0.08 
Jacobian Ratio 0.93 0.88 
Element Count 25966 12373 
Nodes Count 45086 50683 
Computation Time (s) 45 99 
Memory Usage (MB) 399 461 
Percentage Error (%) 0.97 0.91 

The results indicate that adaptive tetrahedral refinement provides an 
optimal balance between computational efficiency and solution 
accuracy. Hexahedral elements, while generally yielding lower errors, 
require significantly more preprocessing time and higher computational 
resources, making them impractical for complex geometries such as 
hollow cylinders. In contrast, tetrahedral meshes, particularly when 
refined adaptively, achieved comparable accuracy with reduced 
computational demand. Triangular surface meshes exhibited the highest 
error percentage and were unsuitable for volumetric stress analysis due to 
their inability to capture internal strain variations. 
The selection of tetragonal meshing was driven by its ability to 
conform efficiently to the curved geometry of the hollow cylinder 
while minimizing element distortion. This meshing strategy ensures 
that stress concentrations are captured accurately along the internal 
circumference, where the highest deformations occur. Additionally, 
mesh quality parameters such as aspect ratio, skewness, and Jacobian 
ratio were monitored to maintain numerical stability. A convergence 
study confirmed that further mesh refinement beyond the selected 
configuration did not significantly improve accuracy, validating the 
chosen mesh sizes. 
The final meshing approach demonstrated a robust balance between 
accuracy, computational cost, and numerical stability. By employing 
adaptive refinement with a 2 cm mesh at the internal circumference and a 
3 cm mesh at the remaining faces, the analysis effectively captured 
the structural behavior of the hollow cylinder while maintaining 

5. SIMULATION
The hollow cylinder was subjected to an axial loading condition to 
evaluate its structural response under compressive forces. One end of 
the cylinder was assigned a fixed boundary condition, restricting all 
translational and rotational degrees of freedom to simulate a rigid 
constraint. The opposite end was subjected to a uniform axial load, 
applied as a force distributed across the surface. This configuration 
ensures that the deformation and stress distribution are primarily 
influenced by the applied axial force while preventing any undesired 
rigid body motion. 
The choice of an axial load reflects real-world loading scenarios where 
cylindrical structures, such as pressure vessels and mechanical shafts, 
experience compressive or tensile stresses along their longitudinal axis. 
The applied force was varied across multiple simulations to study its 
impact on stress distribution, deformation characteristics, and overall 
structural stability. 
By implementing this loading condition, the analysis provides insights 
into the strain propagation, stress concentrations, and failure-prone 
regions under axial compression. The obtained results were further used 
to assess the influence of different meshing techniques on 
computational accuracy and convergence. 

To systematically evaluate the structural response of the hollow cylinder 
under axial loading, simulation results were extracted and parameterized 
over 32 distinct data points. These data points correspond to variations 
in loading conditions and their effects on deformation, stress, and strain. 
The objective of this parameterization is to establish a structured dataset 
that enables comparative analysis and trend identification across 
different cases. 
Following the completion of finite element simulations, key mechanical 
parameters—including total deformation, von Mises stress, and strain 
components—were recorded for each data point. The extracted values 
were organized into a structured dataset to facilitate statistical 
evaluation and further analysis. 
The results will be stored in CSV format, allowing for efficient post-
processing and visualization. This structured representation will support 
detailed assessments, including trend analysis, sensitivity studies, and 
validation against theoretical or experimental benchmarks. By 
parameterizing the simulation outcomes, the study aims to provide 
deeper insights into the mechanical behavior of the structure and ensure 
the accuracy of the computational approach. 

computational efficiency. 
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Moreover we have also mentioned the convergence value of both force 
and displacement residuals which have been achieved within the 
required limit, Thus establishing that our simulation has achieved 
convergence and is ready to extract data from. 

Value 
Force Residual 0.12 E-07 
Displacement Residual 0.75 E-05 

 It is essential to determine an optimal set of load values that effectively 
capture a wide range of deformation, stress, and strain responses. 
Rather than selecting arbitrary load values or using equally spaced 

increments, clustering techniques can be leveraged to identify 
representative load points that span the entire mechanical response 
spectrum efficiently. In this research, K-Means clustering was applied 
to systematically group load values based on their associated 
deformation, stress, and strain characteristics, ensuring that the selected 
values provide meaningful variations in the mechanical response. The 
methodology and justification for using K-Means clustering are 
discussed in detail, with an emphasis on its mathematical formulation 
and its relevance to load selection. 
K-Means clustering is an unsupervised learning algorithm that partitions a
dataset into kkk clusters, where each cluster is characterized by a
centroid that represents the mean of all points within that cluster. The
objective function of K-Means clustering is to minimize the total intra-
cluster variance, which is mathematically expressed as:

Where J denotes the sum of squared Euclidean distances between each 
data point  and its assigned cluster centroid  represents the set of data 
points in cluster i, and k is the predefined number of clusters. The 
algorithm iteratively updates the cluster centroids using the expression: 

Which ensures that the centroid at iteration t+1t+1t+1 represents the 
mean of all points assigned to the cluster in the previous iteration. 
The dataset used in this research consists of four-dimensional feature 
vectors, where each data point represents a load value and its 
corresponding mechanical responses: 

To ensure that all variables contribute equally to the clustering process, 
feature scaling was applied using min-max normalization: 

This transformation maps all feature values into a uniform range, 
preventing any single feature from disproportionately influencing the 
clustering outcome. 
To determine the appropriate number of clusters, the Elbow Method 
was employed. This method involves plotting the within-cluster sum of 
squares (WCSS) as a function of k and identifying the point where the 
marginal gain in clustering quality diminishes. The WCSS is given by: 

Where a lower WCSS indicates better clustering efficiency. The optimal 
number of clusters was identified at the elbow point of the WCSS curve, 
ensuring a balance between minimal intra-cluster variance and 
meaningful data representation. 

Once clustering was performed, the resulting cluster centroids served as 
the optimal load values. Each centroid represents the average 
mechanical response within a specific cluster, ensuring that the selected 
load values span the full range of deformation, stress, and strain 
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behaviors. This approach is particularly advantageous over traditional 
selection methods, as it eliminates redundancy by avoiding closely 
spaced load values that exhibit similar mechanical responses. 
The analytical justification for using K-Means clustering lies in its 
ability to minimize intra-cluster variance while maintaining an even 
distribution of data points across the response space. Unlike 
conventional methods that might rely on uniform load increments, 
clustering ensures that each selected load value corresponds to a 
distinct mechanical response, thereby improving the efficiency and 
accuracy of parameterization. Moreover, this approach reduces 
computational overhead by selecting only a subset of load values that 
provide maximum variance in the response space, rather than 
simulating an exhaustive range of loads. 
In conclusion, the application of K-Means clustering for load selection 
presents a robust, data-driven methodology that optimally partitions the 
mechanical response spectrum. By leveraging cluster centroids as 
representative load values, this approach ensures that the selected loads 
effectively parameterize deformation, stress, and strain variations while 
minimizing redundancy. The results demonstrate that clustering-based 
load selection provides a systematic, computationally efficient, and 
analytically justified means of identifying meaningful load values for 
mechanical analysis. 
Below is the table of values obtained using parametrizing and k means 
clustering: 

load(N) deflection(m) stress(Pa) strain(m m-1) 

5 0.006397194 63.19979261 0.010593442 

10 0.013213849 125.8599218 0.021497643 

15 0.020494822 188.5649909 0.032681554 

20 0.028289053 252.1243147 0.044108108 

25 0.036648706 317.131314 0.05573554 

30 0.045627293 384.3200583 0.06751895 

35 0.05527636 454.4331035 0.079411816 

40 0.065640249 528.1864018 0.091367194 

45 0.076748692 606.2339628 0.103338446 

50 0.088607803 692.3691133 0.11527949 

55 0.101190943 785.88975 0.127144774 

60 0.114432972 885.2925225 0.138889451 

65 0.128230479 990.5772841 0.150469963 

70 0.142450885 1101.607065 0.161845386 

75 0.156947785 1218.127054 0.172979221 

80 0.171578426 1339.796426 0.183841214 

85 0.186217813 1466.222744 0.194408491 

6. DEVELOPMENT OF A NEURAL NETWORK-BASED
SURROGATE MODEL

In this study, a neural network-based surrogate model was developed to 
approximate the relationship between applied load and the resulting 
deformation, stress, and strain responses. The dataset, consisting of 32 
selected load values, was obtained through finite element simulations, 
and the corresponding mechanical responses were used for training the 
neural network. The primary objective was to create a computationally 
efficient model capable of predicting mechanical behavior under new 
load conditions without the need for repeated numerical simulations. The 
neural network was implemented using a feedforward architecture, 
where the input was the applied load, and the outputs were the predicted 
deformation, stress, and strain. The network was trained using the 
Levenberg-Marquardt backpropagation algorithm (trainlm), known for 
its fast convergence in function approximation tasks. The mathematical 
representation of a single-layer feedforward neural network is given by: 

Where xx represents the input load, WW denotes the weight matrix, bb 
is the bias vector, and f (⋅)f(\cdot) is the activation function applied to 
the weighted sum. In this implementation, the network utilized a single 

90 0.200766501 1596.996297 0.204665996 

95 0.215152267 1731.715883 0.214606024 

100 0.229327456 1870.006389 0.224227238 

150 0.358168128 3392.335786 0.328076765 

200 0.471172165 5080.544361 0.411296174 

250 0.577877679 6891.756082 0.483922083 

300 0.683099697 8816.640379 0.550749682 

350 0.788879862 10853.25838 0.613737501 

450 1.000934105 15252.58254 0.728968225 

500 1.103345786 17602.84244 0.780185628 

550 1.200262115 20039.69337 0.826202542 

600 1.29026108 22551.05682 0.866752297 

650 1.372925472 25125.67125 0.902256793 

700 1.448549882 27753.95495 0.933520705 

750 1.517780594 30428.35241 0.961145736 

800 1.581357427 33142.45734 0.985649765 

850 1.640041443 35890.85355 1.007604167 

900 1.694444697 38671.44481 1.027540286 

950 1.745133644 41479.89908 1.046035349 

1000 1.79250704 44314.81102 1.062842488 
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hidden layer with 10 neurons, where the activation function was the 
hyperbolic tangent sigmoid function (tansig), mathematically expressed 
as: 

This activation function was chosen due to its ability to introduce non-
linearity into the model while maintaining output values within the 
range (-1, 1), which is beneficial for normalized data. The output layer 
employed a linear activation function (purelin), defined as: 

 Allowing the network to produce continuous numerical outputs 
suitable for regression-based surrogate modeling. 
To ensure numerical stability and improve training efficiency, both the 
input and output variables were normalized using min-max scaling, 
given by: 

Where XX represents the input load values, YY denotes the mechanical 
responses, and the normalization range is between 0 and 1. The 
normalization parameters were stored and later used to revert the 
predicted values to their original scale. 

The training process was governed by a set of hyperparameters, 
including the number of epochs, learning goal, and training algorithm. 
The network was trained using the following specifications: 

 Hidden layer size: 10 neurons
 Training algorithm: Levenberg-Marquardt backpropagation
 Number of epochs: 500
 Training goal: 10-6 (mean squared error tolerance)

During training, the network weights were updated iteratively using the 
gradient descent rule, where the weight update equation is given by: 

Where E represents the mean squared error (MSE), defined as: 

Where  is the actual value,  is the predicted value, and N is the 
number of training samples. The learning rate η controls the step size 
of weight updates, ensuring stable convergence. 

After training, the network was tested by predicting mechanical 
responses for new, unseen load values. For instance, a load of 1500 N 
was normalized and passed through the trained network to obtain 
predicted deformation, stress, and strain values. The predictions were 
then denormalized using: 

This approach provided an efficient means of generating mechanical 

response predictions without the need for computationally expensive 
finite element simulations. The accuracy of the surrogate model was 
evaluated using performance metrics such as root mean squared error 
(RMSE) and coefficient of determination (), demonstrating that the 
neural network successfully captured the underlying mechanical 
behavior with high precision. 
By implementing a neural network surrogate model, this study achieved 
a significant reduction in computational cost while maintaining 
predictive accuracy, making it a viable approach for parameterizing 
mechanical responses under varying loading conditions. 
The accuracy of the neural network-based surrogate model was 
evaluated by comparing the predicted stress-strain curve with the 
original stress-strain curve obtained from finite element simulations. 
This comparison ensures that the model effectively captures the 
material’s mechanical behavior under different loading conditions. The 
predicted curve closely follows the original curve, with minor 
deviations in regions of high non-linearity. The agreement between both 
datasets demonstrates that the neural network can reliably approximate 
stress-strain relationships, significantly reducing computational costs 
while maintaining accuracy. 

Table plotting of experimental stress-strain values 

Table plotting of stress-strain curve obtained through surrogate 
modeling 

7. PREDICTION EVALUATION METRICS
To assess the accuracy and reliability of the neural network-based 
surrogate model, standard evaluation metrics including Mean Squared 
Error (MSE), Root Mean Squared Error (RMSE), and the Coefficient of 
Determination ( ) were used. These metrics provide a quantitative 
measure of how well the predicted values align with the actual values 
obtained from finite element simulations. 
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The Mean Squared Error (MSE) calculates the average squared 
difference between the predicted and actual values, ensuring that larger 
errors are penalized more heavily. It is defined as: 
Where    represents the actual value,   is the predicted value, and 
N is the total number of data points. A lower MSE value indicates 
better model accuracy. 
The Root Mean Squared Error (RMSE) is derived from the MSE and 
provides an interpretable measure of prediction error in the same units 
as the target variable: 

This metric is particularly useful for understanding the absolute 
magnitude of prediction errors and assessing the practical reliability of 
the model. 
The Coefficient of Determination (R2) measures how well the
predicted values explain the variance in the actual data. It is given by: 

Where is the mean of the actual values. An R2 value close to 1
indicates a strong correlation between predictions and actual results, 
whereas a value closer to 0 suggests poor predictive performance. 

By evaluating the neural network using these metrics, the accuracy of 
the surrogate model was validated, ensuring that it provides reliable 
approximations of stress, strain, and deformation under various loading 
conditions while significantly reducing computational costs. 

To assess the accuracy of the neural network-based surrogate model, its 
prediction for an intermediate load value of 471 N was compared 
against the corresponding result obtained from finite element 
simulations. Since this load value was not explicitly included in the 
training dataset, this validation step ensures that the model effectively 
interpolates mechanical responses for unseen load conditions. 

The accuracy of the prediction was evaluated using three key metrics: 
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and 
the Correlation Coefficient (RR). MSE measures the average squared 
difference between the predicted and actual values, indicating the 
overall deviation. RMSE, obtained by taking the square root of MSE, 
provides an interpretable measure of prediction error in the same units 
as the target variable. The Correlation Coefficient (RR) quantifies the 
linear relationship between the predicted and actual values, where an 
RR value close to 1 suggests a strong agreement. 

By computing these metrics for the 471 N load case, the generalization 
ability of the neural network was assessed. A low MSE and RMSE, 
combined with an RR value close to 1, would indicate that the 
surrogate model accurately predicts stress, strain, and deformation, 
even for load values not explicitly included in training. This validation 
reinforces the model's capability to serve as a computationally efficient 
alternative to repeated finite element simulations while maintaining 
high predictive accuracy across a range of loading conditions. 

Above are the simulation results for a load value of 471N 

For Load = 471.00N 
Predicted Deflection = 1.06113 m 
Predicted Stress = 16620.69994 pa 
Predicted Strain = 0.75920 mm-1       
Above is the result obtained through surrogate modelling. 

Prediction Vs Actual Table 

Predicted Values Actual Values

Load(N) 471 471 

Deformation(m) 1.06 1.04 

Stress(Pa) 16620 16228 

Strain(mm-1) 0.75 0.75 

8. VALIDATION OF THE SURROGATE MODEL FOR
AN INTERMEDIATE LOAD VALUE
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Evaluation Metrices 

Mean Square Error 73104.84 

Root Mean Square Error 270.37 

R-Value 0.996 

The MSE value, which measures the average squared difference 
between predicted and actual values, remains relatively low given the 
scale of the dataset, confirming that the surrogate model minimizes 
large deviations. The RMSE value of 270.38 Pa, being in the same unit 
as the predicted stress values, provides an interpretable measure of 
prediction accuracy, indicating that the model closely approximates 
finite element results. Furthermore, the RRR-value of 0.9996 
demonstrates an almost perfect correlation between predicted and 
actual values, confirming that the neural network has successfully 
learned the underlying mechanical relationships and can reliably 
predict stress-strain behavior. 

These results validate the generalization capability of the neural 
network, proving that the model effectively interpolates mechanical 
responses for load values beyond the training dataset. The low error 
and high correlation indicate that the surrogate model is an efficient 
and accurate alternative to computationally expensive finite element 
simulations, enabling rapid stress-strain predictions across a range of 
loading conditions. 

9. CONCLUSION

In this study, a neural network-based surrogate model was developed to 
predict the mechanical response of a hollow cylinder under axial 
loading, reducing the reliance on computationally expensive finite 
element simulations. Load values were selected using K-Means 
clustering, ensuring a diverse dataset for training. A feedforward neural 
network was implemented with normalized input and output variables, 
trained using the Levenberg-Marquardt algorithm. The model 
successfully captured the complex non-linear relationships between 
load, deformation, stress, and strain, with validation results confirming 
its accuracy. For an intermediate load of 471 N, the predicted values 
closely matched the finite element results, achieving a low RMSE of 
270.38 and a high regression RR-value of 0.9996, demonstrating 
excellent predictive performance. The surrogate model effectively 
interpolates stress-strain behavior across varying load conditions, 
making it a viable alternative for rapid parametric studies in structural 
mechanics. 
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