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Abstract

Finite Element Analysis (FEA)
simulating the behavior of complex nonlinear materials, such

is a widely used tool for

as hyperelastic materials, but it is computationally expensive and
time-consuming. To address this challenge, we propose a
surrogate modeling approach using neural
approximate the material response with high accuracy while
significantly reducing computational costs. The neural network

networks to
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other critical mechanical properties
generated from traditional FEA solvers
method not only accelerates

real-time applications

by training on data
like ANSYS. This
simulations but also enables
in engineering design and optimization.
Our study evaluates the model’s accuracy, generalization, and
computational efficiency,

demonstrating its potential as a

powerful alternative to conventional FEA-based simulations..
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1. INTRODUCTION

The simulation of hyperelastic materials plays a crucial
role in engineering applications, particularly in
biomechanics, aerospace, and polymer mechanics, due to their
ability to undergo large, reversible deformations. These
materials require complex constitutive models for accurate
representation, as they do not follow traditional linear
elasticity laws. As stated in Darijani et al. (2010),
hyperelastic materials are typically modeled using strain
energy density functions that describe their mechanical
behavior under deformation. The selection of an
appropriate strain energy function (SEF) is essential for
accurately predicting stress-strain  responses, particularly
for rubber-like materials. Various SEFs, such as Neo-
Hookean, Mooney-Rivlin, and Yeoh models, have been used
to characterize these materials, each with its own advantages
and limitations (Shahzad et al., 2015).

Finite Element Analysis (FEA) has traditionally been the
primary tool for modeling hyperelastic material behavior due
to its ability to provide detailed stress-strain predictions.
However, as stated in Schneidera et al. (2019), large-scale
FEA simulations are computationally expensive, requiring
significant processing power and long runtimes, making them
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impractical for real-time applications. In particular, mesh
selection plays a critical role in determining computational
efficiency and accuracy. As described in Grebenisan et al.
(2017), tetragonal and hexagonal meshing techniques can
significantly affect convergence rates and numerical
stability in FEA simulations. While fine-meshed FEA
models improve accuracy, they also drastically increase
computational demands, leading to the need for alternative

approaches.
To  overcome these  computational limitations,
researchers have explored machine learning-based

surrogate models as efficient alternatives to FEA. As
stated in Asher et al. (2015), surrogate models are
designed to approximate high-fidelity simulations with
reduced computational cost  while  maintaining
acceptable levels of accuracy. These models have been
successfully applied across various fields, including
structural mechanics, fluid dynamics, and material
science. Surrogate models shown promising
results in predicting mechanical behavior, reducing the
need for repeated simulations, and enabling real-time
decision-making (Keprate et al., 2017)..
In this study, a neural network-based surrogate model is
developed to predict the mechanical response of
hyperelastic materials, specifically a hollow cylindrical
tube subjected to axial loading. The choice of the
constitutive model is a crucial factor in accurately
capturing material behavior. As stated in Shahzad et al.
(2015), the Neo-Hookean model is often preferred for its
simplicity, but its limitations in representing complex
material behaviors especially under large strainsa€’have
led to the adoption of more advanced models. For this
reason, the Mooney-Rivlin 5-parameter model is chosen in
this study, as it provides greater flexibility and accuracy in
describing nonlinear stress-strain relationships.

have
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The structure analyzed in this research consists of a hollow
cylindrical tube with an inner diameter of 30 cm, an outer
diameter of 50 cm, and a length of 1 m. To ensure accurate
stress, strain, and deformation predictions, a fine-meshed
FEA model is created, covering axial loads ranging from
5N to 1000N. Instead of performing an exhaustive number
of simulations, which would be computationally
impractical, a K-Means clustering method is used to
efficiently parametrize the loads,
representative selection of load cases (Ghaderi et al., 2020).
This approach optimizes the dataset, allowing the neural
network to learn from a diverse yet computationally
manageable dataset, improving prediction accuracy while
minimizing training time.

To construct the surrogate model, the Levenberg-
Marquardt (LM) training algorithm is employed, as it
is widely recognized for its superior convergence speed
and precision in function approximation tasks. As stated
in Liu et al. (2010), the LM algorithm is one of the most
effective methods for training feedforward neural networks,
particularly in engineering applications. MATLAB’s
Neural Network Toolbox is utilized for training, as it
provides various activation functions and optimization
tools, making it a robust platform for neural network
implementation (Gan et al., 2011).

To assess the effectiveness of the proposed surrogate
model, several performance metrics are used, including
Root Mean Square Error (RMSE) and the correlation
coefficient (R-value). As stated in Keprate et al. (2017),
these metrics are commonly employed to evaluate the
accuracy of machine learning-based surrogate models. A
high R-value (close to 1.0) indicates a strong correlation
between the predicted and actual FEA results, while a
low RMSE confirms minimal deviation in predictions,
ensuring that the neural network accurately captures the
nonlinear mechanical behavior of hyperelastic materials.
This study highlights the effectiveness of neural
networks in approximating complex hyperelastic material
simulations, significantly reducing computation time
while maintaining precision (Asher et al., 2015). By
leveraging data-driven methods, the proposed approach
enables real-time applications in engineering design,
optimization, and control. The developed surrogate model
enhances computational efficiency and provides a scalable
framework that can be extended to other material models
and loading conditions, demonstrating its potential as a
powerful alternative to  conventional FEA-based
simulations (GrebeniA?an et al., 2017; Ghaderi et al.,
2020).

input ensuring a
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2. THEORY

2.1 Choice of Hyperelastic Model: Neo-Hookean Approach

2.1.1 Hyperelasticity

Hyperelastic materials exhibit nonlinear elastic behavior,
meaning they can undergo large, reversible deformations
without energy dissipation. Unlike classical linear elasticity,
which assumes
relationship, hyperelasticity is formulated in terms of a strain
energy density function W, from which the stress-strain
relationships are derived.
The foundation of the Neo-Hookean model is the strain
energy density function, which represents the stored
energy per unit volume due to deformation:

small strains and a linear stress-strain

W = C1(I1 — 3) + 1D1(J — 1)?

Where:

W = strain energy per unit volume

C: = material constant (related to shear modulus)

I = first strain invariant, representing the stretch in all directions

J = determinant of the deformation gradient (volume change)

D; = material parameter related to compressibility

I = tr (C) is the first strain invariant (sum of diagonal elements of C)
C = F"F is the right Cauchy-Green deformation tensor,
F is the deformation gradient tensor.

the equation simplifies to:

W = C1(I1 — 3)
From this strain energy function, the Cauchy stress tensor is obtained as:
o =2CB —pIl

Where B is the left Cauchy-Green deformation tensor, II is the
identity matrix, and pp is the hydrostatic pressure enforcing
incompressibility. The Neo-Hookean model provides a
fundamental representation of rubber-like materials, making it
widely applicable in modeling soft materials undergoing large
deformations.

The Neo-Hookean model describes hyperelastic material
behavior using a strain energy density function, which defines
how the material stores energy during deformation. This
function depends on the first invariant of the Right Cauchy-
Green tensor, which represents the material stretch in different
directions. Stress is derived from this energy function using the
Cauchy stress tensor equation, which relates stress to the Left
Cauchy-Green tensor while ensuring incompressibility through
an additional pressure term. The deformation gradient tensor is
used to track how material points move from their original to
deformed positions.

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)
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2.1 Choice of Hyperelastic Model: Neo-Hookean Approach

The Mooney-Rivlin model extends the basic hyperelastic theory
by incorporating additional material parameters, allowing for a
more accurate representation of large deformations in rubber-
like materials. Unlike the Neo-Hookean model, which is derived
from a simplified strain energy function

dependent solely on the first invariant of the deformation
tensor, the Mooney-Rivlin formulation incorporates both the
first and second invariants, providing a more comprehensive
characterization of material behavior under various loading
conditions.

The strain energy function for the Mooney-Rivlin 5-parameter
model is expressed as

W =Cy (|1—3) +Cy (|2—3) +Con (|1—3)2+C11 (|1—3) (|2—3) +
Co2 (|2—3)2

Where 11 and 12 are the first and second invariants of the
left Cauchy-

Green deformation tensor, and C10, C20, C11, C02 are
material constants

determined through experimental fitting. The inclusion
of 12 in the energy function allows this model to better
capture the response of hyperelastic materials in
complex deformation states, including shear and biaxial
loading.

From an analytical perspective, the superiority of the
Mooney-Rivlin  model over the Neo-Hookean
formulation becomes evident when considering the
constitutive equations governing the stress response.
The Cauchy stress tensor, derived from the strain energy
function, takes the form.

oW oW B-‘)

Tij = —10(5:',' +2 (3_1181-}. + E i

Where Bij and Bij'l are the left Cauchy-Green deformation
tensor and its inverse, respectively, and up is an arbitrary

pressure term associated with the incompressibility
constraint. In the case of the Neo-Hookean
model, where W depends only on 11, the
response is solely governed by the first term, meaning
the model does not account for deformations where the
second significantly material
behavior, such as in shear-dominated scenarios.

A key limitation of the Neo-Hookean model arises in
uniaxial and biaxial tension tests, where it fails to capture

stress

invariant influences

the nonlinear increase in stress at higher strains.
Experimental data indicate that rubber-like
materials exhibit a dependence on both 11 and 12,

particularly in non-uniform deformation fields. The
Mooney-Rivlin model accounts for this

behavior by including terms associated with 12,, leading to
an improved correlation with experimental observations.

The presence of higher-order terms such as
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. oW W _1
gij = —péij +2 (5—1_135_1 + (__)—IZBU )

Further refines the accuracy of the model, enabling it to
describe stress-strain responses over a wider range of
deformations.

Furthermore, considering the shear modulus expression
derived from these models, the Neo-Hookean
formulation assumes a constant shear modulus G = 2C10
which remains invariant with deformation. However,
experimental studies on hyperelastic materials reveal
that the strain-dependent
variation. The Mooney-Rivlin

model, through its dependence on both 11 and 12,
effectively captures this variation, making it a more
realistic representation of rubber elasticity. This is
particularly  important in  applications involving
torsional and biaxial loading, where the Neo-Hookean
model leads to significant discrepancies.

Another critical aspect of the analytical justification of
the Mooney-Rivlin model is its performance in
predicting stress distributions under

shear modulus exhibits a

mixed loading conditions. In situations where materials
experience a combination of tension and shear, such as in
rubber seals, gaskets, and biological tissues, the Neo-
Hookean assumption of isotropic material behavior fails
to accurately represent the observed anisotropic
response. The Mooney-Rivlin model, due to its
more flexible constitutive form, provides a superior fit to
experimental data, ensuring higher fidelity in numerical
simulations and surrogate modeling applications.
Thus, from both a experimental
standpoint, the Mooney-Rivlin 5-parameter model
provides a significantly improved representation of
hyperelastic materials when compared to the Neo-
Hookean model. The additional material parameters
enhance the model's ability to describe complex
deformation modes, particularly in shear-dominated and
large-strain  conditions. Consequently, the Mooney-
Rivlin formulation is widely adopted in
engineering applications requiring high-accuracy material
modeling, particularly in the context of rubber-like
materials and biological tissues.

theoretical and
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3. GEOMETRY
To investigate the deformation behavior of hyperelastic

materials under axial tensile loading, a finite element
analysis (FEA) was performed on hollow cylinders using
the Mooney-Rivlin 5-parameter model. Two cylindrical
geometries were considered, with outer diameters of 30
cm and 50 cm, each having a length of 100 cm. The
material response was examined to determine axial
elongation, radial expansion, and stress distribution
under tensile loading.

Axial tensile loading was applied at one end of the
cylinder while the opposite end was constrained to
prevent rigid body motion. The Cauchy stress tensor
was derived from the strain energy function and used to
quantify the deformation response:

aw oW
i = —pdij + 2 [ =—Bij + =—B;
7T TR (arl it L, ”)

60.00 (cm)
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4. MESH CONVERGENCE ANALYSIS

In finite element analysis (FEA), meshing plays a
crucial role in determining the accuracy and efficiency
of simulations. The choice of mesh size and type directly
affects solution convergence, computational cost, and the
ability to capture stress-strain distributions accurately. For
complex geometries such as a hollow cylinder, an
optimized meshing approach is necessary to ensure
numerical stability while maintaining computational
feasibility. In this study, a tetragonal meshing strategy
was employed to balance accuracy and efficiency. A finer
mesh size of 2 cm was applied along the internal
circumference to resolve high-stress concentration regions,
while a coarser mesh of 3 cm was assigned to the
remaining surfaces, where stress gradients were lower.

A mesh convergence study was conducted to analyze
the effects of different mesh sizes on solution
accuracy, computational time, and memory usage.
Several meshing configurations were tested, including
uniform coarse meshes (4 cm, 5 cm), uniform fine meshes
(1 cm, 2 cm), and adaptive meshing with refinement in
critical areas. The results showed that coarse meshes led
to significant underestimation of stress values,
particularly in regions of localized deformation. While
finer uniform meshes improved accuracy, they
drastically increased computational time without yielding
substantial improvements beyond a certain refinement
threshold. The best balance between accuracy and
computational efficiency was achieved wusing an
adaptive tetrahedral refinement approach.

Tetrahedron Meshing

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

Hexagonal Meshing

The following results summarize the impact of different meshing
strategies:

Parameter Tetrahedral(adaptive | Hexagonal
refining)
Aspect Ratio 2.00 1.20
Skewness 0.38 0.08
Jacobian Ratio 0.93 0.88
Element Count 25966 12373
Nodes Count 45086 50683
Computation Time (s) 45 99
Memory Usage (MB) 399 461
Percentage Error (%) 0.97 0.91

The results indicate that adaptive tetrahedral refinement provides an
optimal balance between computational -efficiency and solution
accuracy. Hexahedral elements, while generally yielding lower errors,
require significantly more preprocessing time and higher computational
resources, making them impractical for complex geometries such as
hollow cylinders. In contrast, tetrahedral meshes, particularly when
refined adaptively, achieved comparable accuracy with
computational demand. Triangular surface meshes exhibited the highest
error percentage and were unsuitable for volumetric stress analysis due to
their inability to capture internal strain variations.

The selection of tetragonal meshing was driven by its ability to
conform efficiently to the curved geometry of the hollow cylinder
while minimizing element distortion. This meshing strategy ensures
that stress concentrations are captured accurately along the internal
circumference, where the highest deformations occur. Additionally,
mesh quality parameters such as aspect ratio, skewness, and Jacobian
ratio were monitored to maintain numerical stability. A convergence
study confirmed that further mesh refinement beyond the selected
configuration did not significantly improve accuracy, validating the
chosen mesh sizes.

The final meshing approach demonstrated a robust balance between
accuracy, computational cost, and numerical stability. By employing
adaptive refinement with a 2 cm mesh at the internal circumference and a
3 cm mesh at the remaining faces, the analysis effectively captured
the structural behavior of the hollow cylinder while maintaining

reduced

computational efficiency.
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5. SIMULATION

The hollow cylinder was subjected to an axial loading condition to
evaluate its structural response under compressive forces. One end of
the cylinder was assigned a fixed boundary condition, restricting all
translational and rotational degrees of freedom to simulate a rigid
constraint. The opposite end was subjected to a uniform axial load,
applied as a force distributed across the surface. This configuration
ensures that the deformation and stress distribution are primarily
influenced by the applied axial force while preventing any undesired
rigid body motion.

The choice of an axial load reflects real-world loading scenarios where
cylindrical structures, such as pressure vessels and mechanical shafts,
experience compressive or tensile stresses along their longitudinal axis.
The applied force was varied across multiple simulations to study its
impact on stress distribution, deformation characteristics, and overall
structural stability.

By implementing this loading condition, the analysis provides insights
into the strain propagation, stress concentrations, and failure-prone
regions under axial compression. The obtained results were further used
to assess the influence of different meshing techniques on
computational accuracy and convergence.

A: main simulation

To systematically evaluate the structural response of the hollow cylinder
under axial loading, simulation results were extracted and parameterized
over 32 distinct data points. These data points correspond to variations
in loading conditions and their effects on deformation, stress, and strain.
The objective of this parameterization is to establish a structured dataset
that enables comparative analysis and trend identification across
different cases.

Following the completion of finite element simulations, key mechanical
parameters—including total deformation, von Mises stress, and strain
components—were recorded for each data point. The extracted values
were organized into a structured dataset to facilitate statistical
evaluation and further analysis.

The results will be stored in CSV format, allowing for efficient post-
processing and visualization. This structured representation will support
detailed assessments, including trend analysis, sensitivity studies, and
validation against theoretical or experimental benchmarks. By
parameterizing the simulation outcomes, the study aims to provide
deeper insights into the mechanical behavior of the structure and ensure
the accuracy of the computational approach.

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)


www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

A: main simulation

AV ANA
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5.0897 Min
0.900 (m)
]

A: main simulati

0.010593 Max
0.0095281
0.0084627

— 0.0010049 Min

Moreover we have also mentioned the convergence value of both force
and displacement residuals which have been achieved within the
required limit, Thus establishing that our simulation has achieved
convergence and is ready to extract data from.

Value
Force Residual 0.12 E-07
Displacement Residual 0.75 E-05

It is essential to determine an optimal set of load values that effectively
capture a wide range of deformation, stress, and strain responses.
Rather than selecting arbitrary load values or using equally spaced
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increments, clustering techniques can be leveraged to identify
representative load points that span the entire mechanical response
spectrum efficiently. In this research, K-Means clustering was applied
to systematically group load values based on their associated
deformation, stress, and strain characteristics, ensuring that the selected
values provide meaningful variations in the mechanical response. The
methodology and justification for using K-Means clustering are
discussed in detail, with an emphasis on its mathematical formulation
and its relevance to load selection.

K-Means clustering is an unsupervised learning algorithm that partitions a
dataset into kkk clusters, where each cluster is characterized by a
centroid that represents the mean of all points within that cluster. The
objective function of K-Means clustering is to minimize the total intra-
cluster variance, which is mathematically expressed as:

k
T=>"3" lla; — il

i=1 z;€C;

Where J denotes the sum of squared Euclidean distances between each
data point and its assigned cluster centroid represents the set of data
points in cluster i, and k is the predefined number of clusters. The
algorithm iteratively updates the cluster centroids using the expression:

@y 1
e 2

! ijC.i

Which ensures that the centroid at iteration t+1t+1t+1 represents the
mean of all points assigned to the cluster in the previous iteration.

The dataset used in this research consists of four-dimensional feature
vectors, where each data point represents a load value and its
corresponding mechanical responses:

z; = [Load;, Deflection;, Stress;, Strain;|

To ensure that all variables contribute equally to the clustering process,
feature scaling was applied using min-max normalization:

2 = x; — min(x)

max(z) — min(z)

This transformation maps all feature values into a uniform range,
preventing any single feature from disproportionately influencing the
clustering outcome.

To determine the appropriate number of clusters, the Elbow Method
was employed. This method involves plotting the within-cluster sum of
squares (WCSS) as a function of k and identifying the point where the
marginal gain in clustering quality diminishes. The WCSS is given by:

k
WCSS(k) = > > [l — il

i=1 z;CC;

Where a lower WCSS indicates better clustering efficiency. The optimal
number of clusters was identified at the elbow point of the WCSS curve,
ensuring a balance between minimal intra-cluster variance and
meaningful data representation.

Once clustering was performed, the resulting cluster centroids served as
the optimal load values. Each centroid represents the average
mechanical response within a specific cluster, ensuring that the selected
load values span the full range of deformation, stress, and strain
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behaviors. This approach is particularly advantageous over traditional
selection methods, as it eliminates redundancy by avoiding closely
spaced load values that exhibit similar mechanical responses.

The analytical justification for using K-Means clustering lies in its
ability to minimize intra-cluster variance while maintaining an even
distribution of data points across the response space. Unlike
conventional methods that might rely on uniform load increments,
clustering ensures that each selected load value corresponds to a
distinct mechanical response, thereby improving the efficiency and
accuracy of parameterization. Moreover, this approach reduces
computational overhead by selecting only a subset of load values that
provide maximum variance in the response space, rather than
simulating an exhaustive range of loads.

In conclusion, the application of K-Means clustering for load selection
presents a robust, data-driven methodology that optimally partitions the
mechanical response spectrum. By leveraging cluster centroids as
representative load values, this approach ensures that the selected loads
effectively parameterize deformation, stress, and strain variations while
minimizing redundancy. The results demonstrate that clustering-based
load selection provides a systematic, computationally efficient, and
analytically justified means of identifying meaningful load values for
mechanical analysis.

Below is the table of values obtained using parametrizing and k means
clustering:
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load(N) deflection(m) stress(Pa) strain(m m™)
5 0.006397194 63.19979261 0.010593442
10 0.013213849 125.8599218 0.021497643
15 0.020494822 188.5649909 0.032681554
20 0.028289053 252.1243147 0.044108108
25 0.036648706 317.131314 0.05573554

30 0.045627293 384.3200583 0.06751895

35 0.05527636 454.4331035 0.079411816
40 0.065640249 528.1864018 0.091367194
45 0.076748692 606.2339628 0.103338446
50 0.088607803 692.3691133 0.11527949

55 0.101190943 785.88975 0.127144774
60 0.114432972 885.2925225 0.138889451
65 0.128230479 990.5772841 0.150469963
70 0.142450885 1101.607065 0.161845386
75 0.156947785 1218.127054 0.172979221
80 0.171578426 1339.796426 0.183841214
85 0.186217813 1466.222744 0.194408491
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90 0.200766501 1596.996297 0.204665996
95 0.215152267 1731.715883 0.214606024
100 0.229327456 1870.006389 0.224227238
150 0.358168128 3392.335786 0.328076765
200 0.471172165 5080.544361 0.411296174
250 0.577877679 6891.756082 0.483922083
300 0.683099697 8816.640379 0.550749682
350 0.788879862 10853.25838 0.613737501
450 1.000934105 15252.58254 0.728968225
500 1.103345786 17602.84244 0.780185628
550 1.200262115 20039.69337 0.826202542
600 1.29026108 22551.05682 0.866752297
650 1.372925472 25125.67125 0.902256793
700 1.448549882 27753.95495 0.933520705
750 1.517780594 30428.35241 0.961145736
800 1.581357427 33142.45734 0.985649765
850 1.640041443 35890.85355 1.007604167
900 1.694444697 38671.44481 1.027540286
950 1.745133644 41479.89908 1.046035349
1000 1.79250704 44314.81102 1.062842488
6. DEVELOPMENT OF A NEURAL NETWORK-BASED
SURROGATE MODEL

In this study, a neural network-based surrogate model was developed to
approximate the relationship between applied load and the resulting
deformation, stress, and strain responses. The dataset, consisting of 32
selected load values, was obtained through finite element simulations,
and the corresponding mechanical responses were used for training the
neural network. The primary objective was to create a computationally
efficient model capable of predicting mechanical behavior under new
load conditions without the need for repeated numerical simulations. The
neural network was implemented using a feedforward architecture,
where the input was the applied load, and the outputs were the predicted
deformation, stress, and strain. The network was trained using the
Levenberg-Marquardt backpropagation algorithm (trainlm), known for
its fast convergence in function approximation tasks. The mathematical
representation of a single-layer feedforward neural network is given by:

y=f(Wz+b)

Where xx represents the input load, WW denotes the weight matrix, bb
is the bias vector, and f (-)f(\cdot) is the activation function applied to
the weighted sum. In this implementation, the network utilized a single
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hidden layer with 10 neurons, where the activation function was the
hyperbolic tangent sigmoid function (tansig), mathematically expressed
as:

2

f(u“ﬂ):m—

This activation function was chosen due to its ability to introduce non-
linearity into the model while maintaining output values within the
range (-1, 1), which is beneficial for normalized data. The output layer
employed a linear activation function (purelin), defined as:

fla) =z

Allowing the network to produce continuous numerical outputs
suitable for regression-based surrogate modeling.

To ensure numerical stability and improve training efficiency, both the
input and output variables were normalized using min-max scaling,
given by:

X o X - Xu.\iu
norm =
Xmax - Xmin
v _ Y — Y;uiu
norm —
}/mm( - }fmin

Where XX represents the input load values, YY denotes the mechanical
responses, and the normalization range is between 0 and 1. The
normalization parameters were stored and later used to revert the
predicted values to their original scale.

The training process was governed by a set of hyperparameters,
including the number of epochs, learning goal, and training algorithm.
The network was trained using the following specifications:

e  Hidden layer size: 10 neurons

e Training algorithm: Levenberg-Marquardt backpropagation

e Number of epochs: 500

. Training goal: 10 (mean squared error tolerance)

During training, the network weights were updated iteratively using the
gradient descent rule, where the weight update equation is given by:

OF

wt) — ) — p =
Tow

Where E represents the mean squared error (MSE), defined as:

N
1 ~ 12
MSE = + 2@; )
Yi Yi
Where

number of training samples. The learning rate 1 controls the step size

is the actual value, is the predicted value, and N is the

of weight updates, ensuring stable convergence.

After training, the network was tested by predicting mechanical
responses for new, unseen load values. For instance, a load of 1500 N
was normalized and passed through the trained network to obtain
predicted deformation, stress, and strain values. The predictions were
then denormalized using:

Yprcdictcd = Ymin + Y;_lorm(Ymax - Ymin)

This approach provided an efficient means of generating mechanical
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response predictions without the need for computationally expensive
finite element simulations. The accuracy of the surrogate model was
evaluated using performance metrics such as root mean squared error
(RMSE) and coefficient of determination (), demonstrating that the
network successfully captured the wunderlying mechanical
behavior with high precision.

By implementing a neural network surrogate model, this study achieved
a significant reduction in computational cost while maintaining
predictive accuracy, making it a viable approach for parameterizing
mechanical responses under varying loading conditions.

The accuracy of the neural network-based surrogate model was
evaluated by comparing the predicted stress-strain curve with the
original stress-strain curve obtained from finite element simulations.
This comparison ensures that the model effectively captures the
material’s mechanical behavior under different loading conditions. The
predicted curve closely follows the original curve, with minor
deviations in regions of high non-linearity. The agreement between both
datasets demonstrates that the neural network can reliably approximate
stress-strain relationships, significantly reducing computational costs
while maintaining accuracy.
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Table plotting of stress-strain curve obtained through surrogate
modeling

7. PREDICTION EVALUATION METRICS
To assess the accuracy and reliability of the neural network-based
surrogate model, standard evaluation metrics including Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), and the Coefficient of
Determination () were used. These metrics provide a quantitative
measure of how Réell the predicted values align with the actual values
obtained from finite element simulations.
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The Md&n Squared Error (MSE) ca :l}z'lates the average squared
difference between the predicted and actual values, ensuring that larger
errors are penalized more heavily. It is defined as:

Where represents the actual value, is the predicted value, and
N is the total number of data points. A lower MSE value indicates
better model accuracy.

The Root Mean Squared Error (RMSE) is derived from the MSE and
provides an interpretable measure of prediction error in the same units
as the target variable:

RMSE = vV MSE

This metric is particularly useful for understanding the absolute
magnitude of prediction errors and assessing the practical reliability of
the model.

The Coefficient of Determination (RZ) measures how well the
predicted values explain the variance in the actual data. It is given by:

R 2 n)
Yy - 9)?
Where ¥ is the mean of the actual values. An R? value close to 1

indicates a strong correlation between predictions and actual results,
whereas a value closer to 0 suggests poor predictive performance.

By evaluating the neural network using these metrics, the accuracy of
the surrogate model was validated, ensuring that it provides reliable
approximations of stress, strain, and deformation under various loading
conditions while significantly reducing computational costs.

8. VALIDATION OF THE SURROGATE MODEL FOR
AN INTERMEDIATE LOAD VALUE

To assess the accuracy of the neural network-based surrogate model, its
prediction for an intermediate load value of 471 N was compared
against the corresponding result obtained from finite element
simulations. Since this load value was not explicitly included in the
training dataset, this validation step ensures that the model effectively
interpolates mechanical responses for unseen load conditions.

The accuracy of the prediction was evaluated using three key metrics:
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and
the Correlation Coefficient (RR). MSE measures the average squared
difference between the predicted and actual values, indicating the
overall deviation. RMSE, obtained by taking the square root of MSE,
provides an interpretable measure of prediction error in the same units
as the target variable. The Correlation Coefficient (RR) quantifies the
linear relationship between the predicted and actual values, where an
RR value close to 1 suggests a strong agreement.

By computing these metrics for the 471 N load case, the generalization
ability of the neural network was assessed. A low MSE and RMSE,
combined with an RR value close to 1, would indicate that the
surrogate model accurately predicts stress, strain, and deformation,
even for load values not explicitly included in training. This validation
reinforces the model's capability to serve as a computationally efficient
alternative to repeated finite element simulations while maintaining
high predictive accuracy across a range of loading conditions.
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Above are the simulation results for a load value of 471N

For Load = 471.00N

Predicted Deflection = 1.06113 m

Predicted Stress = 16620.69994 pa

Predicted Strain = 0.75920 mm™"

Above is the result obtained through surrogate modelling.

Prediction Vs Actual Table

Predicted Values | Actual Values
Load(N) 471 471
Deformation(m) | 1.06 1.04
Stress(Pa) 16620 16228
Strain(mm-1) 0.75 0.75
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Evaluation Metrices

Mean Square Error 73104.84
Root Mean Square Error 270.37
R-Value 0.996

The MSE value, which measures the average squared difference
between predicted and actual values, remains relatively low given the
scale of the dataset, confirming that the surrogate model minimizes
large deviations. The RMSE value of 270.38 Pa, being in the same unit
as the predicted stress values, provides an interpretable measure of
prediction accuracy, indicating that the model closely approximates
finite element results. Furthermore, the RRR-value of 0.9996
demonstrates an almost perfect correlation between predicted and
actual values, confirming that the neural network has successfully
learned the underlying mechanical relationships and can reliably
predict stress-strain behavior.

These results validate the generalization capability of the neural
network, proving that the model effectively interpolates mechanical
responses for load values beyond the training dataset. The low error
and high correlation indicate that the surrogate model is an efficient
and accurate alternative to computationally expensive finite element
simulations, enabling rapid stress-strain predictions across a range of
loading conditions.

9. CONCLUSION

In this study, a neural network-based surrogate model was developed to
predict the mechanical response of a hollow cylinder under axial
loading, reducing the reliance on computationally expensive finite
element simulations. Load values were selected using K-Means
clustering, ensuring a diverse dataset for training. A feedforward neural
network was implemented with normalized input and output variables,
trained using the Levenberg-Marquardt algorithm. The model
successfully captured the complex non-linear relationships between
load, deformation, stress, and strain, with validation results confirming
its accuracy. For an intermediate load of 471 N, the predicted values
closely matched the finite element results, achieving a low RMSE of
270.38 and a high regression RR-value of 0.9996, demonstrating
excellent predictive performance. The surrogate model effectively
interpolates stress-strain behavior across varying load conditions,
making it a viable alternative for rapid parametric studies in structural
mechanics.
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