
 

 

  
 

Superresolution of color image and demosaicing 
S.D.Shinde,Meeta Dewangan 

Mtech(CSE)CSIT,CSVTU,Bhilai. 

  

Asst.Prof.CSIT,CSVTU,Bhilai. 

  

  

Abstract  
 

Although the performance of imaging sensors is 

constantly improving, there are still several physical 

and practical constraints that limit the final image 

quality. In the last two decades, two related categories 

of problems have been studied independently in the 

image restoration literature: super-resolution and 

demosaicing. A closer look at these problems reveals 

the relation between them, and as conventional color 

digital cameras suffer from both low-spatial resolution 

and color-filtering, it is reasonable to address them in 

a unified context. In this paper, we propose a fast and 

robust hybrid method of super-resolution and 

demosaicing, based on a MAP estimation technique by 

minimizing a multi-term cost function. Finally we show 

that the minimization of the total cost function is 

relatively easy and fast. Experimental results on 

synthetic and real data sets confirm the effectiveness of 

our method. 

 

1. Introduction  
There is a growing interest in the multi-frame image 

reconstruction algorithms that compensate for the 

shortcomings of the imaging system. Such methods can 

achieve high-quality images using less expensive 

imaging chips and optical components by capturing 

multiple images and fusing them. 

In digital photography, two image reconstruction 

problems have been studied and solved independently - 

super-resolution (SR) and demosaicing. The former 

refers to the limited number of pixels and the desire to 

go beyond this limit using several exposures. The latter 

refers to the color-filtering applied on a single CCD 

array of sensors on most cameras, that measures a 

subset of R (red), G (green), and B (blue) values, 

instead of a full RGB field. It is natural to consider 

these problems in a joint setting because both refer to 

resolution limitations at the camera. Also, since the 

measured images are mosaiced, solving the super-

resolution problem using pre-processed (demosaiced) 

images is sub-optimal and hence inferior to a single 

unifying solution framework. In this paper we propose 

a fast and robust method for joint multi-frame 

demosaicing and color super-resolution. 

 
Figure 2: Degradations of LR images caused by the 

recording process 

This paper contains review of super-resolution and 

demosaicing problems and the inefficiency of 

independent solutions for them. In another section we 

formulate and analyze a general model for imaging 

systems applicable to various scenarios of multi-frame 

image reconstruction. We also formulate and review 

the basics of the maximum a posterior (MAP) 

estimator, robust data fusion, and regularization 

methods. Armed with material developed in earlier 

sections, in next we present and formulate our joint 

multi-frame demosaicing and color-super-resolution 

method. After that we review two related methods of 

multi-frame demosaicing. Simulations on both 

synthetic and real data sequences are given in Section 

VI and concluding and implementation remarks are 

drawn in Section VII. 

 

2. Review 

    The super resolution restoration idea was first 

presented  by Tsay and Huang . They used the 

frequency domain approach to demonstrate the ability 

to reconstruct one improved resolution image from 

several down sampled noise-free versions of it, based 

on the spatial aliasing effect. Other results suggested a 

simple generalization of the above idea to noisy and 

blurred images. A frequency domain recursive 

algorithm for the restoration of super resolution images 
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from noisy and blurred measurements is suggested . A 

spatial domain alternative, based on Papoulis and Yen  

generalized sampling theorems is suggested by Ur and 

Gross . Srinivas and Srinath proposed a super 

resolution restoration algorithm based on a minimum 

mean squared error (MMSE) approach for the multiple 

image restoration problem and interpolation of the 

restored images into one. All the above super resolution 

restoration methods  are restricted to global uniform 

translational displacement between the measured 

images, linear space-invariant (LSI) blur, and 

homogeneous additive noise. 

A. Super-Resolution 

 

Digital cameras have a limited spatial resolution, 

dictated by their utilized optical lens and CCD array. 

Surpassing this limit can be achieved by acquiring and 

fusing several low-resolution (LR) images of the same 

scene, producing high-resolution (HR) images; this is 

the basic idea behind super-resolution techniques [1], 

[2], [3], [4]. In the last two decades a variety of super-

resolution methods have been proposed for estimating 

the HR image from a set of LR images. Early works on 

SR showed that the aliasing effects in the LR images 

enable the recovery of the high-resolution (HR) fused 

image, provided that a relative sub-pixel motion exists 

between the under-sampled input images [5]. However, 

in contrast to the clean and practically naïve frequency 

domain description of SR in that early work, in general 

SR is a computationally complex and numerically ill-

behaved problem in many instances [6]. In recent years 

more sophisticated SR methods were developed (See 

[3], [6], [7], [8], [9], [10] as representative works). 

Note that almost all super-resolution methods to date 

have been designed to increase the resolution of a 

single channel (monochromatic) image. A related 

problem, color SR, addresses fusing a set of previously 

demosaiced color LR frames to enhance their spatial 

resolution. To date, there is very little work addressing 

the problem of color SR. The typical solution involves 

applying monochromatic SR algorithms to each of the 

color channels independently [11], [12], while using 

the color information to improve the accuracy of 

motion estimation. Another approach is transforming 

the problem to a different color space, where 

chrominance layers are separated from luminance, and 

SR is applied only to the luminance channel [7]. Both 

of these methods are sub-optimal as they do not fully 

exploit the correlation across the color bands. 

 

 

B. Demosaicing 

A color image is typically represented by combining 

three separate monochromatic images. Ideally, each 

pixel reflects three data measurements; one for each of 

the color bands. In practice, to reduce production cost, 

many digital cameras have only one color measurement 

(red, green, or blue) per pixel. The detector array is a 

grid of CCDs, each made sensitive to one color by 

placing a color-filter array (CFA) in front of the CCD. 

The Bayer pattern shown on the left hand side of Figure 

3 is a very common example of such a color-filter. The 

values of the missing color bands at every pixel are 

often synthesized using some form of interpolation 

from neighboring pixel values. This process is known 

as color demosaicing. 

Numerous demosaicing methods have been proposed 

through the years to solve this under-determined 

problem, and in this section we review some of the 

more popular ones. Of course, one can estimate the 

unknown pixel values by linear interpolation of the 

known ones in each color band independently. This 

approach will ignore some important information about 

the correlation between the color bands and will result 

in serious color artifacts. Note that the Red and Blue 

channels are down-sampled two times more than the 

Green channel. It is reasonable to assume that the 

independent interpolation of the Green band will result 

in a more reliable reconstruction than the Red or Blue 

bands. This property, combined with the assumption 

that the Red Green and Blue Green ratios are similar 

for the neighboring pixels, make the basics of the 

smooth hue transition method first discussed in [13]. 

Note that there is a negligible correlation between the 

values of neighboring pixels located on the different 

sides of an edge. Therefore, although the smooth hue 

transition assumption is logical for smooth regions of 

the reconstructed image, it is not successful in the high-

frequency (edge) areas. Considering this fact, gradient-

based methods, first addressed in [14], do not perform 

interpolation across the edges of an image. This non-

iterative method uses the second derivative of the Red 

and Blue channels to estimate the edge direction in the 

Green channel. Later, the Green channel is used to 

compute the missing values in the Red and Blue 

channels. 

A variation of this method was later proposed in [15], 

where the second derivative of the Green channel and 

the first derivative of the Red (or Blue) channels are 

used to estimate the edge direction in the Green 

channel. The smooth hue and gradient based methods 

were later combined in [44]. In this iterative method, 

the smooth hue interpolation is done with respect to the 

local gradients computed in eight directions about a 

pixel of interest. A second stage using anisotropic 

inverse diffusion will further enhance the quality of the 
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reconstructed image. This two step approach of 

interpolation followed by an enhancement step has 

been used in many other publications. In [16], spatial 

and spectral correlations among neighboring pixels are 

exploited to define the interpolation step, while 

adaptive median filtering is used as the enhancement 

step. A different iterative implementation of the median 

filters is used as the enhancement step of the method 

described in [17], that take advantage of a homogeneity 

assumption in the neighboring pixels. 

Iterative MAP methods form another important 

category of demosaicing methods. A MAP algorithm 

with a smooth chrominance prior is discussed in [18]. 

The smooth chrominance prior is also used in [19], 

where the original image is transformed to YIQ 

representation. The chrominance interpolation is 

preformed using isotropic smoothing. The luminance 

interpolation is done using edge directions computed in 

a steerable wavelet pyramidal structure. Other 

examples of popular demosaicing methods available in 

published literature are [20], [21], [22], [23], [24], [25], 

and [26]. Almost all of the proposed demosaicing 

methods are based on one or more of these following 

assumptions: 

1) In the constructed image with the demosaicing 

pattern, there are more green sensors with regular 

pattern of distribution than blue or red ones (in the case 

of Bayer CFA there are twice as many greens than red 

or blue pixels and each is surrounded by 4 green 

pixels). 

2) Most algorithms assume a Bayer CFA pattern, for 

which each red, green and blue pixel is a neighbor to 

pixels of different color bands. 

3) For each pixel one and only one color band value is 

available. 

4) The pattern of pixels does not change through the 

image. 

5) The human eye is more sensitive to the details in the 

luminance component of the image than the details in 

chrominance component [19]. 

6) The human eye is more sensitive to chromatic 

changes in the low spatial frequency region than the 

luminance change [23]. 

7) Interpolation should be preformed along and not 

across the edges. 

8) Different color bands are correlated with each other. 

9) Edges should align between color channels. 

Note that even the most popular and sophisticated 

demosaicing methods will fail to produce satisfactory 

results when severe aliasing is present in the color-

filtered image. Such severe aliasing happens in cheap 

commercial still or video digital cameras, with small 

number of CCD pixels. The color artifacts worsen as 

the number of CCD pixels decreases. The following 

example shows this effect. Figure 3.a shows a HR 

image captured by a 3-CCD camera. If for capturing 

this image, instead of a 3-CCD camera a 1-CCD 

camera with the same number of CCD pixels was used, 

the inevitable demosaicing process will result in color 

artifacts. Figure 3.d shows the result of applying 

demosaicing method of [44] with some negligible 

color-artifacts on the edges. Note that many 

commercial digital video cameras can only be used in 

lower spatial resolution modes while working in higher 

frame rates. Figure 3.b shows a same scene from a 3-

CCD camera with a down sampling factor of 4 and 

Figure 3.e shows the demo saiced image of it after 

color-filtering. Note that the color artifacts in this 

image are much more evident than 3.d. These color 

artifacts may be reduced by low-pass filtering the input 

data before color-filtering. Figure 3.c shows a factor of 

four down-sampled version of 3.a, which is blurred 

with a symmetric Gaussian low-pass filter of size 4 × 4 

with standard deviation equal to one, before down-

sampling. The demo saiced image shown in 3.f has less 

color artifacts than 3.e, however it has lost some high-

frequency details. The poor quality of single-frame 

demosaiced images stimulates us to search for multi-

frame demosaicing methods, where the information of 

several low-quality images are fused together to 

produce high-quality demosaiced images. 

 

C. Merging super-resolution and demosaicing into one 

process 

Referring to the mosaic effects, the geometry of the 

single-frame and multi-frame demosaicing problems 

are fundamentally different, making it impossible to 

simply cross apply traditional demosaicing algorithms 

to the multi-frame situation. To better understand the 

multi-frame demosaicing problem, we offer an example 

for the case of translational motion. Suppose that a set 

of color-filtered LR images is available (images on the 

left in Figure 4). We use the two step process explained 

in Section IV to fuse these images. The Shift-And-Add 

image on the right side of Figure 3 illustrates the 

pattern of sensor measurements in the HR image grid. 

In such situations, the sampling pattern is quite 

arbitrary depending on the relative motion of the LR 

images. This necessitates different demosaicing 

algorithms than those designed for the original Bayer 

pattern. 
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a: Original   b: Down-sampled   

  
c: Blurred and down-sampled 

    
d: Demosaiced (a)              e: Demosaiced (b) 

 
f: Demosaiced (c) 

Fig. 3. A HR image (a) captured by a 3-CCD camera is 

down-sampled by a factor of four (b). In (c) the image 

in (a) is blurred by a Gaussian kernel before down-

sampling by a factor of 4. The images in (a), (b), and 

(c) are color-filtered and then demosaiced by the 

method of [44]. The results are shown in (d), (e), (f), 

respectively. 

 

Figure 4 shows that treating the green channel 

differently than the red or blue channels, as done in 

many single-frame demosaicing methods before, is not 

useful for the multi-frame case. While globally there 

are more green pixels than blue or red pixels, locally, 

any pixel may be surrounded by only red or blue 

colors. So, there is no general preference for one color 

band over the others (the first and second assumptions 

in Section II-B are not true for the multi-frame case). 

Another assumption, the availability of one and only 

one color band value for each pixel, is also not correct 

in the multi-frame case. In the under-determined cases , 

there are not enough measurements to fill the HR grid. 

The symbol ―?‖ in Figure 4 represents such pixels. On 

the other hand, in the over-determined cases6, for some 

pixels, there may in fact be more than one color value 

available. The fourth assumption in the existing 

demosaicing literature described earlier is not true 

because the field of view (FOV) of real world LR 

images changes from one frame to the other, so the 

center and the border patterns of red, green, and blue 

pixels differ in the resulting HR image. 

 

3.Mathematical model and solution outline 
A. Mathematical Model of the Imaging System 

 

     Figure 1 illustrates the image degradation model that 

we consider. We represent this approximated 

forward model by the following equation: 

 

Y i(k) = Di(k)H(k)F(k)Xi + V i(k) = Ti(k)Xi + V i(k) k = 

1, . . . ,N 

 

 
 
Fig. 4. Fusion of 7 Bayer pattern LR images with 

relative translational motion (the figures in the left side 

of the accolade) results in a HR image (_Z) that does 

not follow Bayer pattern (the figure in the right side of 

the accolade). The symbol ―?‖ represents the HR pixel 

values that were undetermined (as a result of 

insufficient LR frames) after the Shift-And-Add step 
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(Shift-And-Add method is extensively discussed in [3], 

and briefly reviewed in III-F). 

i = R,G,B , (1) 

which can be also expressed as: 

Y = TX + V,  

Y= Y R(1)    V=  VR(1) 

      Y G(1)           VG(1) 

      Y B(1)           V B(1) 

      Y R(2)           V R(2) 

         ...              .... 

      Y B(N)            VB(N)                         

        

          

T=   TR(1)            X=       XR 

        TG(1)          XG 

        TB(1)                       XB 

        TR(2) 

        ... 

        TB(N)     

     (2) 

The vectors Xi and Y i(k) are representing the ith 

band (R, G, or B) of the HR color frame and the kth LR 

frame after lexicographic ordering, respectively. Matrix 

F(k) is the geometric motion operator between the HR 

and LR frames. The camera’s point spread function 

(PSF) is modeled by the blur matrix H(k). The matrix 

Di(k) represents the down-sampling operator, which 

includes both the color-filtering and CCD down-

sampling operations. Geometric motion, blur, and 

down-sampling operators are covered by the operator 

Ti(k), which we call the system matrix. The vector V 

i(k) is the system noise and N is the number of 

available LR frames. 

The HR color image (X) is of size [12r2M2 ×1]), 

where r is the resolution enhancement factor. The size 

of the vectors V G(k) and Y G(k) is [2M2×1] and 

vectors V R(k), Y R(k), V B(k), and Y B(k) are of size 

[M2×1]. The geometric motion and blur matrices are of 

size [4r2M2×4r2M2]. The down-sampling and system 

matrices are of size [2M2 × 4r2M2] for the Green band 

and of size [M2 × 4r2M2] for the Red and Blue bands8 

Considered separately, super-resolution and 

demosaicing models are special cases of the general 

model presented above. In particular, in the super-

resolution literature the effect of color-filtering is 

usually ignored [9], [10], [3] and therefore the model is 

simplified to: 

      Y (k) = D(k)H(k)F(k)X + V (k) k = 1, . . . ,N .      (3) 

In this model the LR images Y (k) and the HR image X 

are assumed to be monochromatic. On the other hand, 

in the demosaicing literature only single frame 

reconstruction of color images is considered, resulting 

in a simplified model: 

        Y i = DiXi + V i i = R,G,B . (4) 

As such, the classical approach to the multi-frame 

reconstruction of color images has been a two-step 

process. The first step is to solve (4) for each image 

(demosaicing step) and the second step is to use the 

model in (3) to fuse the LR images resulting from the 

first step, reconstructing the color HR image (usually 

each R, G , or B bands is processed individually). Of 

course, this two step method is a suboptimal approach 

to solving the overall problem. In Section IV, we 

propose a Maximum A-Posteriori (MAP) estimation 

approach to directly solve (1). 

 

B. MAP Approach to Multi-Frame Image 

Reconstruction 

Following the forward model of (1), the problem of 

interest is an inverse problem, wherein the source of 

information (HR image) is estimated from the observed 

data (LR images). An inherent difficulty with inverse 

problems is the challenge of inverting the forward 

model without amplifying the effect of noise in the 

measured data. In many real scenarios, the problem is 

worsened by the fact that the system matrix T is 

singular or ill-conditioned. Thus, for the problem of 

super-resolution, some form of regularization must be 

included in the cost function to stabilize the problem or 

constrain the space of solutions. From a statistical 

perspective, regularization is incorporated as a priori 

knowledge about the solution. Thus, using the 

Maximum A-Posteriori (MAP) estimator, a rich class 

of regularization functions emerges, enabling us to 

capture the specifics of a particular application. This 

can be accomplished by way of Lagrangian type 

penalty terms as in 

         X= ArgMin X[ρ(Y , TX) + λΓ(X)] , (5) 

where ρ, the data fidelity term, measures the 

―distance‖ between the model and measurements, and Γ 

is the regularization cost function, which imposes a 

penalty on the unknown X to direct it to a better formed 

solution. The regularization parameter, λ, is a scalar for 

properly weighting the first term (data fidelity cost) 

against the second term (regularization cost). Generally 

speaking, choosing λ could be either done manually, 

using visual inspection, or automatically using methods 

like Generalized Cross Validation[28], [29], L-curve 

[30], or other techniques. 

 

4. Related work 

Although their method has produced successful 

results for the single frame demosaicing problem, it is 

not specifically posed or directed towards solving the 

multi-frame demosaicing problem, and no multi-frame 

demosaicing case experiment is given. To estimate the 

Red channel, first, affine relations that project Green 

and Blue channels to the Red channel are computed. In 
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the second stage, a super-resolution algorithm (e.g. the 

method of [7]) is applied on the available LR images in 

the Red channel (i.e. the original CFA data of the Red 

channel plus the projected Green and Blue channels) to 

estimate the HR Red channel image. A similar 

procedure estimates the HR Green and Blue channel 

images. As affine model is not always valid for all 

sensors or image sets, so an affine model validity test is 

utilized in [38]. In the case that the affine model is not 

valid for some pixels, those projected pixels are simply 

ignored. The method of [38] is highly dependent on the 

validity of the affine model, which is not confirmed for 

the multi-frame case with inaccurate registration 

artifacts. Besides, the original CFA LR image of a 

channel and the less reliable projected LR images of 

other channels are equally weighted to construct the 

missing values, and this does not appear to be an 

optimal solution. 

In contrast to their method, our proposed technique 

exploits the correlation of the information in different 

channels explicitly to guarantee similar edge position 

and orientation in different color bands. Our proposed 

method also exploits the difference in sensitivity of the 

human eye to the frequency content and outliers in the 

luminance and chrominance components of the image. 

 

5.EXPERIMENTS 
Experiments on synthetic and real data sets are 

presented in this section. In the first experiment, 

following the model of (1), we created a sequence of 

LR frames from an original HR image , which is a 

color image with full RGB values. First we shifted this 

HR image by one pixel in the vertical direction. Then 

to simulate the effect of camera PSF, each color band 

of this shifted image was convolved with a symmetric 

Gaussian low-pass filter of size 5 × 5 with standard 

deviation equal to one. The resulting image was sub 

sampled by the factor of 4 in each direction. The same 

process with different motion vectors (shifts) in vertical 

and horizontal directions was used to produce 10 LR 

images from the original scene. The horizontal shift 

between the low resolution images was varied between 

0 to .75 pixels in the low-resolution grid (0 to 3 pixels 

in the high-resolution grid). The vertical shift between 

the low resolution images varied between 0 to .5 pixels 

in the low-resolution grid (0 to 2 pixels in the high-

resolution grid). To simulate the errors in motion 

estimation, a bias equal to half a pixel shift in the LR 

grid was intentionally added to the known motion 

vector of one of the LR frames. We added Gaussian 

noise to the resulting LR frames to achieve SNR 

equal12 to 30dB. Then each LR color image was sub 

sampled by the Bayer filter. 

 

6. DISCUSSION AND FUTURE WORK 
In this paper, based on the MAP estimation 

framework, we proposed a unified method of 

demosaicing and super-resolution, which increases the 

spatial resolution and reduces the color artifacts of a set 

of low quality color images. Using the L1 norm for the 

data error term makes our method robust to errors in 

data and modelling. Bilateral regularization of the 

luminance term results in sharp reconstruction of edges, 

and the chrominance and inter-color dependencies cost 

functions remove the color artifacts from the HR 

estimate. All matrix-vector operations in the proposed 

method are implemented as simple image operators. As 

these operations are locally performed on pixel values 

on the HR grid, parallel processing may also be used to 

further increase the computational efficiency. The 

computational complexity of this method is on the 

order of the computational complexity of the popular 

iterative super-resolution algorithms, such as [9]. 

Namely, it is linear in the number of pixels. 

Accurate subpixel motion estimation is an essential 

part of any image fusion process such as multiframe 

super-resolution or demosaicing. To the best of our 

knowledge, no paper has addressed the problem of 

estimating motion between Bayer filtered images. 
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