Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 01, January-2021

Studying and Analysing the Effect of Weight
Norm Penalties and Dropout as Regularizers for
Small Convolutional Neural Networks

Ujjwal Kumar
Student of Computer Science Engineering
SRM Institute of Science & Technology
Chennai, India

Abstract — A long-standing problem for both machine learning
neophytes and researchers has been to create a learning model
that performs well not just on seen data points (training data)
but also on unseen data points (test data). It is usually the case
that a deep model learns and co-adapts representations and
features from the training data so well, that it fails to perform
effectively on the test data at all. This is known as the problem
of overfitting. A lot of research has been devoted to come up
with solutions to the problem of overfitting. To address this
complication, apprehending the concept of generalization
becomes pivotal. Generalization is the ability for a model to
perform well on unseen inputs and collectively, all the
approaches that work upon decreasing the generalization error
of a learning algorithm are called regularization techniques.
One way to reduce variance and generalization error in a model
is to introduce a penalty term (weight decay) in the cost function
that restricts the model’s parameters from increasing. Another
recently accepted practice is to use dropout, wherein hidden
units and visible units are randomly dropped to obtain a much
simpler model that prevents it from overfitting. In this paper, an
extensive analysis has been done between both these regularizers
on the MNIST dataset for relatively small convolutional
networks. The findings of this paper assert that with
appropriate hyperparameter settings, dropout performed a
better job in bringing down the training error and making the
gap between training and test error (generalization gap)
minimum.

Keywords — Dropout; Weight Decay; Regularization; Neural
Networks; Convolutional Neural Networks

l. INTRODUCTION

The onset of learning through labeled data has
revolutionized several pattern recognition contests, especially
in applications of computer vision. Modern Convolutional
Neural Networks (CNNs) [1] trained wusing the
backpropagation algorithm [2] are predominantly suited for
this task and has achieved state-of-the-art results in several
image datasets. These artificial neural networks give
unrivalled results on data that can be structured to have a
grid-like topology. This is the reason why convolutional
networks are chosen for computer vision applications as the
feature images can be reduced to form either a 2D or 3D grid
of pixels. The success of these modern gradient-based
networks is associated with the fact that this type of network
architecture makes use of sparse interactions wherein, each
convolution operation is carried by a kernel with a size
smaller than the input data which enables the network to store
fewer parameters and hence reduces memory requirements
and enhances efficiency.

Anamitra Bhar
Student of Computer Science Engineering
SRM Institute of Science & Technology
Chennai, India

Over the years, the task for machines to learn and
generalize has become more complex as the data associated
with them became more versatile and big; to overcome this
problem, the architecture of models underwent changes to
become deeper in order to account for the complex task
which made them susceptible to variance and overfitting. The
success of designing any learning algorithm is based on
making the training error smaller and reducing the
generalization gap [3]. A model that fails to provide a low
training error suffers from underfitting, and a model that
results in a large generalization gap suffers from overfitting.
The model reaches its optimum performance when the
complexity of the architecture is appropriate for the task it
has been assigned (Fig. 1).

Factoring the dual challenge of bringing down the training
and test error for a model, regularization comes into play,
which facilitates in achieving a low generalization error on
the data. Creating any machine learning algorithm involves
the inclusion of a regularization algorithm in it, as it is the
most cardinal aspect after optimization. In our study, we
analyse two standard regularization methods used in deep
learning. The L2 regularization or weight decay (often
referred to as ridge regularization or Tikhonov’s
regularization) [4] that penalizes the parameters of the neural
network which makes the weights have smaller squared L2
norm. Another regularization method proposed by Srivastava
et al. [5], [6] that employs the bootstrap aggregating
(bagging) [7] algorithm is called dropout, in which training is
done on several bagged ensemble of networks, where all the
networks share the parameters. This paper compares the
effect of both of these regularizers on convolutional models
by wvarying the hyperparameters associated with the
respective regularization methods. The comparison is done by
plotting the learning curves obtained after incorporating
regularization methods on the network. The conclusions of
this paper are based on favoring the regularizer that
accomplishes the task of reducing the training error and
making the generalization gap smaller.

IJERTV 101 S010025

www.ijert.org 47

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 01, January-2021

Training error
Overfitting zone

[Underfitting zone

—— Generalization error

Error

0 Optimal Capacity
Capacity

Fig. 1. Plot of the loss trend of a model against its capacity [3].

Il. WEIGHT DECAY AND DROPOUT

Maintaining the tradeoff between optimization and
generalization is a focal task in deep learning. Generalization
focuses on improvising the model’s performance of data that
it has never come across before, whereas optimization works
on increasing the model’s performance metrics on the
training set. Improving generalization of a learning algorithm
on the test set can be done by restricting the parameters of a
network from taking large values as the weight distribution
becomes more regular which results in a simpler model that is
less prone to overfitting. This is done by adding a cost
associated with having large weights to the overall loss
function of the network and is the premise behind L2
regularization or weight decay. Introduction of a parameter
norm penalty to the overall loss function assists in limiting
the overall capacity of the model and is done by:

JregW) = J(W) + SWTW

In the above equation, W denotes the parameters/weights
of the network and A denotes the regularization parameter.
The regularization parameter can be thought of as a
hyperparameter that needs to be tuned ahead of time. The
value of A equals to zero means that there is no regularization
on the model, similarly choosing a lofty value of A results in
making the weights even smaller. The intuition of adding
parameter penalties to the loss function of the network can be
gained by the conduct of weights under gradient descent.
During backpropagation, the gradients of the parameters are
calculated by partially differentiating the loss function with
respect to the weights of the network:

VW]reg W) = VyJ(W) + AW

Now to adjust the model’s weight after each gradient step,
the weight update is done by subtracting the initial weight
with the gradient calculated above:

Wew-— Q‘[VW]reg (W)]

The term Q denotes the learning rate of the network
which determines the size of the step taken by the model to
move closer to the optimum value.

(1

2

3)

W eW —Q[Vy,J(W) + AW] 4)
After rearranging the terms of the weight update, we get:
W« (1 -QNW — QY J(W) (5)

It is evident from (5) that the weight decreased by a fixed
value (1 — QA) i.e. the weight is decayed after each step of
gradient descent. The addition of norm penalties forces the
weights closer to the origin and hence induces a regularizing
effect to the model.

Reduction of variance in a model can also be achieved by
employing ensemble methods in which instead of a single
model, multiple models are trained and then the outputs of all
the models are sampled over to predict the results on unseen
data points. Dropout uses a similar notion. Dropout training
involves dropping random units (hidden and visible units
only) from the network architecture with a probability of p
(Fig. 2). This random dropping of units creates an ensemble
of several thinned networks which the model samples over to
predict results. Combining predictions of several models is a
computationally extensive job which requires training each
model separately and finding the optimum hyperparameter
for each model, however dropout solves this issue by sharing
the network parameters among the models which in turn
reduces the complexity. If a neural network is assumed to
have | units, then it can approximately have 2! number of
thinned networks to sample over.

(a) Standard Neural Net (b) After applying dropout.

Fig. 2. Left: A dense network with all units preserved. Right: A thinned
network produced from the parent network after randomly dropping several
units [5].

1. EXPERIMENTATION AND EVALUATION
To scrutinize the effects of the aforementioned
regularizers on a convolutional model, the MNIST [8] dataset
was used for classifying handwritten digits into 10 classes (0-
9). The dataset contains 60,000 training and 10,000 test
images, all of which represents a 28 x 28 grayscale pixel
image of a digit from any of the 10 classes (Fig. 3).

Qo+ Ly
R I N
BANND —=J nw
S VUNSWwOI N\
LOoOProasQouw
SN V9 &~~~
QU RPN W
Neg & — (] o & £ o
RHheso O NS
O ONC LV —

7/2810498606/

Fig. 3. Size normalized images of handwritten digits from MNIST [8]
dataset. showing all 10 classes (0-9).

The convolutional model architecture used for this study
consists of 3 convolutional layers each of which is followed
by a max pooling [9] layer. Implementing the max pool
operation after each convolution summarizes the maximum
output within the rectangular grid of handwritten pixel
images. Pooling operation improves the computational
efficiency of the model as it downsizes the image which
makes it easier for the next layer to learn visual

IJERTV 101 S010025

www.ijert.org

48

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 01, January-2021

representations of the features. The output from the last
pooling layer is then flattened and fed into a dense layer. All
the layers employ the ReLU activation except the output
layer which uses Softmax activation to predict the 10 classes
of digits. Refer Fig. 4 for the exact dimensions of the layers.
The 28 x 28 x 1 image is processed by a series of
convolutional and max-pooling layer. The kernel size of each
convolution was set to be 3 x 3 and the corresponding pool
size to be 2 x 2. From the last pooling layer, the image is
flattened and is finally processed by a series of dense layers.
The model was compiled using Adam [10], a gradient-based
optimizer. The learning rate parameter for the network was
set to be the same when the model used either of the
regularizers - L2 or dropout — with a value of Q =1 x 1073
for impartial analysis. The principal amount of effort made in
this study was in varying the regularization parameter A
(associated with L2) and the probability p of dropping
neurons (associated with dropout) to identify the performance
of the network on either of the regularizers. For simplicity,
the architecture of the convolutional network was sustained
throughout our experiment.

28x28x1
26x26164 "N

13x13x64 NS

1x11x64 | = |\
) L = Conv_1
5x5x64 ¥ Max-Pool_1
aaxed [y : l Conv_2
s ! Max-Pool_2
64 1x1x64 AL Conv_3
128 M g “~ Max-Pool_3
10 - } Flatten

Fig. 4. The convolutional model architecture used in this experiment is
displayed here.

In the first run, the convolutional model was trained using
only dropout as the regularizer where the probability p of
randomly dropping units varied from p = 0.05, 0.1, 0.2 to 0.3,
the relative observations were recorded in Table I. Fig. 5.1 -
5.4 display corresponding learning curves showing the
training and validation loss obtained from the model trained
on dropout. The results of the model trained using L2
regularization with A=1x1073,1x107%1x 10751 x
107¢ are shown in Table.2 and the corresponding learning
curves in Fig. 6.1 - 6.4. The values of the hyperparameters (p
and A) were chosen because they gave a noticeable close
performance in terms of the accuracy and loss value,
however, the purpose of this experiment is to identify
amongst these combinations of hyperparameters, which
regularizer outperforms the other. The loss plots obtained
from the model trained with L2 regularization (Fig. 6.1 - 6.4)
showed substantial amount of irregularities. The learning
curves from the model trained using dropout portrayed
smooth loss plots with low generalization gap between them
as compared to L2 regularization. Fig. 5.3 and 5.4
demonstrate that the model trained using dropout with p = 0.2
and 0.3 respectively produced test loss lower than training
loss The reason behind this behavior is based on the fact that
the model architecture used in this study is small with only 3
convolutional layers and dropping 20% or 30% of the
features makes the training set relatively easier to train.
However, at test time, dropout is not applied and all the
features are retained which makes the model robust and
susceptible to higher loss.

It is evident from Table | and Table Il that the model
trained with dropout produced the lowest difference between
training loss and test loss with average difference across the
four values of p being 0.021 which is 0.017 less that the
average difference across the four values of A from the model
performance obtained using weight decay.

TABLE I. MODEL PERFORMANCE OBTAINED USING DROPOUT

Training Accurac Test Accuracy TeA - Test Loss
Dropout Tr,gA (%) y (%) Y [TrA—TeA| Training Loss TrL TeL [TrL — TeL|
Rate (p)
0.05 99.54 98.92 0.62 0.013 0.051 0.038
0.1 99.53 99.15 0.18 0.021 0.038 0.017
0.2 98.80 99.02 0.22 0.038 0.037 0.001
0.3 98.10 99.00 0.90 0.063 0.034 0.029
_ Average =
Average = 0.480 0.021
TABLE Il. MODEL PERFORMANCE OBTAINED USING WEIGHT DECAY
Training -
Regularization Accuracy Te?;?;%%)a cy [TrA —TeA| Tra'r_lll?E Loss Te?FeLLOSS |TrL —TeL]|
Parameter (A) TrA (%)
1x10° 98.64 98.45 0.19 0.102 0.108 0.006
1x10* 99.48 98.47 1.01 0.045 0.086 0.041
1x10° 99.71 98.87 0.84 0.021 0.064 0.043
1x10° 99.73 98.71 1.02 0.010 0.072 0.062
— Average =
Average = 0.765 0038
IJERTV 101 S010025 www.ijert.org 49

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by : International Journal of Engineering Research & Technology (IJERT)

http://lwww.ijert.org I SSN: 2278-0181
Vol. 10 I'ssue 01, January-2021

Loss vs. epochs Loss vs. epochs
— Tain 035 — Tain
st st
020
030
015
025
g g
010 020
005 015
010
00 25 50 75 100 125 150 175 00 25 50 75 100 125 180 175
Epoch Epoch
Fig. 5.1. Dropout, p = 0.05 (5%) Fig. 6.1. Weight Decay, A =1 x 1073
Loss vs. epochs
0225 — Tain
0200 Est
0175
0.150
L 0125
Loss vs. epochs 0.100
025 — Zi‘" 0075
0.050 \——\“.__
0z 0.0 25 50 15 0o 125 150 175
Epoch
% 015
g Fig. 6.2. Weight Decay, A =1 x 107*
0.10
Loss vs. epochs
0.05 0.200 —— Tain
‘k__x____ Bst
. 0175
0.0 25 5.0 15 100 125 150 175
Epoch 0.150
) " 0125
Fig. 5.2. Dropout, p = 0.1 (10%) 8w
0.075 \
0,050 &_’*\
0.025 —
Loss vs. epochs 00 25 50 75 100 125 150 175
—— Tain Epoch
030 st Fig. 6.3. Weight Decay, A = 1 x 1075
025 Loss vs. epochs
0.200 — Fain
y 020 0175 st
3
0.15 0150
0125
010 "
§ 0100
003 — 0075
l}.'(] 2‘5 5‘0 7‘5 1d.0 li.S]_SI.G 17‘.5 0050
Epoch
- — 0.025
Fig. 5.3. Dropout, p = 0.2 (20%)
h 0.000 T T T T T T
0 Loss vs. epachs 00 25 50 75 100 125 150 175
— Tain Epoch
o4 et Fig. 6.4. Weight Decay, A = 1 x 1076
035
030 V. CONCLUSION
80 The practice of regularizing neural networks has come a
020 long way with the numerous advances to enhance the
013 generalization of the networks. For a learning machine to
010 give its most advantageous performance, a perfect balance
005 needs to exist between the complexity of the model and the
00 25 50 75 100 125 150 15 amount of information about the training set. Weight decay is
Epoch . . - .
— °°‘_03 = a type of regularization where the model complexity is
1g. 54. Dropout, p =03 (30%) limited by preventing the weights of the network from
growing too large. Using dropout is also a well-received
IJERTV 101 S010025 www.ijert.org 50

(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

Published by :
http://lwww.ijert.org

International Journal of Engineering Research & Technology (IJERT)

I SSN: 2278-0181
Vol. 10 I'ssue 01, January-2021

strategy to limit the model complexity as it involves sampling
over several thinned networks which all share parameters
amongst themselves making it less expensive than other
ensemble methods. The experiments of this study
demonstrate that employing dropout enhances the
generalization ability of the model mainly by lowering the
generalization gap ad minimizing the training error of the
model when compared with regularizers that penalizes
weights from growing (weight decay). The scope of dropout
is not limited to just convolutional models, but can also
address overfitting issues in Multiplayer Perceptrons or even
Restricted Boltzmann Machines.

V. REFERENCES

[1] Y. LeCun, “Generalization and Network Design Strategies”, Technical
Report, CRG-TR-89-4, Department of Computer Science, University of
Toronto, 1989.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal
Representations by Error Propagation”, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition:
Foundations. MIT Press, pp. 318-362, 1986.

[3] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learnning”. MIT
Press, 2016.

[4] A. N. Tikhonov, “On the Stability of Inverse Problems”, Doklady
Akademii Nauk SSSR, 39(5): pp. 195-198, 1943.

[5] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks
from Overfitting”, Journal of Machine Learning Research, 15(1): pp.
1929-1958, 2014.

[6] N. Srivastava, “Improving Neural Networks with Dropout”, Master’s
thesis, Graduate Department of Computer Science, University of
Toronto, 2013.

[7] L. Breiman, “Bagging Predictors”, Machine Learning, 24(2): pp. 123-
140, 1994.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition”, Proceedings of the IEEE,
Vol. 86, No. 11, pp. 2278-2324, 1998.

[91 Y. Zhou and R. Chellappa, “Computation of optical flow using neural
network”, in IEEE 1988 International Conference on Neural Networks,
Vol. 2, pp. 71-78, 1988.

[10] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines”, in 27" International Conference on Machine
Learning, pp. 807-814, 2010.

[11] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization”,
in 3" International Conference on Learning Representations, 2015.

IJERTV 101 S010025 www.ijert.org 51
(Thiswork islicensed under a Creative Commons Attribution 4.0 International License.)

www.ijert.org
www.ijert.org
www.ijert.org

