
Study Of Using Evolutionary Computational Tools In The Software Effort

Prediction By Analogy Method

Thamarai. I. (Author)

Research Scholar, Sathyabama University, Chennai , India.

Dr. S. Murugavalli (Co-Author)

Research Supervisor, Sathyabama University, Chennai , India.

Abstract

Software Estimation is a very important and crucial

task in the software development process because of the

intangible nature of software. It is difficult to predict

the effort correctly, due to which many projects have

failed. Many number of options are available to predict

the software effort such as algorithmic models, non-

algorithmic models etc. Estimation of Analogy has been

proved to be most effective method. In the Analogy

method, the estimation of software is based on the

similar projects that have been successfully completed

already. If the parameters of the project, matches well

with the past projects then it is easy to calculate the

effort for current project. The main problems faced are

Feature Selection and Similarity Measure between the

projects. The success rate of the effort prediction

largely depends on finding the most similar past

projects. To find the most relevant past projects, the

computational intelligence tools are used. The role of

evolutionary computation algorithms in this area is

very significant. A study has been made to analyze the

various available methods in software effort prediction

and a new method is proposed in this paper

Index Terms— Expert Judgment, COCOMO, Genetic

Algorithm, Genetic Programming, Differential Evolution.

1. Introduction
This paper provides an insight to the methods

available in the prediction of software effort. The main

objective is to initiate progress in the research in this

field. This paper proposes a more efficient way to

predict the effort in the software development process.

Software effort prediction is one of the major activities

in the software development process. Estimation of

software is important for project planning, budgeting,

staff allocation, etc. Many projects have failed due to

wrong estimation [12]. Effort prediction is important to

assist in scheduling resources and evaluating risk

factors. There are many methods available to estimate

the software effort. In this paper some of the most

popular approaches are studied as shown in the

following figure:

 Fig 1: Estimation Models

 Expert based methods are based on the judgment based

quantification step where as the formal models are

based on a mechanical quantification such as a formula.

The evaluation of information in Expert based method

are judgment based processes. In case of models, the

evaluations are based on the statistical analysis.

Detailed study has been made on these estimation

methods and they are summarized in the following

sections.

1.1. Expert Based Estimation

In this method, estimation is based on the experience of

the experts in the field. The success depends on the

knowledge acquired by the experts in the

implementation of previous projects. In [13],

Software

effort

estimation

 Expert

based

Model

based

Algorithmic

models
Intelligence

tools

COCOMO Function

Point

ANN GA DE GP

628

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60206

M.Jorgenson provides an extensive review of studies

related to expert estimation in software development

effort. In this paper, he gives twelve guidelines to be

followed to ensure best estimation through expert

judgment. The guidelines includes avoiding conflicting

estimation goals, asking the estimators to justify and

criticize their estimates, avoiding irrelevant and

unreliable estimation information, etc.

 To minimize the errors in the Expert judgment

Method, some techniques were developed in it that

consists of set of steps to mitigate the potential

mistakes. The most important techniques are Delhi

Estimation Method and Work Breakdown Structure. In

Delphi method, the members of a group are asked to

make the estimation without discussing with any of the

other member in the group. A variation of this

technique is Wideband Delphi Technique which allows

group discussions. In the Work Breakdown Structure,

the software process is divided into sub tasks in

hierarchy levels. The effort required for each subtask is

calculated separately and summed up to find the total

effort required for the complete project. Experts were

used to decide the most useful component structure.

 The main problem with the Expert Judgment method

is that, the results are always subjective and cannot be

proved scientifically. It is also very difficult to

document the methods used by the experts. Also

M.Jorgenson in his paper [2] says that expert judgment

leads to human biases. Such disadvantages are not

present in the Model based models

2. Model based Estimation

In this method, software effort estimation is based on

the use of one or more formula. This is called as

quantification step. Sometimes models are created as a

combination of many methods and it has also been

proved to be successful. Some of the popular Models

are discussed in the next sections briefly.

2.1 Algorithmic Models

In this method, estimation is based on the mathematical

formula that has been derived through statistical data

analysis. The Algorithmic models calculate effort as a

function of a number of variables. It takes the following

form:

 Effort = f(x1, x2, ..xn)

Where (x1, x2,…) are called cost factors

The cost factors can be Product attributes, Hardware

attributes, Personnel attributes and Project attributes.

Eg : Function Point (FP), COCOMO

2.1.1 Function Point [FP]

Function point metrics was proposed by Albrecht. This

metric overcomes many of the disadvantages of the

LOC metric. The idea of the function point metric is

that the size of a software product is directly dependent

on the number of functions it supports. Function point

is computed in two steps. The first step computes the

unadjusted function point (UFP). The second step

computes Technical complexity factor [TCF]

Step1: Calculation of UFP

UFP= (Number of inputs)*4+ (Number of outputs) * 5

+ (Number of inquires) * 4 + (number of files) * 10 +

(number of interfaces) * 10

Step2: Calculation of TCF

This depends on 14 factors such as transaction rate,

reusability, data communications, backup and recovery,

performance etc. Based on the calculation of UFP and

TCF, function point is calculated

FP = UFP * TCF

The main advantage of Function Point is that, it is

language independent.

2.1.2 COCOMO

The COCOMO model was proposed by Barry Boehm.

There are three types of COCOMO models namely

Basic Model, Intermediate Model and Complete

Model. Each of these types estimates the effort by

dividing the project into three categories or modes

based on the size, as Organic, Semi-detached and

Embedded. In the Basic Model, the calculation of effort

is based on the project size (L) and the equations are

given below:

Organic Mode= 2.4 * L1
.05

Semi detached Mode= 3.0 * L
1.12

Embedded Mode= 3.6 * L
1.20

In the Intermediate COCOMO, the effort estimation is

computed based on the project size and a set of 15 cost

drivers or attributes. Each of the 15 attributes gets a

rating value. The product of these values gives Effort

Adjustment Factor [EAF]. The equations are given

below:

Organic Mode= 3.2 * L
1.05

 * EAF

Semi detached Mode= 3.0 * L
1.12

 * EAF

Embedded Mode= 2.8 * L
1.20

 * EAF

In the Complete COCOMO model, the effort is

calculated for each step of the development cycle and

added to get the total effort. This approach reduces the

error. In recent years, the use of COCOMO model has

629

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60206

largely reduced as it is difficult to use this model in the

multiple platforms. Tim Menzies et al proposed a new

model called COSEEKMO whose operators will reduce

the large deviations and also improve the mean errors

for model base estimation [1]

2.2 Computational Intelligence Tools

In recent years, Machine learning methods such as

Artificial Neural Network, Genetic Algorithm are used

in the prediction of software effort. These techniques

reflect some of the functions of the human mind to

solve highly complex problems. So they are called

computational Intelligence Tools. Particularly, it is

observed that the computational intelligence tools can

be most effectively used in the Analogy method of

estimating the effort.

 Estimation by analogy method requires one or more

completed projects that are similar to the proposed new

project. The success of this method depends on the

selection of the most relevant and similar projects.

Different methods have been proposed by many

researchers. Tuan Khan Le et al proposed the use of

Effort Inconsistency identifier [EID] for filtering

inconsistent data in the historical projects [3]. Ekrem

Kocaguneli et al identified the essential assumptions of

Analogy based Effort Estimation [9]. It has been

observed by them that whenever the assumptions listed

in their research paper are violated, those situations are

removed. Then, modified system is built so that there is

an increase in the accuracy in the estimation of the

project. The limitation is that their experiments ignored

hard training cases. Jaifeng Wen et al used the concept

of genetic programming using arithmetic mean,

harmonic mean and geometric mean [11].

 2.2.1 Artificial Neural Network [ANN]

ANN is a system that has certain performance

characteristics in common with the biological neural

networks. This type of networks has two layers, namely

input layer and output layer that have links between

them. These links carries weights. There can be hidden

layers between these layers. Back propagation

Algorithm is the most popular method for training

Multi Layer Perceptron [MLP]. In this model, there are

two passes, a forward pass and a backward pass. In the

forward pass, the weights are fixed and during the

backward pass, the weights are adjusted accordingly to

the error correction rule. The adjustments in weights

are based on the error produced between the desired

and actual output. Chao-Jung Hsu et al made a study to

improve the software effort estimation using ANN and

many other methods. The uses of linear weights were

suggested for the combination of estimation methods

[10].

2.2.2 Genetic Algorithm [GA]

Genetic Algorithm is a search based algorithm to get an

optimal solution. It is an evolutionary computation

method. Genetic Algorithm creates population of

individuals consecutively due to which, we get optimal

solution for the given problem. The search process

depends on the following components:

a) A list of solutions to the problem

b) A fitness function

c) Initialization of initial population

d) Selection operator

e) Reproduction operator

 The main problems that are faced in the effort

prediction by analogy are feature selection, no. of

analogies to use, similarity measure, scaling , budget

and Schedule pressure [5][7]. The commonly used

similarity function is the weighted Euclidean Distance

given as below:

 i=l

 Distance(p1,p2) = sqrt ∑ wi (f1-f2)2

 i=1

Where p1 and p2 denotes any two members of the

project data sets, l is the number of features of the

project, f1 and f2 denotes the features and wi is the

weight of each feature. The software effort estimation

with minimum features can be done as classification by

using a feed forward neural network [6]. The selection

of projects for the Analogy based Software Cost

Estimation using Genetic Algorithm has been proposed

by Y.F.Li et al [8]. In that paper, Genetic Algorithm is

used as the optimization technique for project selection.

It is shown, that performance of Analogy Based

Estimation has improved by adopting Genetic

Algorithm, The feasibility of the method was validated

by applying to well known Albrecht data set and

Desharnais Data set. However, it is also said that

simultaneous optimization of historical data sets and

feature weights could lead to better optimization.

2.2.2 Genetic Programming [GP]

Genetic Programming is an extension of Genetic

Algorithm. It does not have the restriction that the

representation of individual has to be of fixed length

binary string as in the case of Genetic Algorithm. In

Genetic Programming, the chromosome is some type of

program normally in the form of binary tree

representation. Genetic Programming offers flexibility

630

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60206

to perform operations in a hierarchical way. In [14],

Colin J. Burgess and Martin Lefly evaluate the

potential of Genetic Programming in software effort

estimation in terms of accuracy and ease of use.

2.2.3 Differential Evolution [DE]

Differential Evolution is also a evolutionary

computational method developed in 1995 by R.Storn

and K.V.Price. It is a stochastic, population based

optimization algorithm. It differs from other

Evolutionary Computation tools in its way of operation.

In this method, mutation is applied first to generate a

trial vector which is then used with a crossover operator

to produce the offspring. Further, the step sizes are

influenced by the difference between the individuals of

the current population and not from the prior known

probability distribution function. When compared to

most other EAs, DE is much more simple and

straightforward to implement. The space complexity of

DE is low as compared to some of the most competitive

real parameter optimizers [15]. Due to this feature, DE

is used for handling large scale and expensive

optimization problems

3. Using differential evolution Algorithm in

Estimation by Analogy

Estimation by Analogy is the more effective

methodology than other methods, as it is very simple

and easy to understand. It is also easy to relate the

output with the input. The estimation is almost

accurate, if the most similar completed projects are

selected. The different steps involved in the proposed

method are given below:

1. Collect all the past relevant projects

2. Analyze each project and find the necessary

parameters

3. Select the most relevant projects

4. Estimate the effort of the current project by

comparing with the selected few most relevant projects

The selection of the most relevant projects would

simplify the process of estimation. The principle of

differential evolution is proposed to be used for this

selection process. Differential Evolution Algorithm is

proposed so that the exploration ability is improved [4].

In the proposed algorithm, the Primary population (Pp)

set consists of selected individuals. The secondary

population (Ps) serves as an archive of those offspring

rejected by the selection operator. The steps for the

algorithm are given below:

1. Set the counter for generation t=1

2. Initialize the control parameters

3. Create and initialize the Primary Population

Pp (1) of n individuals

4. While terminating condition not true

For each individual xi(t) in Pp (t) do

 Evaluate the fitness f(xi(t))

 Create a sample vector vi(t) by applying the

mutation operator

Create an offspring xi’(t) by applying cross

over operator

 If f(xi’(t)) is better than f(xi(t) then

 add xi’(t) to Pp (t+1)

 xr(t) = xi(t)

 else

add xi(t) to Pp (t+1)

 xr(t) = xi’(t)

 end

// Grouping rejected offspring in the

Secondary Population (Ps)

 if (t==1)

 include xr(t) in the Secondary

Population(Ps)

 else

 if f((xr(t)) is better than f(xia(t) then

 replace xia(t) with xr(t)

 end

 end

end

End

3.1 Comparing the use of Differential

Algorithm with other Evolutionary Algorithms

in the estimation of software effort

Differential Algorithm has got many similarities with

other evolutionary algorithms like Genetic Algorithm,

Artificial Neural Networks, Genetic Programming and

others. But it differs in the fact that the information

about the distance and direction between the

individuals in the current population is used to guide

the search process. These are the good indication of the

diversity in the population. If the distance is more, the

individual should take large step sizes and if the

distance is less, the step sizes should be small to exploit

631

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60206

local areas. This feature can be used in the selection of

relevant projects in the estimation of analogy method.

4. Conclusion

A new method is proposed in this paper to find the

most similar past projects to be used in the estimation

by analogy models. The idea is derived from

differential evolution. Differential evolution is

stochastic, population based search strategy. This

algorithm can be used to get more accurate results. The

similarities between the projects such as the key

attributes and features can be compared by using this

algorithm. Less informative and less needed attributes

can be removed.

References

[1] Tim Menzies , Zhihao Chen, Jairus Hihn and Karen

Lum, Selecting Best Practices for Effort Estimation,

IEEE transactions on Software Engineering ,2006

[2] M.Jorgenson , A Review of Studies in Expert estimation

of software development effort , Journal of systems and

software ,pp 37-60, 2004

[3] Tuan Khan H Le-DO, Kyuang-A Yoon , Yeong-Seok

Seo, Doo-Hwan Bae, Filtering of inconsistent Software

Project Data for Analogy- based Effort Estimation, IEEE

Computer Software and Applications Conference, 2010.

[4] M.XM.Ali and A.Torn, ,Population set based global

optimization Algorithms : some modifications and

numerical studies, Computers and Operation

Research,1703-1725,2004

[5] Juan J.Cuadrado-Gallego,Pablo Rodriguez-Sorio, Borja

Martin-Herrera , Analogies and differences between

Machine Learning and Expert based Software Project

Estimation, ACIS International Conference on Software

Engineering , Artificial Intelligence, Networking and

Parallel/Distributed Computing, 269-275, 2010

[6] Jin-Cherng Lin,Chu-Ting Chang and Sheng-Yu Huang,

Research on Software Effort Estimation Combined with

Genetic Algorithm and Support Vector Regression,

International Symposium on Computer Science and

Society, 349-352, 2011

[7] Ning Nan and Donald E. Harter Impact of Budget and

Schedule Pressure on Software Development CycleTime

and Effort,IEEE Transactions of Software Engineering,

624-637, 2009

[8] Y.F.Li, M.Xie , T.N.Golt, A study of Genetic Algorithm

for Project Selection for Analogy Based Software Cost

Estimation , IEEE Transactions of Software

Engineering, 2007

[9] Ekrem Kocaguneli, Tim Menzies, Ayse Bener and Jacky

W. Keung, Exploiting the essential assumptions of

Analogy based Effort Estimation, IEEE Transactions of

Software Engineering, 2011

[10] Chao-jung Hsu, Nancy Urbina Rodas, Chin-yu Huang,

and Kuan – li Peng, A study of improving the accuracy

of software effort estimation using linearly weighted

combinations, 34th Annual IEEE computer software and

application conference workshops – 2010

[11] Jaifeng Wen, Shixian Li, Linyan Tang, Improve

analogy based software effort estimation using

principal component analysis and correlation

weighting, IEEE Transactions of Software Engineering,

2009

[12] L.RosenGrance, “Survey : Poor Communication causes

most IT project failures”, Computer World, 2007

[13] M.Jorgensen, “A Review of Studies on Expert

Estimation of Software Development Effort”, 2002

[14] Colin J.Burgess, Martin Lefly, “Can Genetic

Programming inprove Software Effort Estimation? A

comparative Evaluation:, Elsevier , 2001

[15] Swagatam Das, Ponnuthurai Nagaratnam Suganthan,

”Differential Evolution : A Survey of the State of Art”,

IEEE transactions on Evolutionary Computation,2011

632

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

IJ
E
R
T

IJ
E
R
T

Vol. 2 Issue 6, June - 2013

IJERTV2IS60206

