Study of MHD Flows Through Porous Media in Magnetic Graph Plane

Dr. Mukesh Chandra and Dr. B. K. Singh
Department of Mathematics
IFTM University, Moradabad-244102, (U.P.) INDIA.

Abstract

In this paper, an attempt has been made to study of variably inclined MHD flows through Porous media in magnetic graph plane. The study of MHD flow of a steady homogeneous, incompressible, viscous fluid with finite electrical conductivity through porous media. In the last the expression for vorticity function has been obtained.

Keywords: Current density vector, Fluid pressure, Fluid density, Magnetic viscosity and porous media.

1. INTRODUCTION

Waterhouse and Kingston [5] studied steady, plane, inviscid and incompressible MHD flows, in which the velocity field and the magnetic field are constantly inclined to one another. Transformation techniques are employed for solving non-linear partial differential equations and hodograph transformation method is one of the strongest analytical method which has been widely used in continuum mechanics.

In this paper, we consider the steady plane variably inclined MHD flows of a viscous incompressible fluid with finite electrical conductivity through porous media. A Legendre transform function of magnetic flux-function is used to recast the equations in the magnetograph plane in terms of this transformed function.

2. FORMULATION OF THE PROBLEMS

Here, we shall consider the following notations
$p=$ fluid pressure
$\rho=$ fluid density
$\eta=$ coefficient of Viscosity
$\mu=$ magnetic permeability
$k=$ Permeability of the medium
$v_{H}=$ magnetic viscosity
$\vec{J}=\quad \operatorname{curl} \vec{H}=$ Current density vector
$\vec{H}=$ magnetic field vector
$\vec{V}=$ velocity vector.
Magneto hydrodynamic flow of a steady homogeneous, incompressible, viscous fluid with finite electrical conductivity through porous media is given by [2]. Then the equations are given as follows:

$$
\begin{equation*}
\nabla \cdot \vec{V}=0 \tag{2.1}
\end{equation*}
$$

$$
\begin{align*}
& \nabla . \vec{H}=0 \tag{2.2}\\
& \nabla \times(\vec{V} \times \vec{H})=\nabla\left(v_{H} \operatorname{curl} \vec{H}\right) \tag{2.3}\\
& \rho[(\vec{v} \cdot \operatorname{grad}) \vec{v}]=-\operatorname{grad} p+\eta \nabla^{2} \vec{v}+\mu \vec{J} \times \vec{H}-\frac{\eta}{k} \vec{v} \tag{2.4}
\end{align*}
$$

Assuming that flow to be the two dimensional so that \vec{v} and \vec{H} lie in a plane defined by the rectangular coordinates (x, y) and all the flow variable's are functions of, x and y. In this regard, the above system of equations is replaced by the following equations:

$$
\begin{gather*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{2.5}\\
\rho\left[u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right]+\frac{\partial p}{\partial x}=\eta\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)-\mu H_{2}\left(\frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial y}\right)-\frac{\eta}{K} u \\
\rho\left[u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right]+\frac{\partial p}{\partial y}=\eta\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)-\mu H_{1}\left(\frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial y}\right)-\frac{\eta}{K} v \\
u H_{2}-v H_{1}=v_{H}\left(\frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial y}\right)+C \\
\frac{\partial H_{1}}{\partial x}+\frac{\partial H_{2}}{\partial y}=0
\end{gather*}
$$

where u, v are the components of the velocity field \vec{V} and H_{1}, H_{2} the components of the magnetic field vector \vec{H}.
The vorticity and current density function is defined as

$$
\begin{align*}
& \omega=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \tag{2.10}\\
& \Omega=\frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial y} \tag{2.11}\\
& h=p+\frac{1}{2} \rho q^{2} \tag{2.12}
\end{align*}
$$

where $q^{2}=u^{2}+v^{2}$
The above equations is replaced by following systems

$$
\begin{align*}
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{2.13}\\
& \eta \frac{\partial \omega}{\partial y}-\rho \omega v+\mu \Omega H_{2}+\frac{\eta}{k} u=-\frac{\partial h}{\partial x} \tag{2.14}\\
& \eta \frac{\partial \omega}{\partial x}-\rho \omega u+\mu \Omega H_{1}-\frac{\eta}{k} v=\frac{\partial h}{\partial x} \tag{2.15}
\end{align*}
$$

$$
\begin{align*}
& u H_{2}-v H_{1}=v_{H}\left(\frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial y}\right)+C \tag{2.16}\\
& \frac{\partial H_{1}}{\partial x}+\frac{\partial H_{2}}{\partial y}=0 \tag{2.17}\\
& \frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=\omega \tag{2.18}\\
& \frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial y}=\Omega \tag{2.19}
\end{align*}
$$

3. SOLUTION OF THE PROBLEMS

Consider variably inclined plane flow and let $\alpha=\alpha(x, y)$ be the variable angle in the (x, y) flow region, the equation (2.16) reduces in the form-

$$
\begin{align*}
& u H_{2}-v H_{1}=q H \sin \alpha=C+v_{H}\left(\frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial y}\right) \tag{3.1}\\
& u H_{1}+v H_{2}=q H \cos \alpha=\left[C+v_{H}\left(\frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial y}\right)\right] \cot \alpha
\end{align*}
$$

where $H^{2}=H_{1}^{2}+H_{2}^{2} \Rightarrow H=\sqrt{H_{1}^{2}+H_{2}^{2}}$
Multiply equation (3.1) by H_{2} and equation (3.2) by H_{1}, then

$$
\begin{align*}
& u H_{2}^{2}+v H_{1} H_{2}=\left[C+v_{H}\left(\frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial y}\right)\right] H_{2} \tag{3.3}\\
& u H_{1}^{2}+v H_{1} H_{2}=\left[C+v_{H}\left(\frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial y}\right)\right] \cot \alpha H_{1} \tag{3.4}
\end{align*}
$$

Adding equation (3.3) and equation (3.4), then we get

$$
\begin{equation*}
u=\left[C+v_{H}\left(\frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial y}\right)\right] \frac{\left(H_{2}+H_{1} \cot \alpha\right)}{H_{1}^{2}+H_{2}^{2}} \tag{3.5}
\end{equation*}
$$

Multiply equation (3.1) by H_{1}, then we obtain

$$
\begin{equation*}
u H_{2} H_{1}-v H_{1}^{2}=\left[C+v_{H}\left(\frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial y}\right)\right] H_{1} \tag{3.6}
\end{equation*}
$$

Multiply equation (3.2) by H_{2}, then we obtain

$$
\begin{equation*}
u H_{1} H_{2}+v H_{2}^{2}=\left[C+v_{H}\left(\frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial y}\right)\right] H_{2} \cot \alpha \tag{3.7}
\end{equation*}
$$

Subtracting equation (3.7) from equation (3.6), we obtain

$$
\begin{equation*}
v=\left[C+v_{H}\left(\frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial y}\right)\right] \frac{\left(H_{2} \cot \alpha-H_{1}\right)}{\left(H_{1}^{2}+H_{2}^{2}\right)} \tag{3.8}
\end{equation*}
$$

Differentiating equation (3.8) with respect to ' x ', we get

$$
\frac{\partial v}{\partial x}=\frac{\partial}{\partial x}\left[\left(C+v_{H} \Omega\right) \frac{\left(H_{2} \cot \alpha-H_{1}\right)}{H_{1}^{2}+H_{2}^{2}}\right] \frac{\partial v}{\partial x}
$$

Using equation (2.11) into equation (3.8), we get

$$
\begin{gathered}
\frac{\partial v}{\partial x}=\left(C+v_{H} \Omega\right) \frac{\partial}{\partial x}\left[\frac{\left(H_{2} \cot \alpha-H_{1}\right)}{H_{1}^{2}+H_{2}^{2}}\right]+\frac{\left(H_{2} \cot \alpha-H_{1}\right)}{H_{1}^{2}+H_{2}^{2}} \frac{\partial}{\partial x}\left(C+v_{H} \Omega\right) \\
=\left(C+v_{H} \Omega\right) \frac{\left[\left(H_{1}^{2}+H_{2}^{2}\right) \frac{\partial}{\partial x}\left(H_{2} \cot \alpha-H_{1}\right)-\left(H_{2} \cot \alpha-H_{1}\right) \frac{\partial}{\partial x}\left(H_{1}^{2}+H_{2}^{2}\right)\right]}{\left(H_{1}^{2}+H_{2}^{2}\right)^{2}} \\
+\frac{\left(H_{2} \cot \alpha-H_{1}\right)}{\left(H_{1}^{2}+H_{2}^{2}\right)} \cdot v_{H} \frac{\partial \Omega}{\partial x}
\end{gathered}
$$

i.e. $\frac{\partial v}{\partial x}=\left(C+v_{H} \Omega\right)\left[\frac{1}{H^{2}}\left\{H_{2} \frac{\partial}{\partial x}(\cot \alpha)+\cot \alpha \frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial x}\right\}-\right.$

$$
\left.\frac{\left(H_{2} \cot \alpha-H_{1}\right)}{H^{4}}\left(2 H_{1} \frac{\partial}{\partial x} H_{1}+2 H_{2} \frac{\partial}{\partial x} H_{2}\right)\right]+\frac{\left(H_{2} \cot \alpha-H_{1}\right)}{\left(H_{1}^{2}+H_{2}^{2}\right)^{2}} \cdot v_{H} \frac{\partial \Omega}{\partial x}
$$

$$
\begin{align*}
& \frac{\partial v}{\partial x}=\frac{\left(C+v_{H} \Omega\right)}{H^{2}}\left[\left\{H_{2} \frac{\partial}{\partial x}(\cot \alpha)+\cot \alpha \frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial x}\right\}-\right. \tag{3.9}\\
& \left.\frac{\left(H_{2} \cot \alpha-H_{1}\right)}{H^{4}}\left(2 H_{1} \frac{\partial H_{1}}{\partial x}+2 H_{2} \frac{\partial H_{2}}{\partial x}\right)\right]+\frac{\left(H_{2} \cot \alpha-H_{1}\right)}{H^{2}} \cdot v_{H} \frac{\partial \Omega}{\partial x}
\end{align*}
$$

Differentiating equation (3.5) partially with respect to ' y ', we get

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial}{\partial y}\left[\left(C+v_{H} \Omega\right) \frac{\left(H_{2}+H_{1} \cot \alpha\right)}{\left(H_{1}^{2}+H_{2}^{2}\right)}\right] \\
& \frac{\partial u}{\partial y}=\left(C+v_{H} \Omega\right) \frac{\partial}{\partial y}\left[\frac{\left(H_{2}+H_{1} \cot \alpha\right)}{\left(H_{1}^{2}+H_{2}^{2}\right)}\right]+\frac{\left(H_{2}+H_{1} \cot \alpha\right)}{\left(H_{1}^{2}+H_{2}^{2}\right)} \frac{\partial}{\partial y}\left(C+v_{H} \Omega\right) \\
& \frac{\partial u}{\partial y}=\left(C+v_{H} \Omega\right) \frac{\left[\left(H_{1}^{2}+H_{2}^{2}\right) \frac{\partial}{\partial y}\left(H_{2}+H_{1} \cot \alpha\right)-\left(H_{2}+H_{1} \cot \alpha\right) \frac{\partial}{\partial y}\left(H_{1}^{2}+H_{2}^{2}\right)\right]}{\left(H_{1}^{2}+H_{2}^{2}\right)^{2}}
\end{aligned}
$$

$$
+\frac{\left(H_{2}+H_{1} \cot \alpha\right)}{\left(H_{1}^{2}+H_{2}^{2}\right)} \cdot v_{H} \frac{\partial \Omega}{\partial y}
$$

i.e. $\frac{\partial u}{\partial y}=\left(C+v_{H} \Omega\right)\left[\frac{1}{H^{2}}\left\{\frac{\partial H_{2}}{\partial y}+H_{1} \frac{\partial}{\partial x}(\cot \alpha)+(\cot \alpha) \frac{\partial\left(H_{1}\right)}{\partial y}\right\}-\right.$
$\left.\left\{\frac{\left(H_{2} \cot \alpha-H_{1}\right)}{H^{4}} \times\left(2 H_{1} \frac{\partial H_{1}}{\partial x}+2 H_{2} \frac{\partial H_{2}}{\partial x}\right)\right\}\right]+\frac{\left(H_{2} \cot \alpha-H_{1}\right)}{H^{2}} \cdot v_{H} \frac{\partial \Omega}{\partial x}$

$$
\begin{gather*}
\frac{\partial u}{\partial y}=\frac{\left(C+v_{H} \Omega\right)}{H^{2}}\left[\left\{H_{1} \frac{\partial}{\partial y}(\cot \alpha)+(\cot \alpha) \frac{\partial H_{1}}{\partial y}+\frac{\partial H_{2}}{\partial y}\right\}-\right. \tag{3.10}\\
\left.\frac{\left(H_{2}+H_{1} \cot \alpha\right)}{H^{2}} \times\left(2 H_{1} \frac{\partial H_{1}}{\partial y}+2 H_{2} \frac{\partial H_{2}}{\partial y}\right)\right]+\frac{\left(H_{2}+H_{1} \cot \alpha\right)}{H^{2}} \cdot v_{H} \frac{\partial \Omega}{\partial x}
\end{gather*}
$$

The vorticity function is defined as:

$$
\begin{equation*}
\omega=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \tag{3.11}
\end{equation*}
$$

Substituting the value of $\frac{\partial v}{\partial x}$ and $\frac{\partial u}{\partial y}$ from equation (3.9) and (3.10) in equation (3.11), we get

$$
\begin{aligned}
& \omega=\frac{\left(C+v_{H} \Omega\right)}{H^{2}}\left[\left\{H_{2} \frac{\partial}{\partial x}(\cot \alpha)+(\cot \alpha) \frac{\partial H_{2}}{\partial x}-\frac{\partial H_{1}}{\partial x}\right\}-\right. \\
& \left.\quad \frac{\left(H_{2} \cot \alpha-H_{1}\right)}{H^{2}} \times\left(2 H_{1} \frac{\partial H_{1}}{\partial x}+2 H_{2} \frac{\partial H_{2}}{\partial y}\right)+\frac{\left(H_{2} \cot \alpha-H_{1}\right)}{H^{2}} v_{H} \frac{\partial \Omega}{\partial x}\right]- \\
& \quad \frac{\left(C+v_{H} \Omega\right)}{H^{2}}\left[\left\{H_{1} \frac{\partial}{\partial y}(\cot \alpha)+\cot \alpha \frac{\partial H_{1}}{\partial y}+\frac{\partial H_{2}}{\partial y}\right\}-\right. \\
& \left.\left\{\frac{\left(H_{2}+H_{1} \cot \alpha\right)}{H^{2}} \times\left(2 H_{1} \frac{\partial H_{1}}{\partial y}+2 H_{2} \frac{\partial H_{2}}{\partial y}\right)\right\}\right]-\frac{\left(H_{2}+H_{1} \cot \alpha\right)}{H^{2}} \cdot v_{H} \frac{\partial \Omega}{\partial y} .
\end{aligned}
$$

$$
\text { or } \quad\left(C+v_{H} \Omega\right)\left[H_{2} \frac{\partial}{\partial x}(\cot \alpha)-H_{1} \frac{\partial}{\partial x}(\cot \alpha)+\frac{\partial H_{1}}{\partial x}+\left(\frac{\partial H_{2}}{\partial y}-\frac{\partial H_{1}}{\partial x}\right)\right.
$$

$$
\times \frac{\left(2 H_{2}^{2}+2 H_{1} H_{2} \cot \alpha\right)}{H^{2}}+\left(\frac{\partial H_{2}}{\partial x}+\frac{\partial H_{1}}{\partial y}\right) \times \frac{\left(2 H_{1} H_{2}-2 H_{2}^{2} \cot \alpha+\cot \alpha\right)}{H^{2}}+
$$

$$
v_{H}\left[\frac{\partial \Omega}{\partial x}\left(H_{2} \cot \alpha-H_{1}\right)-\frac{\partial \Omega}{\partial y}\left(H_{2}+H_{1} \cot \alpha\right)\right]=\omega H^{2}
$$

On introducing Jacobians, we get

$$
\begin{aligned}
& \text { (3.12) } \frac{J}{H^{4}}\left(\frac { \partial \mathrm { x } } { \partial H _ { 1 } } \left\{\left(C+v_{H} \Omega\right)\left(2 H_{2}^{2}+2 H_{1} H_{2}+\cot \bar{\alpha}+2\right)\right.\right. \\
& \left.+v_{H} H^{2} \frac{\partial \bar{\Omega}}{\partial H_{2}}\left(H_{2}+H_{1} \cot \bar{\alpha}\right)\right\}-\frac{\partial \mathrm{x}}{\partial H_{2}}\left\{\left(C+v_{H} \bar{\Omega}\right)\left(2 H_{2}^{2} \cot \alpha-2 H_{1} H_{2}-\cot \alpha\right)\right. \\
& \left.+v_{H} H^{2} \frac{\partial \bar{\Omega}}{\partial H_{1}}\left(H_{2}+H_{1} \cot \bar{\alpha}\right)\right\}-\frac{\partial \mathrm{y}}{\partial H_{2}}\left\{\left(C+v_{H} \bar{\Omega}\right)\left(2 H_{2}^{2}+2 H_{1} H_{2} \cot \bar{\alpha}+2 \alpha\right)\right\} \\
& -\frac{\partial \mathrm{y}}{\partial H_{1}}\left\{\left(C+v_{H} \Omega\right)\left(2 H_{2}^{2} \cot \bar{\alpha}-2 H_{1} H_{2} \cot \alpha-\cot \alpha\right)\right\} \\
& \left.-v_{H} H^{2} \frac{\partial \bar{\Omega}}{\partial H_{2}}\left(H_{2} \cot \bar{\alpha}-H_{1}\right)\right]=\bar{\omega}
\end{aligned}
$$

Introducing partial differentiation equation in six unknown functions $x\left(H_{1}, H_{2}\right), y\left(H_{1}, H_{2}\right)$ and four transformed functions $\bar{\omega}\left(H_{1}, H_{2}\right), \vec{h}\left(H_{1}, H_{2}\right), \vec{\Omega}\left(H_{1}, H_{2}\right)$ and $\vec{\alpha}\left(H_{1}, H_{2}\right)$.
The solenodial equation implies the existence of magnetic flux function $\Phi(x, y)$, such that:

$$
\begin{align*}
& \frac{\partial \Phi}{\partial x}=-H_{2}, \frac{\partial \Phi}{\partial y}=-H_{1}, \frac{\partial L}{\partial H_{1}}=-y, \frac{\partial L}{\partial H_{2}}=x, L\left(H_{1}, H_{2}\right)=H_{2} x-H_{1} y+\Phi(x, y) \\
& \text { (3.13) } \quad \bar{\omega}=\frac{\bar{J}}{H^{4}}\left[\frac { \partial ^ { 2 } L } { \partial H _ { 1 } \partial H _ { 2 } } \left\{\left(C+v_{H} \bar{\Omega}\right)\left(2 H_{2}^{2}+2 H_{1} H_{2} \cot \bar{\alpha}+2\right)+v_{H} H^{2} \frac{\partial \bar{\Omega}}{\partial H_{2}}\right.\right. \tag{3.13}
\end{align*}
$$

$$
\left\{\left(H_{2}+H_{1} \cot \bar{\alpha}\right)+\frac{\partial \bar{\Omega}}{\partial H_{1}}\left(H_{2} \cot \bar{\alpha}-H_{1}\right)\right\}-
$$

$$
\frac{\partial^{2} L}{\partial H_{2}^{2}}\left\{\left(C+v_{H} \bar{\Omega}\right)\left(2 H_{2}^{2} \cot \bar{\alpha}-2 H_{1} H_{2}-\cot \bar{\alpha}\right)\right.
$$

$$
\left.+v_{H} H^{2} \frac{\partial \bar{\Omega}}{\partial H_{1}} \times\left(H_{2}+H_{1} \cot \bar{\alpha}\right)\right\}+
$$

$$
\frac{\partial^{2} L}{\partial H_{1}^{2}}\left\{\left(C+v_{H} \bar{\Omega}\right)\left(2 H_{2}^{2} \cot \bar{\alpha}-2 H_{1} H_{2}-\cot \bar{\alpha}\right)\right\}
$$

$$
\left.\left.-v_{H} H^{2} \frac{\partial \bar{\Omega}}{\partial H_{2}}\left(H_{2} \cot \bar{\alpha}-H_{1}\right)\right\}\right]
$$

4. ACKNOWLEDGMENT

The authors would like to express their thanks to the referees for their helpful comments and suggestions.

REFERENCES:

[1] D.P. Chandna, H. Toews: Plane MHD steady flows with constantly inclined and V.I. Nath magnetic and velocity fields Can. J. Phys., 53.
[2] G. Ram and R.S. Mishra: Magnetohydrodynamic flow of a steady homogeneous, incompressible, viscous fluid with finite electrical conductivity through porous media. Ins. Jour. pure. and applied Maths, 8(6), (1977), 637.
[3] H. Tolws and
O.P. Chandna
[4] J.S. Kingston and R.F. Talbot
[5] J.S. Waterhouse and J. G. Kingston
[6] M.H. Martin
[7] O.P. Chandna and R. Garg
[8] O.P. Chandna, R.M. Barron and M.R. Garg
: Plane Magneto fluid dynamic flows with constantly inclined magnetic and velocity fields, Can. J. Physics 52 (1974) 754.
: The solutions to a class of magnetohydrodynamic flows with orthogonal magnetic and velocity field distributions, Z. Angew. Math. Phys,. 20, (1969), 956.
: Plane magnetohydrodynamic flows with constantly inclined magnetic and velocity fields, Z. Angew. Maths. Phys. 24, (1973), 653.
: The flow of a viscous fluid, Arch. Rat. Mech. Anal., 41, (1971), 266.
: The flow of a viscous MHD fluid, Q. Applied Math, 34, (1976), 287.
: Plane Compressible MHD flows, Q. Applied Math; 37, (1979), 411.

