
Study of Methods for Analyzing and Building Software on Safety

Critical Systems

 B.Umamaheswararao Dr.P. Dr. Panchumarthy Seetha Ramaiah,
 Research Scholar Department of CS&SE, Department of CS&SE,
 Andhra University College of Andhra University College of
 Engineering, Visakhapatnam, Engineering, Visakhapatnam
 India India

ABSTRACT

 A safety critical system is a system where human

safety is dependent upon the correct operation of

the system. The use of formal methods is often

advocated as a way of increasing condenses in such

systems. This paper examines the usage of these

methods, the differences concerning formal

methods and methodology for building safer

software for the development of safety-critical

systems and reviews existing software safety

standards, guidelines and other software safety

documents and also examines the limitations,

practical problems and issues associated with the

use of current software safety standards Some

possible future directions are suggested. Safety

problem arise with the introduction of computers

into safety-critical systems. Building safety-critical

software requires special procedures to be used in

all phases of the software development process.

The Safety-Critical Systems have become more

important as computers are increasingly used to

monitor and control critical devices and processes

in desperate areas like medicine, transportation,

energy, manufacturing, etc. Several Design

Methods and Metrics have been developed for the

safety and security of the Safety-Critical Systems.

Methods like FTA, FMEA, FMFEA, FMECA,

ETA, MORT, SMORT, etc. are intended to provide

a safe and secure Safety-Critical System. These

methods are intended to avoid the mishaps in the

critical devices. But the occurrence of accidents

didn’t stop due to the faults in the Safety-Critical

Systems and are continuing.

Keywords: Safety-critical systems, Software safety,

Design methods.

1. INTRODUCTION

Safety-critical systems are those systems whose

failure could result in loss of life, significant

property damage, or damage to the environment

[12]. Modern electronic systems increasingly make

use of embedded computer systems to add

functionality, increase flexibility, controllability

and performance. However, the increased use of

embedded software to control systems brings with

it certain risks. The increased flexibility and

complexity can lead to new and different failure

modes which cannot be addressed with traditional

fault tolerance techniques [1]. This is especially

significant in ―safety‐critical systems‖.

A safety critical system [9] is a system where

human safety is dependent upon the correct

operation of the system. An obvious example of a

safety critical system is an aircraft fly by wire

control system, where the pilot inputs commands to

the control computer using a joystick, and the

computer manipulates the actual aircraft controls.

The lives of hundreds of passengers are totally

dependent upon the continued correct operation of

such a system. The development of safety critical

systems has traditionally been pioneered within the

avionics and automotive industries but, as

awareness has developed, of how software can

impact safety, the scope of safety critical software

has expanded into many types of systems such as

medical instruments and devices, transport, process

control, nuclear and oil and gas facilities.

Safety requirements and failure modes and

consequences in medical systems will be quite

different from those in avionics systems or

automotive systems for instance, and the

approaches used to ensure safety may consequently

be different too. This paper is aimed at exploring

the approaches used to develop embedded software

in some of the different safety‐critical applications,

with a view to establishing any common

approaches and identifying opportunities for

sharing best practice and development tools and

techniques.

1.1 METHODS :

Safety-critical systems, by definition those systems

whose failure can cause catastrophic results for

people, the environment, and the economy, are

becoming increasingly complex both in their

functionality and their interactions with the

environment. Unfortunately, safety assessments are

still largely done manually, a time-consuming and

error-prone process. There are methods to analyze

the drawbacks of the safety-critical systems like

Failure Mode and Effects Analysis (FMEA),

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

Failure Modes Effects and Criticality Analysis

(FMECA), Fault Tree Analysis (FTA), Event Tree

Analysis (ETA), Failure Mode Factors and Effects

Analysis (FMFEA), etc.

1.2. Software Induced Failures in Real-life

Computers are increasingly being introduced into

safety critical systems and, as a consequence, have

been involved in accidents. Some well known

incidents are the Therac-25 accidents [13], the

Ariane 5 explosion. Some of the most widely cited

software related accidents in safety critical systems

involved a computerized radiation therapy machine

called the Therac-25. Between June 1985 and

January 1987, six known accidents involved

massive overdoses by the Therac-25 – with

resultant deaths and serious injuries. They have

been described as the worst series of radiation

accidents in the 35-year history of medical

accelerators. On June 4, 1996 an unmanned Ariane

5 rocket launched by the European Space Agency

exploded just forty seconds after its lift-off from

Kourou, French Guiana. The rocket was on its first

voyage, after a decade of development costing $7

billion. The destroyed rocket and its cargo were

valued at $500 million. A board of enquiry which

investigated the causes of explosion found out that

the cause of the failure was a software error in the

inertial reference system. Specifically a 64 bit

floating point number relating to the horizontal

velocity of the rocket with respect to the platform

was converted to a 16 bit signed integer. The

number was larger than 32,767, the largest integer

storable in a 16 bit signed integer, and thus the

conversion failed.

The rest of this paper is organized as follows.

Section 2 describes Design Methods Safety Critical

systems.

Section 3 presents The Computer Based Systems

and Mishaps.

Section 4 presents Methodology for modeling

software safety in safety-critical computing

systems.

Section 5.describes safety issues of Railroad

Crossing Control System (RCCS) prototype and

the results observed after application of the

methodology.

Section 6. Conclusion

 2. DESIGN METHODS:

2.1. Failure Mode and Effects Analysis (FMEA):

Failure Mode and Effects Analysis (FMEA) is an

analytical method of the preventive quality

assurance. It serves to find the potential failure of a

product/process, to recognize and evaluate its

importance and to identify appropriate actions to

prevent the potential failure or to discover it in

time. The systematic analysis and removal of weak

points leads to the minimization of risks, to the

reduction of failure costs and to improved

reliability. FMEA is a good means to analyze risks

caused by individual failures. The individual risks

are weight against each other to recognize

priorities. FMEA does not provide a statement on

the total failure risk. For the analysis of failure

combinations, the fault-tree analysis is more

appropriate.

Types of FMEA

– Process: analysis of

manufacturing and assembly

processes

– Design: analysis of products

prior to production

– Concept: analysis of systems or

subsystems in the early design

concept stages

– Equipment: analysis of

machinery and equipment design

before purchase

– Service: analysis of service

industry processes before they

are released to impact the

customer

– System: analysis of the

management system functions

– Software: analysis of the

software functions

Areas of Application:

FMEA should be applied:

 Where the criticality of the software or

system under consideration must be

analyzed, to reduce the risk of failure (e.g.

safety critical systems like aircraft flight

control systems).

 where mandatory or regulatory

requirements apply to remove defects at

early stages

 To define special test considerations,

operational constraints, design decisions

for safety critical systems.

2.2. Failure Modes Effects and Criticality

Analysis (FMECA):

Failure Modes Effects and Criticality Analysis

(FMECA) is a quality tool which builds on the

results of Functional Analysis to identify risks and

their consequences. FMECA can be applied to

systems, products, manufacturing processes,

equipment, plant and even less tangible subjects

such as logistic or information flows. It is used to

identify the possible ways in which failure can

occur for the corresponding causes of failure, the

corresponding effects of failure, and the impact on

Customer Satisfaction. The objective of FMECA is

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

to identify the components of products and systems

most likely to cause failure, so that these potential

failures can then be designed out. FMECA allows

the identification early in the product development

process of potential problems or safety hazards

which are inherent in a product design. The safety

and/or reliability of the product can be assessed and

modifications initiated at a relatively low cost

before they are built into the product.

2.3. Fault Tree Analysis (FTA):

Fault Trees [8] are one of the most widely used

methods in system reliability and failure

probability analysis. A Fault Tree is a graphical

representation of events in a hierarchical, tree-like

structure. It is used to determine various

combinations of hardware, software, and human

error failures that could result in a specified risk or

system failure. System failures are often referred to

as top events. A deductive analysis using a Fault

Tree begins with a general conclusion or hazard,

which is displayed at the top of a hierarchical tree.

This deductive analysis is the final event in a

sequence of events for which the Fault Tree is used

to determine if a failure will occur or, alternatively,

can be used to stop the failure from occurring.

Main advantage over FMEA/FMECA: Fault

Trees investigate consequences of multiple

simultaneous failures or events, which investigate

single-pint failures.

2.4 Event Tree Analysis (ETA):

It is an inductive failure analysis performed to

determine the consequences of single failure for the

overall system risk or reliability. Event Tree

Analysis uses similar logic and mathematics as

Fault Tree Analysis, but the approach is different -

FTA uses deductive approach (from system failure

to its reasons) and ETA uses the inductive

approach (from basic failure to its consequences).

An event tree itself is a visual representation of

single failure sequences, its influence on other

events and on the whole system.

2.5. Failure Mode Factors and Effects Analysis

(FMFEA):

FMFEA [5] is a safety analysis method used to

analyze factors and effects of failure modes of

structural components. This method utilizes a

combination of FTA and ETA. This method is able

to both discover and predict problems using a

systematic progression of detailed analysis. In

addition, safety (preventing personal injury) and

reliability (preventing product failure) can be

analyzed simultaneously. FMFEA follows the

procedure listed below.

(1) Select as subject of the investigation a

new unit with an important function.

(Predefine ―important‖, e.g., having

safety functions, or controlling something

else.)

(2) Check basic proper function of that

unit.

(3) Define a single failure mode with

―failure = loss of function‖.

3.0 THE COMPUTER BASED SYSTEMS AND

MISHAPS

Typically, virtually any computer system – whether

it’s a fly-by wire aircraft controller, an industrial

robot, a radiation therapy machine, or an

automotive antiskid system—contains five primary

components [14] :

Application: Physical entity the system

controls/monitors,

E.g. plant, process

Sensor: Converts application’s measured properties

to appropriate computer input signals, e.g.

accelerometer, transducer

Effectors: Converts electrical signal from

computer’s output to a corresponding physical

action that controls function, e.g. motor, valve,

break, and pump.

Operator: Human(s) who monitor and activate the

computer system in real-time, e.g. pilot, plant

operator, medical technician

Computer: Hardware and software that use sensors

and effectors to control the application in real-time,

e.g. single board controller, programmable logic

controller, flight computers,

Systems on a chip.

Any of the above five components may fail and

cause a mishap as shown in Fig. 1

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

The main concentration in this work is on

Computer Software that too on Safety-Critical

Software

3.1 Safety Critical Software

―Any software item identified as a potential hazard

cause, contributor, control, or mitigation, whether

controlled by hardware, software or human

operator, is designated as safetycritical,

and subjected to rigorous software quality

assurance, analysis, and testing. Safety-critical

software is also traced through the software safety

analysis process until the final verification.

Thus, safety critical requirements need to be

identified as such to insure future changes, as well

as verification processes, take them into

appropriate consideration.‖ Software is safety-

critical if it resides in a safety critical system and at

least one of the following applies:

• Causes or contributes to a hazard.

• Provides control or mitigation for hazards.

• Controls safety-critical functions.

• Processes safety-critical commands or data.

• Detects and reports, or takes corrective action, if

the system reaches a specific hazardous state.

• Mitigates damage if a hazard occurs.

• Resides on the same system (processor) as safety-

critical software.

3.2 Software Safety Involves:

1. Integrating safety into the software life cycle

2. Analyzing the software, system, and interfaces

from beginning to end

3. Documenting safety plans, decisions, processes,

and results

4. Tracing software safety requirements through all

software phases

5. Reporting and resolving problems and

discrepancies

6. Controlling software configuration

7. Evaluating off-the-shelf software

Software Safety Continues during Operations

1. Software safety applies to a system until it is

retired

2. Software upgrades, updates, fixes, and other

changes

3.User manuals must describe safety-related

commands and data.

4.0 METHODOLOGY FOR MODELING

SOFTWARE SAFETY IN SAFETY-

CRITICAL SYSTEMS

The Ten tasks are:

1. Software safety Planning

2. Safety-Critical Computer System Function

Identification and Description

3. Hazard Analysis

4. Software Safety Requirements Analysis,

5. Software Safety Architecture Design analysis

6. Software Safety Detailed Design Analysis

7. Software Safety Code Analysis

8. Software Safety Test Analysis

9. Software Safety Evaluation, and

10. Software Safety Process Review and

Documentation.

1. Software safety planning

The purpose of software safety planning is to

define the approach that will aid in producing

software that will satisfy system safety

requirements. Planning helps ensure that safety is

designed and incorporated in from the beginning of

the life cycle. Early hazard identification and risk

reduction will typically provide the most effective

and lowest cost approach to addressing safety

concerns. Software safety plans include a System

Safety Program Plan, which describes the software

and hardware safety tasks and activities, and the

Software Development Plan. A Software

Development Plan includes management elements

of safe software development (organization and

responsibilities, policies and procedures, schedule

and tasks, etc.) and engineering elements (hazard

analyses, verification approaches, configuration

management, quality assurance, etc.). Additional

information about software safety planning can be

found in [15].

2. Safety-critical computer system function

identification

When software is integrated as part of a system to

command, control, or monitor safety-critical

functions, special measures are required to

understand and mitigate safety risks. Therefore, it

is

important first to identify those functions that are

essential to safe performance or operation.

Identifying these functions helps prioritize the

safety effort to focus the resources and activities on

the most important safety concerns. Safety critical

computer system functions are essentially

those software features that are used to monitor,

control, or provide data for the safety-critical

functions. At this stage top-level, or generic,

requirements should be defined. These

requirements are in general not tied to a specific

hazard but rather are derived from knowledge of

the safety-critical functions, design standards,

safety standards, mishap reports, experience on

similar software, and lessons learned from other

programs.

3. Software and computing system hazard

analyses

Once the safety-critical computer system functions

have been identified, perform analyses to identify

the hazards, assess the risks, and identify risk

mitigation approaches associated with those

functions. In software-intensive systems, mishaps

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

often occur because of a combination of factors,

including component failure and faults, human

error, environmental conditions, procedural

deficiencies, design inadequacies, and software and

computing system errors.

In such systems software often cannot be divorced

from the system where it resides. First perform a

preliminary analysis that considers software

hazards on a system or subsystem level as part of a

larger system safety effort. Typical approaches

include Preliminary Hazard Analyses and Failure

Modes, Effects, and Criticality Analysis. The

analysis will result in mitigation

measures to reduce risk and system-level

requirements to implement those mitigation

measures. In addition to the system or subsystem

hazard analysis, perform software-specific hazard

analyses. Software-specific hazard analyses

identify what can go wrong, what are the potential

effects, and what mitigation measures can be used

to reduce the risk. Typical software-specific

hazard analysis techniques include Software

Failure Modes and Effects Analysis and Software

Fault Tree Analysis. Software specific hazard

analyses should consider multiple error conditions.

Some of the error conditions to consider are as

follows:

-- Calculation or computation errors (incorrect

algorithms, calculation overflow, etc.)

-- Data errors (out of range data, incorrect inputs,

large data rates, etc.)

-- Logic errors (improper or unexpected

commands, failure to issue a command, etc.)

-- Interface errors (incorrect messaging, poor

interface layout and design, etc.)

-- Environment-related errors (improper use of

tools, changes in operating system, etc.)

-- Hardware-related errors (unexpected computer

shutdown, memory overwriting, etc.)

The software-specific analysis should provide

specific mitigation approaches for each potential

hazard identified. The recommended order of

precedence for eliminating or reducing risk in the

use of software and computing systems is the same

as that for hardware, as follows:

1. Design for minimum risk

2. Incorporate safety devices

3. Provide warning devices

4. Develop and implement procedures and training

Mitigation measures can include

-- Software fault detection (for example, built-in

tests, incremental auditing, etc.)

-- Software fault isolation (for example, isolating

safety-critical functions from non-safety-critical

functions, etc.)

-- Software fault tolerance (for example, recovery

blocks that use multiple software versions of

progressively more reliable construction should

faults occur, etc.)

-- Hardware and software fault recovery (for

example, incremental reboots, exception handling,

etc.)

4. Software Safety Requirements Analysis:

A Software Safety Requirements Analysis (SSRA)

shall be performed and documented. The system-

level PHA and the system conceptual design shall

be used as input to the SSRA. The SSRA shall

examine system level software requirements,

interface control documents, and the ongoing

software requirements specification development

to:

a. Identify software requirements that are safety

critical.

b. Ensure the correctness and completeness of the

decomposition of the high level safety

requirements.

c. Provide safety-related recommendations for the

design and testing process. [16]

Analysis of all software requirements [17] shall be

performed in order to identify additional hazards

that the system analysis did not include and to

identify areas where system or interface

requirements were not correctly assigned to the

software. Identified hazards shall then be addressed

by adding or changing the interfaces, system

requirements, and/or software requirements. The

SSRA shall consider such specific requirements as

specific limit ranges; out-of-sequence event

protection requirements (e.g., "if-then" statements);

timers; voting logic; hazardous command

processing requirements; Fault Detection, Isolation,

and Recovery(FDIR); and switch over logic for

failure tolerance. Output of the SSRA shall be used

as input to follow-on software safety analyses. The

SSRA shall be presented at the Software

Requirements Review (SRR)/Software

Specification Review (SSR) and system-level

safety reviews. The results of the SSRA shall be

provided to the ongoing system safety analysis

activity.

5. Software safety Architecture Design Analysis:

This begins in the System and Software

Architecture Design phase. Inputs into this task

may include the system architecture design, the

system hazard analysis outputs like PHA , safety

concept etc., the safety-related design and testing

recommendations from the software safety

requirement analysis task, the software architecture

design, the software safety requirements, and

software criticality and tailoring guidelines.

Software components and functions are identified

in the software architecture design phase. The

software components and functions that implement

the software safety requirements or that affect the

output of the software safety requirements are

identified as safety critical. The correctness and

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

completeness of the software architecture design as

it is related to the software safety requirements and

the safety-related design recommendations is

analyzed to help ensure that the design satisfies the

software safety requirements. Safety-related

recommendations for the detailed design and test

procedures are provided, and test coverage of

software safety requirements is verified.

6. Software safety detailed design analysis:

This begins in the software detailed design analysis

phase. Inputs into this task include the system

hazard analyses, the system and software detailed

designs, the software safety requirements, software

architecture design analysis output, and safety

related detailed design recommendations. The

identified safety critical components and functions

that implement the software safety requirements

are refined to the unit level software components

and functions. The system and software detailed

designs are analyzed to ensure that the software

detailed design satisfies the software safety

requirements. Subsystem interfaces may be

analyzed to detect the interface problems which

may lead to hazards. Test coverage of software

safety requirements is

verified, and safety-related recommendations for

the software implementation are provided. The

software safety detailed design analysis continues

during a portion of implementation and unit

testing also. The outputs from this task may include

the identified safety-critical unit level software

components and functions, the identified subsystem

interfacing hazards, and safety-related software

implementation and test coverage

recommendations.

7. Software Safety Code Analysis:

This task begins in the software implementation

and unit testing phase. Inputs into this task may

include the system hazard analyses outputs,

software safety requirements, software detailed

design, software safety detailed design analysis

output, safety related software implementation

recommendations, software implementation and

tailoring recommendations. The Software safety

code analysis shall examine the software

requirements specification, test procedures, and the

ongoing code development to:

a. Ensure the correctness and completeness of the

code as related to the software safety requirements,

detailed design, and safety related coding

recommendations.

b. Identify potentially unsafe states caused by

input/output timing, multiple events, out-of-

sequence events, failure of events, adverse

environments, deadlocking, wrong vents,

inappropriate magnitude, improper polarity, and

hardware failure sensitivities, etc.

c. Ensure test coverage of software safety

requirements

d. Update safety-related information for inclusion

in the User’s Guide and other appropriate

documentation.

e. Ensure proper comments are used in safety

critical component implementation

8. Software Safety Testing and Test Analysis

Software safety Test Planning:

 This begins in the software architecture design

phase and continues through the software

integration and acceptance testing phase. During

this task, appropriate software safety tests that

address all identified potential hazards related to or

affected by the software are incorporated into the

software safety test plan.

Software safety testing and Test analysis: These

tasks begin in the software implementation and unit

testing phase. Inputs into the software safety testing

task include the system and software safety test

plans and procedures. Inputs into the software

safety test analysis task include the software safety

requirements, system safety program plan, software

safety program plan, System and Software safety

test plans and procedures and safety test results.

The test results shall be analyzed to verify that all

safety requirements have been satisfied. The

analysis shall also verify that all identified hazards

have been eliminated or controlled to an acceptable

level of risk [18]. The results of the test safety

analysis shall be provided to the ongoing system

safety analysis activity.

9. Software Safety Evaluation

The purpose of the Software Safety Evaluation

Phase is to evaluate all System and software safety

analyses and test results and generate a Safety

Certification Letter or Safety Analysis

Report (SAR). The Safety Certification Letter

provides a safety recommendation on whether or

not to certify the computer program and hardware

component undergoing Safety Analysis. A

SAR report also provides a safety recommendation

along with a summary of the findings normally

found in the Final Report. Weather a Certification

Letter or SAR report is provided depends on

customer requirements.

.

10. Software Safety Process Review and

Documentation

This phase allows time for final documentation.

This phase also provides for review of the process

and lessons learned. The lessons learned are used

for Software Safety Process/Technology

Improvement.

4.1 Phase Independent Tasks

The following software safety tasks are

accomplished throughout the life cycle.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

6www.ijert.org

IJ
E
R
T

1. Safety Requirements Traceability

2. Discrepancy Reporting and Tracking

3. Software Change Control

4. Safety Program Reviews

1. Safety Requirements Traceability

A system shall be used to trace the flow down of

the software safety requirements to design,

Implementation, and test. The tracing system shall

also map the relationships between software safety

requirements and system hazard reports.

2. Discrepancy Reporting and Tracking

A system shall be used for closed-loop tracking of

safety related discrepancies, problems, and failures

in base lined software products. All discrepancy

reports shall be reviewed for safety impacts, with

the safety activity’s concurrence on safety-related

discrepancy report closures.

3. Software Change Control

All changes, modifications, and patches made to

the safety critical component requirements, design,

code, systems, equipment, test plans, procedures, or

criteria shall be evaluated to determine the effect of

the proposed change on system/subsystem safety.

4. Safety Program Reviews

Safety program reviews shall be conducted to

ensure that implementation of safety controls of

hazards are adequate. The software safety activity

shall support the system safety review process.

Application of safety model to Railroad

Crossing Control System (RCCS):

Crossing gates on full-size railroads are controlled

by a complex control system that causes the gates

to be lowered to prevent access to the crossing

shortly before a train arrives and to be raised to

allow access to resume after the train has departed.

This requires the detection of approaching trains or

the manual actuation of the crossing gates by an

operator. RCCS is a prototype safety-critical

railroad crossing control system of limited

complexity. Figure 2 shows the laboratory

prototype of RCCS consisting of several

components listed below.

5.1 Components of RCCS

RCCS consists of the following main components:

Train, Railway track, Sensors, Gates, Controller

with a digital I/O card, Signals and a muscle-wire

operated track change lever. A brief description of

each component is given below.

Train: The train is powered by a power supply

relay. When the power is initially switched on, the

train begins movement along the track when the

metallic wheels of the train receive power. The

train comes to a halt at the position where the

power to the tracks is switched off. When a train

approaches the gate crossing region, the train is

detected by the sensor positioned near the gate

crossing area. The sensor sends this information to

the controller component. When a train completely

passes the crossing section, it is detected by the

sensor which is positioned after the gate crossing

area. This information is sent to the controller.

Sensors: These are used to detect the location of

the train on the tracks. Altogether RCCS employs

nine sensors. Two pair of sensors detect the train

position before and after the gates. A set of three

sensors relate to track change where the track splits

into two directions. A pair of sensors gives the train

position with reference to the platform, which is the

starting point of the train movement. Information

from each of the sensors is passed to controller.

Controller: The controller synchronizes the train

activities with the gate. When the controller

receives a message from sensor1, it sends a

command to lower the gates. When it receives a

message from sensor2, it sends a command to raise

the gates. An IBM compatible PC is used as a

controller for RCCS. RCCS software that

controls the overall operation of the system is

stored in the memory of the controller PC. A user

interface is provided to operate the selections of the

controller PC. A 48-line digital I/O (DIO) add-on

card is plugged into an available slot in the

controller PC for monitoring and controlling

sensors and gate actuators. The DIO card

receives the inputs from each of the nine sensors of

RCCS. The eight output signals sent from DIO card

control the following: the power supply to the train

track, power supply to the two gate assemblies,

power supply to muscle-wire based mechanism to

change the track lever and four signal lights.

Gates: RCCS has two sets of gates on either side

of the track layout. The gate receives signals from

the controller component. When it receives lower,

it moves down. When the gate receives raise, it

moves up. The gates are operated by means of a

muscle wire based mechanism. Muscle wire

(Nitinol) is a nickel titanium alloy which contracts

when current flows through it, for achieving motor

less motion for gate movement and track

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

7www.ijert.org

IJ
E
R
T

change.

Signals: Railroad signals are provided to indicate

to train operators whether the track is clear or

occupied, or if certain precautionary measures

should be taken while using the track, such as

maintaining a reduced speed. RCCS contains three

train signals, erected beside the track. One signal is

at the platform to signal a halt at the platform. The

other two signals are placed just before the point of

convergence of the inner track and outer track,

Which lead to the platform. A signal head consists

of one or more signal faces that can include solid

red and green lights.

5.2 Results and Discussion

Normal operation of RCCS: When RCCS is first

switched on, the controller does a preliminary

check of the normal working status of all the

subsystems involved the driver circuitry, the

sensors, the gate assemblies and the train signals. If

all the components are found to be in normal

working condition, it executes the code related to

normal operation. Figure 3 shows the partial block

diagram of RCCS corresponding to the rail-road

intersection. If the train passes Sensor1 positioned

prior to gate, a signal is sent to the controller

indicating the approaching train. The controller

then sends a signal to the gates assembly, causing

the gate arms on either side of the road to close.

When the train finally has passed Sensor2, which is

positioned just beyond the gate crossing section, a

corresponding signal is sent to the controller, which

in turn triggers both the gate arms to open

simultaneously. If RCCS detects any abnormal

situation or state during its normal mode of

operation, perhaps due to an unexpected lightning

strike or rainstorm that disrupts the circuitry of the

gate assemblies, it executes the code relating to

emergency situation causing the signal erected near

the gates, to flash a red light continuously. This is

an indicator to the public that the gate assembly is

not in working condition and that they need to take

necessary precaution in crossing the intersection.

All the tasks of the methodology were applied to

RCCS. First, the system level hazard analysis was

done to identify possible hazardous failure

conditions at the system level. The potential

hazards identified are: Failure of Controller,

Failure of Sensors, Failure of Driver Circuitry,

Failure of Gate 1 and Gate 2, Failure of Train

Signal, Failure of muscle-wire operated Track

Change Lever in changing from outer to inner

track. Next, the identified hazards were classified

according to their severity. A hazard belongs to one

of four levels-catastrophic, critical, marginal and

negligible. For example, the failure of the

controller may lead to both gates being

permanently open, causing accidents, can be

considered a catastrophic or severe hazard. Failure

of the sensor that detects that the train has passed

the gate crossing section, with the effect of the

gates being permanently closed will not cause an

accident but will violate the utility property of the

gates, until the problem is rectified. Failure of the

sensor that detects the

approaching train can cause an accident as the

controller will not close the gates keeping them

open, which can lead to accidents as the road users

are unaware of the approaching train. This is a

catastrophic or severe hazard

Fig. 3: RCCS partial block diagram showing

railroad crossing intersection

Second, completeness of requirements is verified to

check any missing or ambiguous specifications.

This was done by peer review and manual checking

rather than applying any formal methods.

Third, all the safety-critical and non-safety critical

Requirements were identified. All requirements

that directly or indirectly lead to incorrect operation

of the gates are considered safety-critical. Fourth, a

design that enforced the safety constraints was

chosen for RCCS. The objective of the design was

to eliminate or mitigate the hazards identified in the

Preliminary system-level hazard analysis. Another

Objective was to avoid the possibility of single

point failure. This was achieved by using a

additional redundant controller that takes over

control of the system should the main controller

fail unexpectedly. Implementation was done in

Cyclone programming language which is a dialect

of C language which includes several safety

features not found in C. Fifth, run-time

performance was monitored for problems

relating to exceptions, deadlocks, memory related

issues like buffer overruns. Lastly, safety critical

testing of RCCS was done by separating the code

into two risk groups. Group one includes hazards

that are catastrophic or critical. Group two includes

hazards that are marginal or negligible. More

testing effort was spent on those code sections

dealing with hazards related to group one. The

preliminary results in applying the safety

methodology in developing the safety-critical

RCCS clearly demonstrate that the system is safe,

risk-free and fail-safe when compared to a

development methodology that does not

take hazards and associated risks into

consideration.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

8www.ijert.org

IJ
E
R
T

6. CONCLUSION

In the above sections the detailed description of the

methods and metrics to check the safety critical

systems are being analyzed and comparison of

them is done. But there are drawbacks for the

methods and metrics that are needed for the

development of the correct safe safety-critical

system. So, this paper paves the path for the

development of the perfect method or the metric

that helps for the development of a safety-critical

system that does not have any bugs.

REFERENCES

[1] Metrics and Models in software Quality

Engineering by Stephen H. Kan Second

Edition, Pearson Education India, 01-Sep-

2003.

[2] http://en.wikipedia.org/wiki/Life-

critical_system.

[3]

http://en.wikipedia.org/wiki/Nuclear_and_radi

ation_accidents.

[4] Recent Catastrophic Accidents:

Investigating How Software Was Responsible-

W.Eric Wong, Vidroha Debroy, Adithya

Surampudi & HyeonJeong Kim Michael F.

Siok, 2010 Fourth IEEE International

Conference on Secure Software Integration

and Reliability Improvement.

[5] Hiroshi Wada, ―Safety analysis methods

and applications at the design stage of new

product development‖—Introducing the

FMFEA and S-H Matrix Method.

[6]

http://www.scribd.com/doc/49760660/44/REL

IABILITY-METRICS

[7] http://www.fault-tree.net/papers/ericson-

fta-history.pdf

[8]

http://en.wikipedia.org/wiki/Fault_tree_analysi

s

[9] ―SAFETY ISSUES OF COMPUTER

FAILURE‖, Dr. Sami M. Halawani, 30th

March 2005.

[10] Jones, James V., Integrated Logistics

Support Handbook, McGraw–Hill

Professional, 3rd edition (June 8, 2006).

[11] ―SYSTEMSPECIFICATION‖,

http://www.cs.umd.edu/~mvz/cmsc435-

s09/pdf/slides6.pdf.

[12]. John C. Knight, ―Safety Critical Systems:

Challenges and Directions‖, Proceedings of

the 24th International Conference on Software

Engineering Orlando, Florida, 2002, pp. 547 –

550

[13] N.G.Leveson and C.S.Turner.An

investigation of the Therac-25 accidents. IEEE

Computer, 26(7):18-41, March 1987

[14] William R. Dunn, ―Practical Design of

Safety Critical Computer Systems‖, Reliability

Press, 2002.

[15] IEEE STD 1228-1994, IEEE Standard for

Software Safety Plans, 1994.

[16] P.Seetharamaiah and M.Ben Swarup

―Towards a methodology for building safe

software based systems‖, Proceedings of the

CONQUEST 2008, 11th International

Conference on Quality Engineering in

Software Technology, Potsdam 2008

[17] Firesmith, D.G., 2005. Engineering

safety-related requirements for software-

intensive systems. Proceeding of the 27th

International Conference on Software

Engineering, May 15-21, St. Louis, Missouri,

USA., pp: 720-721.

http://portal.acm.org/citation.cfm?id=1062455.

106 2635

[18] Anderson, P., 2008. Detecting bugs in

safety critical code. Dr. Dobbs J., February.

http://www.ddj.com/development-

tools/206104422

[19]. P.Seetharamaiah and M.Ben Swarup

―Towards a methodology for building safe

software based systems‖, Proceedings of the

CONQUEST 2008, 11th International Conference

on Quality Engineering in Software Technology,

Potsdam 2008.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

9www.ijert.org

IJ
E
R
T

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012

ISSN: 2278-0181

10www.ijert.org

IJ
E
R
T

