
Study Of Approaches For Generating Automated Test Cases By UML Diagrams

 N. K. Sharma Divya Saxena

 Assistant Professor M.Tech Student

 Rajiv Gandhi Technical University Jayoti Vidyapeeth Women’s University

Abstract

Software testing is a crucial phase in the Software

Development Life Cycle (SDLC). Testing includes

executing a program on a set of test cases and

comparing the actual results with the ones expected.

Test cases describe tests that need to be run on the

program to verify that the program runs as expected.

To reduce the time consumption and to cut down the

cost of manual testing researchers and practitioners

have proposed various tools and techniques for

automation of software testing which increases the

reliability of the software. In general, the software

testing phase takes around 40-70% of the time and cost

during the software development life cycle. To test the

software automatically, test case generation is the best

way. One way to generate the test cases is with the help

of UML diagrams. In this paper we study the various

approaches used to generate the test cases from the

UML diagrams to test the software automatically.

Keywords: Test case, UML, Automatic test case

generation, Model based testing.

1. Introduction

Software testing is an important activity in software

development life cycle. It is an investigation activity

conducted to provide all stakeholders with information

about the quality of given software or applications.

Software organizations spend considerable portion of

their budget in testing related activities. A well tested

software system will be validated by the customer

before acceptance. While developing the software, the

software organizations spend near about 50% of their

budget in testing related task. It provides the efficiency

of the software and the correctness of the software.

Testing can be done either manually or automatically.

Testing automatically is best way to test software

because it consume less time and give accurate result

than manual testing. A test case in software engineering

is a set of conditions or variables under which a tester

will determine whether an application or software

system is working correctly or not. Test case is

generated from the UML using object diagrams. UML

is unified modeling language that is used to create

visual models of a software system. These models can

help to create designs and to permit analysis and review

of these models. There are different types of diagram in

the UML depicting the dynamic behavior of objects in

a system. Unified Modeling Language is a widely

accepted set of notations for modeling object oriented

system. Different techniques are used which uses

different approaches to generate the test cases from

object diagram.

2. Literature Survey

 This section discusses the work done related to

generating the test cases automatically to test the

software. There are various techniques with different

method to generate the test cases. Several researches

have successfully proposed test case generation for

various software under various circumstances such as

scenario-based, model based, path oriented, goal-

oriented and genetic approaches. This section surveys

and describes the waterfall software development life

cycle, software testing process, test case generation

process and all recent research of test case generation

techniques.

Since Unified Modeling Language (UML) is a

standardized general-purpose modeling language in the

field of software engineering. UML diagrams represent

two different views of a system model: static and

dynamic. Static (or structural) view: emphasizes the

static structure of the system using objects, attributes,

operations and relationships. The structural view

includes class diagrams and composite structure

diagrams. Dynamic (or behavioral) view: emphasizes

the dynamic behavior of the system by showing

collaborations among objects and changes to the

internal states of objects. This view includes sequence

3028

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60915

diagrams, activity diagrams and state machine

diagrams. According to the waterfall software

development life cycle (SDLC) below, basically there

are five phases in the cycle, which are:

(a) Requirements

(b) Design

(c) Implementation (also known as development)

(d) Verification (also known as software testing)

(e) Maintenance.

Software testing phase is the process of executing a

program or system with the intent of finding errors. [1].

It involves any activity aimed at evaluating an attribute

or capability of a program or system and determining

that it meets its required results [2]. Software testing is

an essential activity in the SDLC. In the simplest

terms, it provides quality assurance by observing the

execution of a software system to validate whether it

behaves as intended and to identify potential

malfunctions. Earlier studies estimated that testing can

consume fifty percent, or even more, of the

development costs [3], while a detailed survey in the

United States [4] quantified the high economic impacts

of an inadequate software testing infrastructure. The

software testing process provided by Pan [5] from

Carnegie Mellon University, describe the general

process of running software testing activities.

 2.1. Requirements analysis: Software testing

should begin in the requirements phase of the SDLC.

During the design phase, software testing engineers

work with developers in determining what aspects of a

design are testable and with what parameters those tests

work.

 2.2. Test planning: Test strategy, test plan,

testbed creation. A testbed is a platform for

experimentation for large development projects.

Testbeds allow for rigorous, transparent and replicable

testing of scientific theories, computational tools, and

other new technologies.

 2.3. Test development: Develop test procedures,

design test scenarios, produce test cases, prepare test

datasets, and build test scripts to use in testing software

 2.4. Test execution: Once the test plan and test

cases, including test data, are generated and prepared,

software testing engineers can execute the software

based on the plans and tests and report any errors found

to the development team.

 2.5. Test reporting: When the test cases have

been run, software testing engineers generate metrics

and make final reports on their test effort and whether

or not the software tested is ready for release.

2.6. Test result analysis (also known as defect

analysis): This step is done by the testing team. It is

usually done along with the client, in order to decide

what defects should be treated, fixed, rejected (i.e.

found software working properly) or deferred to be

dealt with at a later time.

2.7. Retesting the resolved defects: When a defect

has been resolved by the development team, the test

must be run again.

2.8. Regression testing: In general, it is common to

have a small test program built based on a subset of

tests, for each integration of new, modified or fixed

software, in order to ensure that the latest delivery has

not ruined anything. Additionally, this step ensures that

the software product as a whole is still working

correctly.

2.9. Test Closure: When the test meets the exit

criteria, the activities such as capturing the key outputs,

lessons learned, results, logs, documents related to the

project are archived and used as a reference for future

projects.

Model based technique identify respective test case for

the software with respect to the UML diagrams such as

activity, state-chart, object diagram etc. Path-oriented

testing based on static as well as dynamic control flow

of the software. Static path testing is done by symbolic

execution, dynamic path testing based on the run time

test of executing program. Goal-oriented techniques

identify test cases covering a selected goal such as a

statement or branch, irrespective of the path taken.

 M.Prasanna et al. (2009) presents that to test the

software, test cases generation is best way. The test

cases are derived by analyzing the dynamic behavior of

the objects due to internal and external stimuli [6].

Researchers use model based approach in which

genetic algorithm’s crossover technique is apply on the

class diagram and the traversal is done by the depth

first search(DFS) algorithm. This tree structure

approach coupled with genetic algorithm shows that it

is capable to reveal 80% faults in unit level and 88%

faults in integration level. They couple the genetic

algorithm with mutation testing to check the

effectiveness in the testing process which shows 80.3%

of effectiveness.

3029

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60915

 A.V.K Shanth et al. (2011) have proposed another

model based approach in which the concept of data

mining is used in which the evolutionary genetic

algorithm technique is apply on the class diagram and

generate the test cases [7]. They show that evolutionary

genetic algorithm yields optimal valid test case than

with only genetic crossover operator, after applying

depth first searching algorithm. The advantages are that

specification –based testing uses information derived

from a specification to assist testing as well as to

develop program.

 G.Mohan Kumar, A.V.K.Shanthi (2012) researchers

used some novel approaches to test the software at the

initial stage itself which will make easy for the software

testers to test the software in the later stage [8]. Here

they take the sequence diagram. The experiment results

show that this method has better performance. All the

possible test cases are generated and validated by

prioritization.

 Sangeeta sabhwal, Ritu sibal, Chayanika Sharma

(2011) consider in their paper another novel based

approach in which testing efficiency is optimized by

applying the genetic algorithm on the test data. For

requirement change, a stack based approach for

assigning weights to the nodes object diagram is

proposed [9]. Here first sequence diagram is generated

and then from the sequence diagram, sequence

dependency graph is generated and genetic algorithm is

applied on it [10].

 Ranjit Swain, Vikas Panthi, Durga Prasad (2012) used

functional minimization technique to generate the test

cases. In this technique in which the STUPEC [11]

technique is used in which first predicate is selected

and then predicated is transformed and then test cases

are generated. The functional minimized technique is

used for finding the minimum of predicate function. In

this approach the test cases are generated step by step.

Here the object diagram that is used for generating the

test cases is state machine diagram. This approach

covers much coverage like state coverage, transition

pair coverage, action coverage. The numbers of test

cases are minimized that achieve transition path

coverage by testing the borders determine by simple

prediction.

 L.C.Briand et al. (2008) in his paper proposed the

method supported by the prototype tool to tackle the

regression test selection problem at the design level.

The main objective has been to ensure that regression

testing was safe while minimizing regression efforts.

 Alessandra Cavarra, Thierry Jeron, Alan Hartman

ISSTA (2002) present an architecture for model-based

testing using a profile of the unified modeling language

(UML). Class, object and state diagrams are used to

define essential model. To generate the test cases

automatically, generation tool like AGEDIS test is used

[12]. The AGEDIS test generation tool is based on the

principles of two exiting tools that are TVG and

GOTCHA. The main advantage of the AGEDIS test

case generation tool is its ability to combine different

test directives: coverage criteria, test purposes and test

constraints.

3. Test Case Generation Techniques

Test case generation has always been an integral part to

the testing process. There are many types of test case

generation techniques [13] such as specification-based

techniques, sketch diagram based techniques and

source code-based techniques. Random techniques

determine a set of test cases based on assumptions

concerning fault distribution. Source code-based

techniques generally use a control flow graph to

identify paths to be covered and generate appropriate

test cases for those paths. Goal-oriented techniques

identify test cases covering a selected goal such as a

statement or branch, irrespective of the path taken.

3.1. Specification-Based Techniques

Specification-based techniques are methods to generate

a set of test cases from specification documents such as

a formal requirements specification [14], [15], [16],

[17]. The specification precisely describes what the

system is to do without describing how to do it. The

advantages of this technique include that the

specification document can be used to derive expected

results for test data, and that tests may be developed

concurrently with design and implementation. The

specification requirement document can be used as a

basis for output checking, significantly reducing one of

the major costs of testing. Specifications can also be

analyzed with respect to their testability

[18].Furthermore, the specification-based technique

offers a simpler, structured, and more formal approach

to the development of functional tests than non-

specification based testing techniques do. The strong

relationship between specification and tests helps find

faults and can simplify regression testing. The process

of generating tests from the specifications will often

help the test engineer discover problems with the

specifications themselves. If this step is done early, the

problems can be eliminated early, saving time and

resources.

3030

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60915

3.2. Sketch diagram-Based Techniques
Sketch diagram-based techniques are methods to

generate test cases from model diagrams like UML Use

Case diagram [19], [20], [21], [22] and UML State

diagrams [23], [24], [25], [26]. A major advantage of

model-based V&V is that it can be easily automated,

saving time and resources. Other advantages are

shifting the testing activities to an earlier part of the

software development process and generating test cases

that are independent of any particular implementation

of the design [19]. The sketch diagram-based test case

generation techniques have been proposed for

traditional and web-based application for a long time.

Jim [20] presented how using use cases to generate test

cases can help launch the testing process early in the

development lifecycle and also help with testing

methodology. In a software development project, use

cases define system software requirements. Use case

development begins early on, so real use cases for key

product functionality are available in early iterations.

Web based applications are of growing complexity and

it is a serious business to test them correctly. Manish

[22] focused on black box testing which enables the

software testing engineers to derive sets of input

conditions that will fully exercise all functional

requirements. They believed that black box testing is

more generally suitable and more necessary for web

applications than other types of application.

3.3. Source Code-Based Techniques

Source code-based techniques generally use control

flow information to identify a set of paths to be covered

and generate appropriate test cases for these paths. The

control flow graph can be derived from source code.

The result is a set of test cases with the following

format:

a) test case ID

b) test data

c) test sequence (also known as test steps)

d) expected result

e) actual result and

f) pass / fail status.

Source code based techniques generally use control

flow information to identify a set of paths to be covered

and generate appropriate test cases for these paths.

These techniques can further be classified as static or

dynamic. Static techniques are often based on symbolic

execution e.g. [27], whereas dynamic techniques obtain

the necessary data by executing the program under test

e.g. [28].

4. Test Case Generation Approaches

Even though variety of approaches have been proposed,

with the advent of modeling tools like Rational Rose,

for a decade there has been constant research on

generating test cases based on specifications and design

models. Approaches involved in generating of test case

can be categorized in scenario-based, model-based and

genetic-based test case generation.

4.1. Scenario-Based Test Case Generation

Scenario-based test cases generation is based on

concurrent application availed in used case studies.

Baikutha Narayan Biswal [23] had presented paper on

“A Novel Approach for Scenario-Based Test Case

Generation”. They have proposed scenario-based

testing, test scenarios are used for generating test cases.

UML activity diagrams describe the realization of the

operation in design phase and also support description

of parallel activities and synchronization aspects

involved in different activities perfectly. This paper

deals with test adequacy criteria. Scenario testing

works best for complex transactions or events, for

studying end-to-end delivery of the benefits of the

program, for exploring how the program will work in

the hands of an experienced user, and for developing

more persuasive variations of bugs found using other

approaches.

Concurrent Application testing described by Chang-ai

Sun [29] also employs UML Activity diagram for

generating the test case. A paper on A Transformation-

based Approach to Generating Scenario-oriented Test

Cases from UML Activity Diagrams for Concurrent

Applications promotes transformation-based approach

to generating scenario-oriented test cases for testing

concurrent applications modeled by UML Activity

Diagrams. Concurrent behavior is nondeterministic

its testing is more difficult than the testing of common

control flows or data flows.

Test Cases Generation from UML Activity Diagrams

presented by Hyungchoul Kim[30] also based on

concurrency in Activity Diagram i.e., concurrent

system in which multiple objects interact with each

other. The proposed method generates test cases from

UML activity diagrams that minimize the number of

test cases generated while deriving all practically useful

test cases.

Test Case Design Using Conditioned Slicing of

Activity Diagram by Mitrabinda Ray, Soubhagya

Sankar Barpanda, and Durga Prasad Mohapatra

presents conditioned slicing as a general slicing

framework for test case generation from activity

diagram [31]. The Method first builds a flow

3031

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60915

dependence graph from an ordinary UML activity

diagram and then applies conditioned slicing on a

predicate node of the graph, to generate test cases.

4.2. Model-Based Test Case Generation

Model based test case generation equally challenging

and also many researches involve achieving optimal set

of test case. Automatic test case generation using

unified modeling language (UML) state diagrams by P.

Samuel, R. Mall, and A.K. Bothra published on basis of

model based test case generation automatically. The

approach, the control and data flow logic available in

the UML state diagram to generate test data are

exploited. The state machine graph is traversed and the

conditional predicates on every transition are selected.

Then these conditional predicates are transformed and

function minimization technique is applied to generate

test cases. The present test data generation scheme is

fully automatic and the generated test cases satisfy

transition path coverage criteria. The generated test

cases can be used to test class as well as cluster- level

state-dependent behaviors [32].

 Test Case Generation by means of UML Sequence

Diagrams and Labeled Transition Systems by

Emanuela G.Cartaxo, introduced UML Sequence

diagram in field of test case generation. A feature is an

increment of functionality, usually with a coherent

purpose that is added on top of a basic system. Feature

are usually developed and tested separately from the

basic system as independent modules. The procedure is

based on model-based testing techniques with test cases

generated from UML sequence diagrams translated into

Labeled Transition Systems (LTSs) [33]. The idea is to

reuse sequence diagrams that are constructed by

development teams to specify use cases with basic and

alternative scenarios. Model-based software

development bases on setting up models of the system

to be constructed. This approach has proved to be

useful, because it allows developers to first elaborate

the most important properties of the software before

proceeding with the implementation.

In Test Case Generation from UML State Machines

presented by Dirk Seifert elaborates test cases include

not only stimuli to trigger the system under test, they

also include possible correct observations to

automatically evaluate the test case ecution.[34].

Automated-Generating Test Case Using UML

Statecharts Diagrams by Supaporn Kansomkeat and

Wanchai Rivepiboon experimented on the automatic

testing technique to solve partially the testing process.

This technique can automatically generate and select

test cases from UML state chart diagrams. Firstly,

transform this diagram into intermediate diagram,

called Testing Flow Graph (TFG), explicitly identify

flows of UML state chart diagrams and enhance for

testing. Secondly, from TFG generate test case using

the testing criteria that is the coverage of the state and

transition of diagrams. Finally, the evaluation is

performed using mutation analysis to assess the fault

revealing power of our test cases [35].

Test Case Generation Based on Use case and Sequence

Diagram by Santosh Kumar Swain, Durga Prasad

Mohapatra, and Rajib Mall illustrate Test cases are

derived from analysis artifacts such as use cases, their

corresponding sequence diagrams and constraints

specified across all these artifacts. Construct Use case

Dependency Graph (UDG) from use case diagram and

Concurrent Control Flow Graph (CCFG) from

corresponding sequence diagrams for test sequence

generation. Focus testing on sequences of messages

among objects of use case scenarios [36].

4.3. Genetic-Based Test Case Generation

Automatic Test Case Generation for UML Object

diagrams using Genetic Algorithm presented by M.

Prasanna and K.R. Chandran used to generate optimal

test cases which also can be consider as data mining

approach.

Automated generation of test cases in object oriented

systems has been presented. The test cases are derived

by analyzing the dynamic behavior of the objects due to

internal and external stimuli .The scope of the paper

has been limited to the object diagrams taken from the

Unified Modeling Language model of the system.

Genetic Algorithm’s tree crossover has been proposed

to bring out all possible test cases of a given object

diagram [12]. Experimental results show that it has the

capability to reveal 80% fault in the Unit level and 88%

fault in the integration level.

5. Conclusion

To sum up all, there are various techniques available

for generating test cases to satisfy test coverage as well

as path coverage criteria. Scenario-Based test case

generation mainly focused on concurrent process in

only activity diagram. Model-Based test case

generation focused on various state charts, sequence,

object, use case diagrams to generate test case but fails

produce optimal one. Genetic based test case

generation produce an optimal on but still fault test

cases are available. In recent trend Model-Based test

case attracts many researchers by using some data

mining concept to produce an automated optimal test

case by which minimum human and cost effort are

3032

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60915

utilized. There is still a great scope for future work to

find improvements in current testing techniques.

6. References

[1] Myers, Glenford J., “The art of software testing”,

Publication info: New York : Wiley. ISBN: 0471043281,

1979.

[2] Hetzel, William C., “The Complete Guide to Software

Testing”, 2nd ed. Publication info: Wellesley, Mass.: QED

Information Sciences. ISBN: 0894352423, 1988.

[3] B. Beizer, “Software Testing Techniques”, Van Nostrand

Reinhold, Inc, New York NY, 2nd edition. ISBN: 0-442-

20672-0, 1990.

[4] NIST, “The economic impacts of inadequate

infrastructure for software testing”, 2002.

[5] Pan, Jiantao, “Software Testing (18-849b Dependable

Embedded Systems)”, Electrical and Computer Engineering

Department, Carnegie Mellon University, 1999.

[6] L.C.Briand, Y. Labiche, S.He, “Automating Regression

Test Selection based on UML designs”, Information and

Software Technology 51(2009)16-30.

[7] Sangeeta Sabharwal, Ritu Sibal, Chayanika Sharma, “

Applying Genetic Algorithm for Prioritization of Test Case

Scenarios Derived from UML Diagrams”, International

Journal of Computer Science Issues, vol.8, issue 3, no.2, May

2011, pp. 433-444.

[8] A.V.K.Shanthi, G.Mohan Kumar, “ Automated Test Cases

Generation from UML Sequence Diagram”, International

Conference on Software and Computer Application, vol.41,

2012, pp. 83-89.

[9] Marlon Vieira, Johanne Leduc, Bill Hasling, Rajesh

Subramanyan , Juergen Kazmeier, “ Automation of GUI

Testing Using a Model – Driver Approach”, Proceeding of

International Workshop on Automation of Software Test,

2006, pp. 9-14.

[10] Philp Samuel, R.Mall, A.K.Bothra, “Automatic Test

Case Generation Using UML State Diagram”, IET Software,

2008, pp. 79-93.

[11] A.V.K.Shathi, G.Mohan Kumar, “ A Heuristic Approach

for Automated Test Case Generation From Sequence

Diagram Using Tabu Search Algorithm”, European Journal

of Scientific Research, vol.85, no.4, Sep 2012,pp. 534-540.

[12] M. Prasanna, K.R.Chandran, “Automatic Test Case

Generation for UML Object Diagrams Using Genetic

Algorithm”, Int. J. Advance. Soft comput. Appl., vol.1, no. 1,

July 2009, pp. 19-32.

[13] M. Prasanna S.N. Sivanandam R.Venkatesan

R.Sundarrajan, “A Survey on Automatic Test Case

Generation”, Academic Open Internet Journal, 2005.

[14] Hung Tran, “Test Generation using Model Checking”,

Proceeding Conference on Automated Verification, 2001.

[15] Miao Huaikou and Liu Ling, “A Test Class Framework

for Generating Test Cases from Z Specifications”, 2000.

[16] Percy Antonio, Pari Salas and Bernhard K. Aichernig,

“Automatic Test Case Generation for OCL: a Mutation

Approach”, 2005.

[17] Richard A. DeMillo and A. Jefferson Offutt,

“Constraint-Based Automatic Test Data Generation”, IEEE

Transaction on Software Engineering, 1991.

[18] Aynur Abdurazik and Jeff Offutt, “Generating Test

Cases from UML Specifications”, 1999.

[19] A.Z. Javed, P.A. Strooper and G.N. Watson, “Automated

Generation of Test Cases Using Model-Driven Architecture”,

Second International Workshop on Automation of Software

Test (AST’07), 2007.

[20] Jim Heumann, “Generating Test Cases From Use

Cases”, Rational Software, 2001.

[21] Johannes Ryser and Martin Glinz, “SCENT: A Method

Employing Scenarios to Systematically Derive Test Cases for

System Test”, 2000.

[22] Manish Nilawar and Dr. Sergiu Dascalu, “A UML-Based

Approach for Testing Web Applications”, Master of Science

with major in Computer Science, University of Nevada,

Reno, 2003.

[23] Alessandra Cavarra, Charles Crichton, Jim Davies, Alan

Hartman, Thierry Jeron and Laurent Mounier, “Using UML

for Automatic Test Generation”, Oxford University

Computing Laboratory, Tools and Algorithms for the

Construction and Analysis of Systems, TACAS'2000, 2000.

[24] Annelises A. Andrews, Jeff Offutt and Roger T.

Alexander, “Testing Web Applications. Software and

Systems Modeling”, 2004.

[25] Avik Sinha, Ph.D and Dr. Carol S. Smidts, “Domain

Specific Test Case Generation Using Higher Ordered Typed

Languages from Specification”, Ph. D. Dissertation, 2005.

[26] David C. Kung, Chien-Hung Liu and Pei Hsia, “An

Object-Oriented Web Test Model for Testing Web

Applications”, In Proceedings of the First Asia Pacific

Conference on Quality Software (APAQS’00), page 111, Los

Alamitos, CA, 2000.

[27] C. Ramamoorthy, S. Ho, and W. Chen, “On the

automated generation of program test data”, IEEE

Transactions on Software Engineering, SE-2(4):293–300,

1976.

[28] Bogdan Korel, “Automated Software Test Data

Generation”, IEEE Transaction on Software Engineering,

1990.

[29] Chang-ai Sun, 2008 IEEE, "Transformation-based

Approach to Generating Scenario-oriented Test Cases from

UML Activity Diagrams for Concurrent Applications",

Annual IEEE International Computer Software and

Applications Conference.

[30] Hyungchoul Kim, Sungwon Kang, Jongmoon Baik,

Inyoung Ko, "Test Cases Generation from UML Activity

Diagrams ", Eighth ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking,

and Parallel/Distributed Computing.

 [31] Mitrabinda Ray, Soubhagya Sankar Barpanda, Durga

Prasad Mohapatra, "Test Case Design Using Conditioned

Slicing of Activity Diagram", International Journal of Recent

Trends in Engineering, Vol. 1, No. 2, May 2009.

[32] P. Samuel, R. Mall, A.K. Bothra, "Automatic test case

generation using unified modeling language (UML) state

diagrams ", Published in IET Software.

3033

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60915

[33] Emanuela G. Cartaxo, Francisco G. O. Neto and

Patr´ıcia D. L. Machado, "Test Case Generation by means of

UML Sequence Diagrams and Labeled Transition Systems",

IEEE 2007.

[34] Dirk Seifert, "Test Case Generation from UML State

Machines", inria-00268864, version 2 - 23 Apr 2008 .

[35] Supaporn Kansomkeat and Sanchai Rivepiboon,

"Automated- Generating Test Case Using UML Statechart

Diagrams ",SAICSIT 2003.

[36] Santosh Kumar Swain, Durga Prasad Mohapatra, and

Rajib Mall, "Test Case Generation Based on Use case and

Sequence Diagram", Int.J. of Software Engineering, IJSE

Vol.3 No.2 July 2010.

3034

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

www.ijert.org

Vol. 2 Issue 6, June - 2013

IJ
E
R
T

IJ
E
R
T

IJERTV2IS60915

