Studies on Callophyllum Inophyllum (Surahonne) Bio Diesel as fuel for the Diesel Engine

Shripad Diwakar ¹
¹ Department of Mechanical Engg, BMSITM, Bangalore-560 064, India

Rana Pratap Reddy
2 Department of Mechanical Engineering RITM, Bengaluru – 560 064, India

Abstract: Biodiesel is a non-toxic, biodegradable and renewable alternative fuel that can be used with little or no engine modifications. Biodiesel is currently expensive but would be more cost effective if it could be produced from low-cost non edible oils. The objective of this study was to investigate the effect of the biodiesel produced from non edible oils on engine performance and emissions. In this work, biodiesel was produced from Callophyllum Inophyllum (Surahonne) oil using base catalyzed transesterification. The properties of the biodiesel was determined as per ASTM standards and compared with the diesel. From the property analysis, it is observed that the properties of the biodiesel are better than the raw oil and close to the diesel. From the engine tests, it is observed that the engine performance is close to the Diesel.

Keywords: Vegetable oils, Surahonne oil, Bio Diesel, Properties, Engine performance

INTRODUCTION

The growth of national economy and energy consumption are closely related. It is clear that a growing economy will demand much higher levels of energy consumption. India is spending about US $53.37 X 10⁶ per annum in foreign exchange on importing petroleum fuels due to the increasing gap between demand and supply of the petroleum products [1]. Vegetable oils present a very promising alternative fuel to diesel oil due to their better properties compared to other alternative fuels such as ethanol and methanol [2]. Moreover, production of vegetable oils is very simple and economical in all agricultural countries like India.

Several studies [3, 4] have shown that chemically unaltered vegetable oils are not suitable as a fuel for diesel engine. Investigations have been carried out on a variety of vegetable oils like Jatropha oil, Rice bran oil, Rape seed oil etc on diesel engines [5]. Vegetable oils have cetane number of about 35 to 40 due to poor volality, which is lower than the minimum requirements in a diesel engine. As the oxygen content is higher in vegetable oil compared to diesel oil, the heating value of vegetable oil is about 10% lower than the diesel oil. Viscosity of vegetable oil derivatives is more comparable with those of diesel oil. Various techniques exist for the use of vegetable oil in CI engines such as vegetable oil – diesel blending, transesterification to form methyl, ethyl or butyl ester etc [4, 6]. The most commonly used ester is the methyl ester derived by the reaction between vegetable oils and methanol [7].

Senthil et al. [8] were investigated the use of Methyl Ester of Jatropha oil as sole fuel for diesel engine. They concluded that Methyl esters of Jatropha oil could be used as sole fuel for diesel engine. Bari et al [9] used preheated crude palm oil as a fuel in a diesel engine. They demonstrated that preheating is essential for the smooth flow of fuel through the injection system. Nagaraja et al. [10] studied the effect of injection pressure on the engine performance with rice bran oil as bio diesel.

PRESENT WORK

The Surahonne tree is indigenous to India, grow even in draught prone area and found abundantly over several parts of India. These trees oils are non edible oils. Use of this oil as renewable alternative fuel will be a suitable substitute for diesel oil. Viscosity of these oils is high hence in the present work their methyl ester (biodiesel) was used.

Biodiesel of Surahonne oil was prepared by Transesterification process. The important fuel properties of these biodiesels were determined experimentally in the fuel laboratory. This biodiesel was used as sole fuel in a four stroke direct injection diesel engine.

PREPARATION OF BIODIESEL

The biodiesel was produced from the surahonne oil using base catalyzed transesterification. The molar ratio of oil to methanol used in this work was 6:1 and reaction time and reaction temperatures are 60 min and 60°C respectively. The mixture of reactants was then refluxed in a water bath at 65°C using water cooled condenser and for another half an hour without water cooled condenser to remove excess methanol. Once the reaction was completed two major products, Glycerol and methyl ester were obtained. The separated esters were then washed 3 – 4 times with warm water to wash of impurities like soap and other residues. Finally the methyl esters i.e., biodiesel were dried off using 10 grams of anhydrous sodium sulphates (Na₂SO₄).

Fig.1 shows the schematic of the experimental setup. The engine speed was kept constant at 1500 rpm. At steady state condition, load, fuel flow rate, air flow rate, speed and exhaust emissions such as UBHC, CO, CO₂, O₂
smoke and NOx were recorded. Then the load was varied from low load to full load.

Table 1 shows the properties of Surahonne oil biodiesel and diesel oil. The flash and fire points of Surahonne oil biodiesel is lower than their vegetable oils. This lower flash and fire points result in better vaporization of the oil. The calorific value of the Surahonne oil biodiesel is higher than their vegetable oils. This higher calorific value will result in higher heat release of the oil. The kinematic viscosity of the Surahonne oil biodiesel is lower than their vegetable oil. This will result in better atomization of the oil. Hence vegetable oil biodiesel is having better fuel properties than their raw vegetable oil.

Table 1. Comparison of properties of Biodiesel and Diesel.

<table>
<thead>
<tr>
<th>Sl No</th>
<th>Property</th>
<th>Surahonne Oil Biodiesel</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flash point (°C)</td>
<td>140</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>Fire point (°C)</td>
<td>148</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>Calorific Value (kJ/kg)</td>
<td>41,300</td>
<td>42,500</td>
</tr>
<tr>
<td>4</td>
<td>Kinematic Viscosity at 40°C (mm²/s)</td>
<td>4.2</td>
<td>1.83</td>
</tr>
<tr>
<td>5</td>
<td>Specific Gravity at 40°C</td>
<td>0.912</td>
<td>0.82</td>
</tr>
<tr>
<td>6</td>
<td>Density at 40°C (kg/m³)</td>
<td>912</td>
<td>820</td>
</tr>
</tbody>
</table>

Engine Testing for Performance and Emission

A single cylinder 4 –S water cooled naturally aspirated direct injection diesel engine was used for the research work. Engine details are given in Table 2.

Table 2. Engine Details

<table>
<thead>
<tr>
<th>Engine</th>
<th>4 – S, Single cylinder, water cooled engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make/Model</td>
<td>Kirloskar</td>
</tr>
<tr>
<td>Rated Power</td>
<td>5.2 kW at 1500 RPM</td>
</tr>
<tr>
<td>Bore X Stroke</td>
<td>80 mm X 110 mm</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>16.5:1</td>
</tr>
<tr>
<td>Injection Timing</td>
<td>27° before TDC</td>
</tr>
</tbody>
</table>

Engine Performance

Biodiesels prepared from vegetable oil was successfully used as a sole fuel for diesel engine without any modification in the fuel injection system. Brake thermal efficiency is defined as the ratio of brake power to the heat supplied. This term is used to indicate the conversion of heat energy into useful mechanical power.

The variation of brake thermal efficiency with load is shown in Fig.2. From this figure, it is observed that the brake thermal efficiency of vegetable oil biodiesel is comparable to diesel oil.
The variation of smoke opacity for various loads is shown in Fig.3. The biodiesel results in higher smoke emission as compared to neat diesel operation. This may be due to higher kinematic viscosity of biodiesel.

Figure 4 shows the variation of Un-Burnt Hydro Carbon (UBHC) emission with load. It shows that the biodiesel results in higher UBHC emission as compared to diesel oil. The variation of CO emission with load is shown in Fig.5. It also shows that the vegetable oil biodiesel results in lower CO emission as compared to diesel oil.

CONCLUSIONS
Biodiesel was prepared from vegetable oil by transesterification process. The biodiesel was used as sole fuel for 4-S diesel engine. The following conclusions are made based on the experimental results.

- The properties of vegetable oil biodiesels are better than raw oils.
- The properties of vegetable oil biodiesels are close to the properties of diesel oil.
- Engine works smoothly on Calophyllum Inophyllum oil with performance comparable to Diesel operation.
- Calophyllum Inophyllum biodiesel result in lower smoke, UBHC and CO emissions as compared to diesel operation.
REFERENCES:

4) Bandel, W., and Heinrich, W., Vegetable oil derived fuels: The problems related to this use in Diesel Engines, Daimler –Benz AG, west Germany.